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AbstractAquaporin-4, encoded by AQP4, is the major water channel in the central nervous
system and plays an important role in the brain’s water balance, including edema formation
and clearance. Using genomic copy-number analysis and trio-exome sequencing, we inves-
tigated amale patient with intellectual disability, hearing loss, and progressive gait dysfunc-
tion and found a de novo missense change Ser111Thr in AQP4 as the only suspicious
finding. Perinatally, signs of brain ischemia were detected in relation to acute collapse
2 h after birth that resolved a few days later. At the age of 3 mo, cardiac hypertrophy
was detected that persisted through childhood but was completely resolved by age 16.
In theory, this neurodevelopmental disorder with transient cardiomyopathy could be
caused by a disturbance of cellular water balance. Ser111 is an extremely conserved residue
in the short cytoplasmic loop between AQP4 transmembrane helix 2 and 3, present across
all AQP isoforms from plants to mammals, and it does not appear to be a phosphorylation
site. We found that the Ser111Thr change does not affect water permeability or protein
stability, suggesting another and possibly regulatory role. Although causality remains un-
proven, this case study draws attention to AQP4 as a candidate gene for a unique develop-
mental disorder and to a specific serine as a residue of possibly great functional importance
in many AQPs.
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INTRODUCTION

Aquaporins (AQPs) are water channels that enhance membrane water permeability by form-
ing pores. They are found in bacteria, plants, and mammals and constitute a family of trans-
membrane proteins with a water channel in the middle, just permeable to a single file (string)
of water molecules (Agre and Kozono 2003; Verkman 2011). In the plasmamembrane, AQPs
form tetramers. For AQP4, these tetramers may assemble into supramolecular square arrays,
also called orthogonal arrays of particles (Furman et al. 2003; Crane et al. 2010). The rationale
for assembling water channels into such large arrays is not clear (Crane et al. 2010).

There are several AQP genes of which AQP4 encodes the main AQP in the central
nervous system. Expression is high in cells supporting neurons—for example, astroglia and
supportive cells of sensory neurons in the eye and ear (Verkman 2012). AQP4 is also
expressed in cardiomyocytes (Rutkovskiy et al. 2013). AQP4 accumulation can be seen in
the perivascular endfeet of glial cells (i.e., in the blood–brain barrier) as well as in the epen-
dymal–CSF barrier, which borders the ventricular and subarachnoid spaces (Verkman 2012).
AlthoughAQP4 KOmice appeared largely normal, conditions of stress revealedmore subtle
abnormalities. The KOmice displayed delayed cytotoxic edema formation, while vasogenic
edema formation or conditions with hydrocephalus worsened (Papadopoulos and Verkman
2007; Rutkovskiy et al. 2014). In addition, KO mice had memory impairment (Skucas et al.
2011; Szu and Binder 2016).

There are two known human aquaporinopathies: a rare form of diabetes insipidus due to
AQP2 mutations causing impaired water resorption in the renal collecting tubules (OMIM
#125800), and neuromyelitis optica, an autoimmune disease with simultaneous inflamma-
tion and demyelination of the optic nerve and spinal cord and with the presence of autoan-
tibodies against AQP4 (Verkman 2012). Here, we describe a possible third aquaporinopathy
in a patient with a de novo missense variant Ser111Thr in AQP4 together with intellectual
disability (ID) and a remarkable phenotype comprising both transient (brain ischemia and
cardiac hypertrophy) and progressive features (gait disturbances).

RESULTS

Clinical Presentation and Diagnostic Investigations
A male patient with mild ID, sensorineural hearing loss, macrocephaly, and progressive
gait problems underwent routine molecular diagnostic investigations for copy-number
aberrations (on high-resolution Affymetrix SNP-array type 6.0) and de novo or recessive
Mendelian causes of developmental delay. The latter was done by next-generation
sequencing–based exome analysis comparing patient to parental DNA sequences. No
copy-number aberrations or homozygosity regions of >5 Mb were found after analysis of
the SNP-array data. His karyotype was also normal; 46,XY. On trio-exome sequencing, the
only suspicious finding was heterozygosity of a de novo missense variant in the AQP4
gene: AQP4 (NM_001650.4) c.332G>C, p.(Ser111Thr). This de novo variant finding was
verified by Sanger sequencing of patient and parents. The variant is not listed in the ExAC/
gnomAD database of population variants (see http://gnomad.broadinstitute.org/gene/
ENSG00000171885). AQP4 is a gene with high tolerance to both loss-of-function mutations
and missense variation with a pLI of 0.02 and a Z-score of −0.25 in the ExAC database (see
http://exac.broadinstitute.org/gene/ENSG00000171885 for further details) (Lek et al. 2016).
The variant has been registered by us as open access in DECIPHER (patient #HUH323434),
but so far no other patients with the same or overlapping AQP4 variants have been found in
DECIPHER or through the MatchMaker Exchange hub of databases (Philippakis et al. 2015).
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A more detailed disease history was thereafter obtained, and the patient was reexam-
ined. He was born by cesarean section because of breech presentation 1 wk preterm
after a normal pregnancy: birth weight 4370 g (P92/+1.4 SD), head circumference 38 cm
(P98/+2.0 SD), and length 53 cm (P85/+1.1 SD). Normal Apgar scores, 8–9–10 after 1, 5,
and 10 min, respectively. He was the fifth child of healthy unrelated parents and has four
healthy siblings.

Two hours after birth he became cyanotic with marmorated skin, and examination
showed marked hypotonia, a heart murmur, unstable blood pressure, and areflexia. He re-
sponded to sedation, vasopressors, and intubation and resolved completely within a few
days. The cause of this acute event was never discovered: An echocardiogram was normal,
and no signs of sepsis were found. Cerebral ultrasound indicated slightly enlarged and asym-
metric ventricles with increased echogenicity of the left anterior horn, EEG was compatible
with encephalopathy, possibly due to ischemic brain injury, and cerebral CT showed supra-
tentorial changes with low attenuation, also compatible with ischemic brain injury. Follow-up
EEG, including a recent sleep deprived study, was normal. Despite an increasing tendency
to fall that has developed in the last years, he has never had any seizures. Hypertrophic
obstructive cardiomyopathy was discovered at 3mo of age. Later, his cardiomyopathy slowly
resolved, but he was treated for cardiomyopathy until age 16. He had several attacks with
normothermic tachypnoea and sweating as an infant. Cerebral MRIs showed nonprogressive
findings: His ventricles were large and there were symmetrical atrophic changes in the lenti-
form nuclei (putamen and globus pallidus) and a thick cranium. The changes were interpret-
ed as possibly related to perinatal asphyxia.

Ametabolic screen andmuscle biopsywere normal. Hewas hypotonic with developmen-
tal delay: walked at age 2.5 years and started talking at age 4.5 years. Vision has been normal
but with alternating strabismus. He has a nonprogressive sensorineural hearing impairment
accompanied by dysarthria. Cognitive skills were formally addressed to a level of mild ID
at age 16, with normal behavior and social skills. On examination at age 24 years he is short,
8 cm below the 2.5th percentile (−3.7 SD), with a large head (61 cm, +3.1 SD) and mild facial
dysmorphism (Fig. 1). He also has hypogonadotropic hypogonadism and tapering fingers.
He has always been overweight, at age 15 his BMI was 24.6 (P92/+1.4 SD).

Neurological assessment at age 5 revealed finger tremor, delayed fine motor skills, slow
gait, spasticity, and sensorineural hearing loss. Assessment at age 19 showed that his gait
was abnormal with a tendency to scissoring and posturing of the left arm. Formal testing
showed asymmetrical spasticity and hyperreflexia more prominent on the left, as well as
bilateral Babinski signs. There was also slight rigidity in both arms. Repeat examination a
few years later showed similar findings, albeit with increased gait difficulties.

Unlike the transient signs of brain ischemia and resolving cardiomyopathy, motor func-
tion has slowly deteriorated. As a teenager he played soccer as a 12th team member, but
now he needs a wheelchair to get around, despite being treated with botulism injections
in the Achilles tendons to avoid spasticity, and he has an increasing tendency to fall.

Functional AQP4 Studies
To determine if the Ser111Thr (S111T) change affected the water permeation pathway
through AQP4, the human wild-type (wt) AQP4 and the AQP4-S111T were expressed in
Xenopus laevis oocytes. Oocytes have a very low intrinsic water permeability, which increas-
es 10–20-fold upon expression of AQP4 (Fenton et al. 2010). The water permeability of unin-
jected oocytes and oocytes expressing AQP4-wt or AQP4-S111T was determined by
exposing the oocytes to a hyperosmotic challenge of +20 mOsm (obtained by addition of
mannitol to the control solution) while observing their volume with a sensitive camera (see
Fig. 2A for representative volume traces). For each of the three individual experiments,
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Figure 1. Patient pictures. Patient pictures from ages 3 (A), 16 (D–H), 18 (B), and 25 (C ) years.

Figure 2. The relative unit water permeability of AQP4-wt and AQP4-S111T expressed in oocytes. (A)
Representative volume traces from an uninjected oocyte (labeled C) and oocytes expressing AQP4-wt or
AQP4-S111T challenged with a hyperosmotic gradient of +20 mOsm (indicated by a black bar). (B) The water
permeabilities are given for uninjected control oocytes (labeled “C”), AQP4-wt-, and AQP4-S111T-expressing
oocytes for one representative experiment (n= 4 oocytes, error bars given as ±SD, statistical significance
above the histograms refers to comparison to uninjected oocytes). (C ) A representative western blot of bioti-
nylated oocyte plasma membranes from one experiment (n= 4 oocytes in each lane). (D) Quantification of the
representative western blot in C. (E) The relative unit water permeability was obtained for each experiment by
division of the AQP4-mediatedwater permeabilities fromBwith plasmamembrane AQP4 abundance (D), nor-
malized to AQP4-wt and summarized across individual experiments (n = 3, error bars given as ±SEM). Water
permeabilities were compared using one-way ANOVA with Dunnett’s multiple comparison post hoc test and
the relative unit water permeabilities were compared using Student’s paired t-test. ∗∗∗, P< 0.001; ns, not
significant.
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the osmotic water permeabilities were determined for the uninjected oocytes and oocytes
expressing either AQP4-wt or AQP4-S111T. In the representative experiment illustrated in
Figure 2, the water permeability of the AQP4-expressing oocytes was significantly higher
than that of the uninjected oocytes: in ×10−3 cm/sec: 0.27 ± 0.05 for the uninjected, 1.87
±0.43 for AQP4-wt, and 1.99±0.48 for AQP4-S111T (n = 4 oocytes in one representative
experiment, P < 0.001). The water permeability of oocytes expressing AQP4-wt or AQP4-
S111Twas not significantly different. To determine the relative unit water permeability, semi-
quantification of the AQP4 plasma membrane protein abundance was obtained by surface
biotinylation of the oocytes followed by western blotting and immunolabeling with an anti-
AQP4 antibody (see Fig. 2C for a representative western blot). Densitometric analysis of the
immunoreactive bands identified as AQP4 protein (monomers and dimers), after back-
ground correction, is shown for this representative experiment in Figure 2D.

The relative unit water permeability of AQP4-wt and AQP4-S111T was obtained by
division of the water permeability (Fig. 2B) with the plasma membrane protein abundance
(Fig. 2D) for each individual experiment, normalization to the AQP4-wt, and averaging across
the three individual experiments. The unit water permeability for the AQP4-S111T was
102% ± 22% of the AQP4-wt (n = 3, P = 0.93), which illustrates that the Ser111Thr change
does not affect the water permeation pathway through AQP4. This is also in line with
Ser111 being located distant from the water channel in the three-dimensional protein struc-
ture (Supplemental Figs. S1, S2).

DISCUSSION

On average, one to two de novo variants are found in the exome per generation (Acuna-
Hidalgo et al. 2016); thus, our finding of a single de novo variant in the exome of this patient
is as expected. However, in light of this patient’s phenotype, with transient cerebral and
cardiac abnormalities, as well as mild ID with progressive gait disturbance, we considered
the finding as a potential cause. The variant resides in the brain’s major water channel
gene, AQP4, a gene with particularly high expression in the cerebellum (Hubbard et al.
2015) but also in cardiomyocytes (Rutkovskiy et al. 2014). High expression is also found in
the inner ear and brain pathways used for hearing (see the SHIELD database, https://shield.
hms.harvard.edu; and Christensen et al. 2009). Thus, the expression pattern overlaps with
affected organs (brain, ear, and heart).

Ser111 is an extremely conserved residue, not only in AQP4, but also in other aquaporins
(AQP1, AQP2, AQP4, AQP5, AQP6, and AQP12; see Fig. 3). In Arabidopsis AQP2 the res-
idue at this position is a threonine, but in a very different context than for other AQP2 genes
(only a few of the surrounding amino acids are conserved; Fig. 3). Although it is unknown
what functional role Thr111 may play in this plant AQP, one could imagine that loop inter-
actions and potential interaction with cytosolic proteins may differ among different AQPs.
The residue is not present in aquaglyceroporins, suggesting a specific role related to cellular
or organ water balance. The question is what the role of this residue might be. One possibil-
ity is that Ser111 is a protein kinase A (PKA) phosphorylation site, somehow regulating AQP4
function (Song and Gunnarson 2012). However, although Ser111 sits in a motif (RKIS/T) with
resemblance to a PKA phosphorylation site (RRXS/T), and the corresponding peptide can
be phosphorylated by PKA in vitro, there is no evidence that the ability to phosphorylate
Ser111 affects AQP4 function (Assentoft et al. 2013) or expression (Kitchen et al. 2015).
Furthermore, missense changes to Arg108 (A108S) and Ile110 (I110F) have been found in
the gnomAD database, also suggesting that conservation of a PKA phosphorylation site
motif framing Ser111 is not critical. Finally, a phospho-specific antibody, exclusively recog-
nizing AQP4when phosphorylated on Ser111, failed to detect phosphorylation in cell lysates
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of rat brain stimulated by conditions proposed to induce phosphorylation of this residue
(Assentoft et al. 2013). Putative phosphorylation sites are also present in the carboxy-
terminal part of AQP4 (Ser276, Ser285, Ser316, Ser321, and Ser322). As for Ser111,mutating
these phosphorylation sites did not affect water permeability nor membrane abundance of
AQP4 (Assentoft et al. 2014), but Ser276 phosphorylation by PKA appears necessary for a
normal AQP4 membrane translocation response (Kitchen et al. 2015). As for Ser111 (but un-
like many other AQP4 serines), no variants to Ser276 have been registered in the gnomAD
database.

AQP4 has five exons and an open reading frame of 972 bp. There are twomajor isoforms,
M1 and M23, named after the initiating methionine of the translated protein. M1 is trans-
lated from exon 1, whereas M23 is translated from exon 2. ENCODE data (https://www.
encodeproject.org/) suggest that mRNA transcription can be initiated from promoters up-
stream of either exon 1 or exon 2. In addition, the longer transcript (M1) can also be a source
of the M23 isoform by alternative initiation of translation (Pisani et al. 2011). AQP4mRNA is
5.2 kb, mostly because of a large 3′ UTR. This suggests regulation of mRNA stability. M23
expression promotes square array assembly (e.g., large arrays of AQP4 tetramers) (Furman
et al. 2003). Ser111 is a residue of both major isoforms (i.e., its presence is not restricted
to AQPs capable of forming orthogonal arrays).

Figure 3. Conservation of Ser111 in AQP4 and between aquaporins.
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Our functional studies showed that the water permeability was not affected by the
Ser111Thr amino acid replacement (Fig. 2). Previously, Ser111 has been mutated to alanine
or aspartic acids (the latter to mimic phosphorylation), also without any effect on channel
water permeability (Assentoft et al. 2013). Furthermore, structural modeling does not place
Ser111 in contact with the AQP4 water channel (Supplemental Fig. 1). It is noteworthy that
like Ser111, Ser180 and Ser188 have nomissense variants in the gnomAD database, current-
ly listing 246,000 alleles from individuals without severe pediatric disorders. These three ser-
ines mark positions of transfer from cytoplasmatic to intramembraneous parts of the AQP4
protein chain. Ser111 and Ser188 reside in cytoplasmatic corners of the AQP4 monomer,
and Ser180 has contact with the water channel (Supplemental Fig. 2).

In summary, we present a single patient with a de novo AQP4 Ser111Thr variant and a
phenotype that appears explainable by an AQP4 dysfunction. If there is a functional effect
of replacing Ser111 in AQP4 with threonine, it is not on the level of protein stability or water
permeability (Fig. 2). It is so far unknown why Ser111 is conserved not only in AQP4 but also
among other AQP isoforms (Fig. 3). The biochemical change of replacing serine with threo-
nine is mild, maybe because more radical missense changes would not be tolerated from a
developmental point of view. Our case may be resolved when an answer to this question has
been found, if other patients with the samemutation and phenotype are reported, or if, con-
trary to our expectations, the variant should be found in normal individuals.

METHODS

Trio-Exome Sequencing
Whole-exome sequencing was performed on trios on genomic DNA isolated from blood.
DNA samples were prepared using the SeqCap EZ HGSC VCRome (Roche NimbleGen)
and followed by paired-end 150-nt sequencing on the Illumina NextSeq500. Alignment
and variant calling was performed as described in Bredrup et al. (2015). Median coverage
of the target region was 95× with 96% of target region covered with at least 10 reads
(Table 1). Data annotation and interpretation were performed using the Cartagenia
Bench Lab, NGSmodule (Cartagenia). Filtering was set to find de novo, autosomal recessive,
and X-linked causes of disease (the latter not excluding variants carried by the mother). Two
de novo variants were found in the exome: AQP4(NM_001650.4) c.332G>C, p.(Ser111Thr)
with 32/34 reads, and NPEPL1(NM_024663.3) c.1302+1G>T with 17/12 reads (wild-type
read count listed first). The latter gene probably encodes an aminopeptidase that removes
unsubstituted amino-terminal amino acids from various peptides, and the gene has high tol-
erance for LoF with a pLI of 0.00 (Lek et al. 2016). No homozygosity or compound heterozy-
gosity for possibly pathogenic variants was detected, including when only rare missense
variants were evaluated. The AQP4 variant was verified by Sanger sequencing. Despite dis-
crepant scores by in silico variant assessment programs (MutationTaster score 1—disease
causing, SIFT score 0.04—deleterious, PolyPhen score HumDiv 0.015—benign, PolyPhen
score HumVar 0.040—benign) (Table 2), this de novo variant was considered interesting

Table 1. Whole-exome sequencing coverage

Total number
of reads

Average read
length (bp)

Aligned
reads (%)

Average
exome

coverage

AQP4,
average
coverage

AQP4, fraction at
20× coverage (%)

57,807,596 73.66 98.06 58.39× 63.55× 100
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because the patient’s phenotypewas suggestive of a problem that in theory could be caused
by water imbalance in the brain and heart.

Heterologous Expression of hAQP4 Isoforms in Xenopus laevis Oocytes
cDNA encoding the M23 isoform of human AQP4-wt and AQP4-S111T mutant subcloned
into the oocyte expression vector pXOOM was purchased from GenScript, and 10 ng of
AQP4 cRNA was microinjected into defolliculated Xenopus laevis oocytes. Xenopus laevis
frogs were obtained from Nasco or EcoCyte Bioscience. The surgical protocol by which
the oocytes were retrieved was approved by The Danish National Committee for Animal
Studies and has previously been described in Fenton et al. (2010). Oocytes were kept at
19°C in Kulori medium (in mM: 90 NaCl, 1 KCl, 1 CaCl2, 1 MgCl2, 5 HEPES [Tris-buffered
pH 7.4]) for 3–4 d before experiments.

Osmotic Water Permeability Measurements
The experimental setup for measuring water permeability of oocytes was previously
described by Zeuthen et al. (2007). Briefly, the oocytes were placed in a small chamber
with a glass bottom and perfused with a base solution (in mM: 100 NaCl, 2 KCl, 1 MgCl2,
1 CaCl2, 10 HEPES, 20 mM mannitol [Tris-buffered pH 7.4, 220 mOsm]). Micrographs of
the cross-sectional area of the oocytes were continuously captured at a rate of 25 images/
sec by use of a long-distance objective viewing the oocytes from below. The oocytes were
challenged with a hyperosmotic solution (addition of 20 mM mannitol to the base solution),
and the osmotic water permeability was determined by Lp = (Jv)/(A × Δπ × Vw), in which Jv is
the initial water flux during an osmotic challenge,A is themembrane surface areas (nine times
the apparent area due to membrane folding) (Zampighi et al. 1995), Δπ is the osmotic chal-
lenge, and Vw is the partial molal volume of water (18 cm3/mol). Osmolarities of the solutions
were verified with an accuracy of 1 mOsm with an osmometer Type 15 (Löser Messtechnik).

Cell Surface Biotinylation and Immunoblotting
Oocytes used for water permeability measurements were subsequently exposed to sulfo-
NHS-SS-biotin for 45 min at 4°C and solubilized in lysis buffer (150 mM NaCl, 50 mM Tris/
HCl, 1% (w/v) Triton X-100, 0.05% SDS, 5 mM EDTA, and protease inhibitors [0.4 mM
pefablock, 8 µM leupeptin; Sigma-Aldrich]) for 30 min on ice. The resulting lysates were
sonicated and centrifuged at 10,000g for 5 min at 4°C after which the supernatant was
incubated with Neutravidin beads (VWR) for 60 min at room temperature (RT). After a brief
centrifugation (1000g for 1 min), the supernatant was removed and the beads washed to
remove unspecific proteins from the bead slurry. The biotinylated proteins were retrieved
by incubation with SDS sample buffer (4% SDS, 0.006% bromophenol blue, 8.7 % glycerol,
0.25% Tris-base and 0.75%DTT [pH 6.8, adjustedwith HCl]), electrophoresed on SDS/PAGE
(12%), and transferred to PVDFmembranes. Proteins were detected by use of a primary poly-
clonal anti-AQP4 antibody from Alomone labs (#AQP4-004) and a secondary antibody from

Table 2. AQP4 variant information

Gene
Chromo-
some

Nucleotide
change

Amino acid
change

(predicted)
Variant
type

Predicted effect

dbSNP Genotype ClinVar IDSIFT
Align
GVGD MutationTaster

PolyPhen-2
(HumVar)

AQP4 18 c.332C>G p.(Ser111Thr) Substitution Del Class
C55

Disease-
causing

Benign – Heterozygous
(de novo)

SCV000611625.1

Del, deleterious.
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Licor Biosciences (Licor 800; 1:10.000). The membranes were scanned (Licor) to allow for vi-
sualization of immunoreactive bands. Protein abundances were analyzed by densitometry
using Image Studio 5.2 software (Licor).

Data Presentation and Statistics
Data are presented as mean ± SD or SEM (as indicated in text and figure legend). Statistical
significance was tested with one-way analysis of variance (ANOVA) with Dunnett’s multiple
comparison post hoc test or Student’s paired t-test (as indicated in the Fig. 2 legend). P val-
ues < 0.05 were considered statistically significant. The number of experiments (n) corre-
sponds to independent measurements from at least three different oocyte preparations.

Structural Modeling
The crystal structure was obtained from the RCSB PDB protein data bank (PDB ID: 3GD8; Ho
et al. 2009) and subsequently analyzed by CAVER Analyst (Kozlikova et al. 2014). CAVER
Analyst is a software tool for calculation, analysis and real-time visualization of access tunnels
and channels in static and dynamic protein structures. First, a single channel was computed
for a monomer using default values set in CAVER Analyst. Afterward, the symmetry defined
in the PDF file was used to create the tetramer and its final visualization.

ADDITIONAL INFORMATION

Data Deposition and Access
TheAQP4 variant has been registered in DECIPHER under accession numberHUH323434 and
ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) under accession number SCV000611625.1.
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