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Noncoding transcription is a defining feature of active enhancers, linking transcription factor (TF) binding to the molecular

mechanisms controlling gene expression. To determine the relationship between enhancer activity and biological outcomes

in breast cancers, we profiled the transcriptomes (using GRO-seq and RNA-seq) and epigenomes (using ChIP-seq) of 11 dif-

ferent human breast cancer cell lines representing five major molecular subtypes of breast cancer, as well as two immortal-

ized (“normal”) human breast cell lines. In addition, we developed a robust and unbiased computational pipeline that

simultaneously identifies putative subtype-specific enhancers and their cognate TFs by integrating the magnitude of en-

hancer transcription, TF mRNA expression levels, TF motif P-values, and enrichment of H3K4me1 and H3K27ac. When ap-

plied across the 13 different cell lines noted above, the Total Functional Score of Enhancer Elements (TFSEE) identified key

breast cancer subtype-specific TFs that act at transcribed enhancers to dictate gene expression patterns determining growth

outcomes, including Forkhead TFs, FOSL1, and PLAG1. FOSL1, a Fos family TF, (1) is highly enriched at the enhancers of

triple negative breast cancer (TNBC) cells, (2) acts as a key regulator of the proliferation and viability of TNBC cells, but

not Luminal A cells, and (3) is associated with a poor prognosis in TNBC breast cancer patients. Taken together, our results

validate our enhancer identification pipeline and reveal that enhancers transcribed in breast cancer cells direct critical gene

regulatory networks that promote pathogenesis.

[Supplemental material is available for this article.]

Gene expression profiling has shown that breast cancer is not a sin-
gle diseasewith variablemorphologic features and biomarkers, but
rather a group of molecularly distinct neoplastic disorders (Perou
et al. 2000; Sotiriou and Pusztai 2009; Ciriello et al. 2015). These
analyses have identified at least five distinct molecular subtypes
of breast cancer—Luminal A, Luminal B, HER2+, Triple negative
(TN)/Basal-like, Triple negative/Claudin-low—which correlate
with hormone responsiveness, patient prognosis, and response
to therapy and that express unique sets of genes that persist from
preneoplastic lesions through metastatic disease (Perou et al.
2000; Sotiriou and Pusztai 2009). Nonetheless, little is known
about the initial, disease-driving transcriptional and epigenetic
changes that promote the phenotypic outcomes.

Deep sequencing technologies used to interrogate the ge-
nome have pointed to transcriptional enhancers, as well as the
transcription factors (TFs) that promote their formation, as key
regulatory elements controlling the cell-type–specific biology of
essentially all biological systems examined to date (Shlyueva
et al. 2014; Heinz et al. 2015). In cancers, cell-type–specific en-
hancers can become deregulated or “hijacked,” allowing the acti-
vation of genes that promote tumor formation and metastasis
(Chipumuro et al. 2014; Northcott et al. 2014; Franco and Kraus
2015). Key questions regarding enhancer biology in cancers and
other biological systems include (1) the location of enhancers
throughout the genome, (2) the functionality or activity of the en-
hancers, (3) the TFs that nucleate enhancer formation, and (4) the
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target genes of the enhancers (Shlyueva et al. 2014; Heinz et al.
2015).

Although different enhancer-nucleating TFs may be ex-
pressed in different cell types, the enhancers that they form share
several common features. For example, enhancers are typically
found in open regions of chromatin (as assessed by DNase-seq)
(Crawford et al. 2006; Sheffield et al. 2013) and are enriched
with a common set of histone modifications (as assessed by
ChIP-seq), including histone H3 lysine 4 monomethylation
(H3K4me1) and histone H3 lysine 27 acetylation (H3K27ac)
(Heintzman et al. 2007, 2009). Recently, genomic assays revealed
that many enhancers are bound by RNA polymerase II (Pol II)
and are actively transcribed, producing enhancer RNAs (eRNAs)
(De Santa et al. 2010; Kim et al. 2010; Hah et al. 2011), which serve
as a robust mark of active enhancers that can be used to track en-
hancer activity (Wang et al. 2011; Hah et al. 2013; Li et al. 2013;
Franco et al. 2015; Kim and Shiekhattar 2015). We and others
have shown that global run-on sequencing (GRO-seq) and its de-
rivatives (e.g., PRO-seq) are robust genomic methods to detect
and measure ongoing transcription at enhancers, which can be
used for enhancer prediction (Hah et al. 2011, 2013; Wang et al.
2011; Core et al. 2014; Chae et al. 2015; Heinz et al. 2015).

In the studies presented herein, we describe the development
of a computational pipeline, called the Total Functional Score of
Enhancer Elements (TFSEE), which we used to mine a large num-
ber of transcriptomic and epigenomic data sets fromhuman breast
cancer cell lines, with the goal of identifying subtype-specific TFs
that drive the subtype-specific biology of breast cancers.

Results

Generating transcriptional and epigenomic maps from breast

cancer cells

To better understand the TF-driven transcriptional programs
that control subtype-specific gene expression programs in breast
cancers, we generated transcriptional and epigenomic maps for
13 different breast cell lines, 11 of which represent five intrinsic
molecular subtypes of breast cancer (Fig. 1A), under basal growth
conditions (i.e., without treatment). For these analyses, we used
GRO-seq and RNA-seq, as well as ChIP-seq for 11 different histone
modifications (Fig. 1A,B), the latter which is described in detail
elsewhere (Y Xi, W Li, K Tanaka, KL Allton, D Richardson, J
Li, HL Franco, A Nagari, V Malladi, LD Coletta, et al., in prep.).
The histone modifications examined in this study are enriched at
various functional elements and in a variety of chromatin environ-
ments, such as enhancers, promoters, gene bodies, and repressive
regions of the genome, thus providing a broad survey of the epige-
nomic features associatedwith transcriptional outcomes (Fig. 1A,B;
Supplemental Fig. S1A,B). In total, we generated data sets from 26
GRO-seq, 26 RNA-seq, and 286 ChIP-seq libraries (for details about
replicates and read depth, see Supplemental Materials).

Although previous studies applied RNA-seq and ChIP-seq to
transcriptomic and epigenomic analyses, respectively, in breast
cancer cells, the inclusion of GRO-seq provides additional levels
of unique information. GRO-seq is a direct measure of transcrip-
tion, which yields the position and orientation of all actively tran-
scribing RNA polymerases across the genome (Core et al. 2008),
thus facilitating the comprehensive identification of transcribed
regions and functional elements (Hah et al. 2011; Luo et al.
2014; Chae et al. 2015; Sun et al. 2015). Collectively, these data
sets that we generated using these methods provide a unique re-

source for cancer researchers and provide a foundation for discov-
ering the transcriptional and epigenomic underpinnings of breast
cancer.

Using transcription to predict enhancers in the absence of other

genomic information

We and others have shown that actively transcribed enhancers are
more likely to (1) associate with enhancer-related chromatin mod-
ifications, such as H3K4me1 and H3K27ac, (2) loop to target gene
promoters, and (3) correlate with target gene activation (Kim et al.
2010; Wang et al. 2011; Ørom and Shiekhattar 2013; Franco et al.
2015; Hah et al. 2015; Heinz et al. 2015). In addition, the so-called
“super-enhancers” that are typically associated with oncogene ex-
pression are associated with enhancer transcription (Hah et al.
2015). Thus, enhancer transcription is a good predictor of active
enhancers and can be used in the absence of other genomic infor-
mation to predict active enhancers de novo (Hah et al. 2013; Chae
et al. 2015).

We reasoned that using signatures of enhancer transcription
from GRO-seq data would allow us to identify active enhancers
in cell lines representing the different molecular subtypes of
breast cancer that control the expression of cancer-relevant genes.
We used a computational tool that we developed previously
for calling unannotated transcription units from GRO-seq data,
called groHMM (http://bioconductor.org/packages/release/bioc/
html/groHMM.html) (Hah et al. 2011, 2013; Chae et al. 2015),
to identify a set of eRNA transcripts produced in each of the 13
cell lines (Fig. 2A,B). This analysis revealed both unique and shared
eRNAs across the cell lines (Fig. 2B), as well as an overlap of en-
hancer transcription with histone modifications that are typically
enriched at enhancers (e.g., H3K27ac and H3K4me1) (Fig. 2C).

Using the ZR-75-1 Luminal A cell line as an example (a cell
line for which DNase I hypersensitivity data sets are publicly avail-
able), we compared the overlap of output from traditional enhanc-
er predictionmethods (e.g., DNase I hypersensitivity, or H3K4me1
and H3K27ac enrichment) (Shlyueva et al. 2014) to output from
an enhancer transcription-based approach (Fig. 2D,E). Using the
pipeline shown in Figure 2A, we found that 65% of enhancers
called based on enhancer transcription using GRO-seq data are
also identified by all three of the other methods (i.e., DNase I hy-
persensitivity, enrichment of H3K4me1 or H3K27ac). In contrast,
only 1%–2% of enhancers called based on DNase I hypersensitiv-
ity, or enrichment of H3K4me1 or H3K27ac, are identified by all
three of the other methods (Fig. 2D). This may be due, in part, to
the fact that enhancer calling based on DNase I hypersensitivity,
or H3K4me1 or H3K27ac enrichment, yieldsmuch larger numbers
of putative enhancers (Fig. 2E), many of which may be false posi-
tives or inactive as true regulatory elements. Nonetheless, as we
show below, incorporating enhancer transcription into an en-
hancer-calling pipeline that includes information about DNase I
hypersensitivity, as well as H3K4me1 and H3K27ac enrichment,
improves the fidelity of the enhancer calls.

Actively transcribed enhancers track with subtype-specific

transcriptional programs

Next, we determined if the transcribed enhancers identified above
might regulate nearby genes relevant to the biology of different
subtypes of breast cancer. To do so, we identified all the uniquely
transcribed enhancers called in each cell line using our pipeline
and then determined the level of transcription for each enhancer
(Fig. 3A; Supplemental Fig. S2A) and the nearest neighboring
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gene (upstream or downstream) (Fig. 3B) or within 300 kb
(Supplemental Fig. S2B). As expected, the uniquely transcribed en-
hancers exhibited high levels of transcription in the cell type in
which they were active, but the same loci were minimally tran-
scribed in all other cell lines (Fig. 3A; Supplemental Fig. S2A),
which is an important control for this analysis. Likewise, the near-
est neighboring gene for each uniquely transcribed enhancer ex-
hibited high levels of transcription in the cell type in which the
enhancers were active, but the same genes were minimally tran-
scribed in all other cell lines (Fig. 3B; Supplemental Fig. S2B).
These results suggest that the enhancers called using GRO-seq
data in our pipeline are associated with cell-type–specific patterns
of gene expression.

To further assess the broader biological significance, we deter-
mined the expression of these same genes in patient tumor sam-
ples. The genes nearest to the uniquely transcribed enhancers in
the ZR-75-1 Luminal A cell line were preferentially expressed in
the corresponding patient tumor samples of the same molecular
subtype (Fig. 3C). Likewise, the genes nearest to the uniquely tran-
scribed enhancers in the MDA-MB-468 TN basal cells were prefer-
entially expressed in the corresponding patient tumor samples of
the same molecular subtype (Fig. 3C). These results illustrate that
enhancers called using our pipeline with GRO-seq data from

Luminal A and TN breast cancer cell lines are associated with bio-
logically relevant gene expression patterns in breast cancer patient
samples.

A functional score of enhancer elements identifies subtype-

specific enhancers and their cognate TFs

The analyses described above are a useful way to identify active en-
hancers and their putative target genes, but they tell us little about
the TFs that drive enhancer formation or the relative activity of
each enhancer. Thus, we sought to develop a method that would
allow us to extract more detailed functional information from
the genomic data. In this regard, we developed a computational
pipeline that we call the Total Functional Score of Enhancer
Elements (TFSEE), which integrates data from GRO-seq, RNA-seq,
histone modification ChIP-seq (i.e., H3K27ac and H3K4me1),
and motif searches, allowing for the simultaneous identification
of active enhancers and their cognate transcription factors across
all breast cancer cell lines (Fig. 4A). TFSEE integrates (1) the loca-
tion and magnitude of enhancer activity based on enhancer tran-
scription (GRO-seq); (2) the enrichment of enhancer-related
histone modifications (ChIP-seq); (3) the level of TF expression
(RNA-seq); and (4) the TF motif scores for each enhancer (Fig. 4A).

Figure 1. Transcriptional and epigenomic profiling identifies putative enhancers across the breast cancer genome. (A, top) Features of cell lines repre-
senting five distinct molecular subtypes of breast cancer, which were used in this study, including ER, PR, and HER2 status. (CL) Claudin-low. (Bottom)
Depiction of the transcriptional (GRO-seq and RNA-seq) and epigenomic (ChIP-seq) profiles generated for each cell line. (B) Genome browser views of
GRO-seq and histone modification ChIP-seq data from a normal breast epithelial cell line (76N-F2V) showing the features of a typical bidirectionally tran-
scribed enhancer (red box with dashed line) and its nearest neighboring gene (SIRPA). Key features include transcription (red/blue), as well as histonemod-
ifications typically enriched at enhancers (green), promoters (brown), gene bodies (purple), and repressed chromatin (turquoise).

Subtype-specific enhancers in breast cancers
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For the de novomotif analyses, we searched a 1-kb region sur-
rounding the transcribed enhancers for each cell line usingMEME
software (Bailey et al. 2009) and matched the motifs to known
transcription factors from the Tomtom and JASPAR data bases
(Supplemental Fig. S3; Gupta et al. 2007; Mathelier et al. 2016).

We recorded the P-values for the motifs identified and assigned a
higher score to more significant P-values. To ensure that the TFs
whose motifs were called in our analysis were actually expressed
in the corresponding cell lines, we used RNA-seq data to determine
the expression levels of the mRNAs encoding them. Thus, the

Figure 2. Unbiased, genome-wide prediction of active enhancers using GRO-seq data. (A) Overview of the computational pipeline used for the genome-
wide annotation of enhancer transcripts (eRNAs) and prediction of active enhancers usingGRO-seq data. (B) Catalog of all predicted active enhancers in the
breast cancer cell lines listed in Figure 1A defined by enhancer transcription using the pipeline shown in A. Red indicates cell-type–specific enhancers, and
blue represents enhancers transcribed in at least one other cell line. The colored circles indicate the molecular subtype of each cell line. (C) Metaplot anal-
yses showing correlations among enhancer transcription, DNase I hypersensitivity, H3K27ac enrichment, and H3K4me1 enrichment for the uniquely tran-
scribed enhancers identified in ZR-75-1 cells in B. Metaplots for the same genomic loci in MCF-10A cells are shown for comparison (gray lines). (D) Stacked
bar chart comparing enhancer prediction methods in ZR-75-1 cells. Intergenic enhancers were called using prediction methods based on four different
enhancer features: enhancer transcription (using GRO-seq and the pipeline shown in A), DNase I hypersensitivity, H3K4me1 enrichment, or H3K27ac en-
richment. The percentage of called enhancers from each prediction method overlapping enhancers called using one or more of the other methods is
shown. (E) Venn diagrams showing the number of enhancers called in ZR-75-1 cells and the overlap of enhancers called using DNase I and H3K4me1
(left), H3K4me1 and H3K27ac (middle), and H3K27ac and enhancer transcription (right).
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highest scoring TFs from TFSEE were those that had the (1) highest
levels of enhancer transcription; (2) greatest enrichment of
H3K4me1 and H3K27ac; (3) most significant P-values for the mo-
tifs; and (4) best correlationwith the expression of the predicted TF
in a given cell line.

We visualized the results fromTFSEE using unsupervisedhier-
archical clustering (Fig. 4B), which grouped the cell lines into two
major clades: (1) TN/normal; and (2) Luminal A+B/HER2+ (Fig.
4B). This analysis provided a clear demarcation of the TFs that
were most enriched at transcribed enhancers between the two
clades. Interestingly, previous gene expression profiling studies
have also demonstrated an association or similarities between TN
and “normal” cells, both of which do not express ER, PR, or
HER2 and are technically triple negative (Charafe-Jauffret et al.
2006; Neve et al. 2006; Marcotte et al. 2016). We then determined
a rank order frequency distribution for all TFs within each clade
(Fig. 4C,D; Supplemental Table S1). One striking observation
from this analysis was the abundance of Forkhead box family
TFs that ranked high in both clades (Fig. 4C,D). Importantly, the
clade-specific Forkhead TFs were selectively expressed in patient
samples of the same molecular subtype (Fig. 4E). For example,
FOXF2, FOXQ1, and FOXC1were highly ranked in the TN/normal
clade and are alsomore highly expressed in TN basal breast tumors
compared to other molecular subtypes (Fig. 4E). The well-studied
Forkhead TF FOXA1, which is expressed in luminal breast cancers
(Bernardo et al. 2010; Hurtado et al. 2011), was highly enriched
in the Luminal A+B/HER2+ clade, as expected, lending support
to the fidelity of our approach. Similar results were obtained
using pairwise comparisons of TFSEE scores from the different mo-
lecular subtypes, rather than unsupervised hierarchical clustering
(Supplemental Figs. S4–S6). Collectively, the pairwise analyses
identified most of the top TFs identified in the original unsuper-
vised hierarchical clustering analysis (Supplemental Fig. S6A–D;
cf. Fig. 4C,D).

To confirm experimentally that the predicted TFs did indeed
bind to the transcribed enhancers, we performed ChIP-qPCR ex-
periments for two transcription factors in each clade. These analy-
ses revealed the enrichment of PLAG1 and RUNX2 (i.e., TN/
normal clade) at transcribed enhancers in HCC-1937 TN cells
(Fig. 5A; Supplemental Fig. S7A,B), as well as FOXA1 and HLF
(i.e., Luminal A+B/HER2+ clade) at transcribed enhancers in
MCF-7 Luminal A cells (Fig. 5B; Supplemental Fig. S7A,B). These
TFs did not bind to a negative control region that exhibited no fea-
tures indicative of an active enhancer (Fig. 5A,B; Supplemental Fig.
S7A–D). Of the 24 potential positive or negative binding events
tested for these four TFs (12 sites total tested in two cell lines), 22
(∼90%) gave the expected result. Taken together, our TFSEE analy-
sis led to the identification of key enhancers and their cognate
transcription factors that may control the gene expression pro-
grams that dictate the cellular phenotypes of the different molec-
ular subtypes of breast cancers.

FOS-like 1 (FOSL1) is enriched at transcribed enhancers in TN cells,

regulates cellular proliferation, and is predictive of breast cancer

patient outcomes

To confirm that subtype-specific TFs identified using TFSEE play a
role in the biology of the cognate cell types, we performed a series
of functional analyses on FOS-like 1 (FOSL1), a TF highly enriched
in the TN/normal clade (Fig. 4C). FOSL1 is a member of the Fos
gene family of leucine zipper proteins that dimerize with Jun pro-
teins to form the AP-1 TF complex (Shaulian and Karin 2002;

Figure 3. Actively transcribed enhancers dictate subtype-specific tran-
scriptional programs. (A) Box plots of normalized GRO-seq read counts
for enhancers uniquely transcribed in a single cell line compared to the
transcription of the same genomic loci in all other cell lines. Asterisks indi-
cate significant differences between the two conditions tested for each cell
line (Wilcoxon rank-sum test, P < 0.05). Colored circles indicate the molec-
ular subtype of each breast cancer cell line (for the color codes, see Fig. 2B).
(B) Box plots of normalized GRO-seq read counts for the nearest neighbor-
ing genes to uniquely transcribed enhancers (from A) in a single cell line
compared to the transcription of the same genes in all other cell lines.
Asterisks indicate significant differences between the two conditions tested
for each cell line (Wilcoxon rank-sum test, P < 0.05). (C) The nearest neigh-
boring genes to the uniquely transcribed enhancers in each cell line are
preferentially expressed in patient tumor samples of the same molecular
subtype. (Left) ZR-75-1 cells represent the Luminal A breast cancer molec-
ular subtype. The nearest neighboring genes to the uniquely transcribed
enhancers for ZR-75-1 cells are more highly expressed in Luminal A patient
tumor samples compared to the other tumors types. (Right) For compari-
son, MDA-MB-468 cells represent the TN basal breast cancer molecular
subtype. The nearest neighboring genes to the uniquely transcribed en-
hancers inMDA-MB-468 cells aremore highly expressed in TN basal tumor
samples compared to the other tumor types. Observed differences are sig-
nificant as determined by an ANOVA comparison of the means (P-value <
0.00001).
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Figure 4. A functional score of enhancer elements identifies subtype-specific enhancers and their cognate TFs that drive subtype-specific gene expression
in breast cancer cells. (A) Diagram of the data used for determining the Total Functional Score of Enhancer Elements (TFSEE) across breast cancer cell lines.
TFSEE simultaneously identifies putative subtype-specific enhancers and their cognate TFs by integrating the magnitude of enhancer transcription (GRO-
seq), TFmRNA expression levels (RNA-seq), TFmotif P-values (MEME/Tomtom), and enrichment of H3K4me1 and H3K27ac (ChIP-seq). This analysis yields
the location, activity level, and predicted TFs at each enhancer in all breast cancer cells. (B) Unsupervised hierarchical clustering of cell line–normalized
TFSEE scores shown in a heatmap representation. Two major clades arise from this analysis, highlighting key TFs for TN/Normal subtypes versus
Luminal/HER2+ subtypes. (C,D) Rank order frequency distribution of TFs enriched in the TN/Normal-like clade (C) and the Luminal/HER2+ clade (D) iden-
tified using TFSEE. The top TFs in each clade are noted. (E) Box plots of expression values for members of the Forkhead box family of TFs in patient breast
tumor samples, confirming the differential enrichment of these TFs in the TN/Normal-Like versus the Luminal/HER2+ clades shown in C and D. Observed
differences are significant as determined by an ANOVA comparison of the means (P-value < 0.00001).
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Shaulian 2010; Zhao et al. 2014). AP-1 is a key component ofmany
signal transduction pathways, which regulate a variety of cellular
processes including differentiation, apoptosis, migration, and
transformation (Shaulian and Karin 2002; Shaulian 2010; Zhao
et al. 2014).

To confirm that FOSL1 binds at predicted enhancers in TN
cells (e.g., Fig. 6A; Supplemental Fig. S8A), we performed ChIP-

qPCR at predicted enhancers in several
TN cell lines. We observed a significant
enrichment of FOSL1 at its cognate pre-
dicted enhancers, but not at a negative
control region that exhibited no features
indicative of an active enhancer (Fig. 6B;
Supplemental Figs. S8B,C, S9). Of the 33
potential positive or negative FOSL1
binding events tested (11 sites total in
three cell lines), 28 (∼85%) gave the ex-
pected result. Furthermore, siRNA-medi-
ated knockdown of FOSL1 caused a
significant reduction in enhancer tran-
scription at the cognate predicted en-
hancers as measured by RT-qPCR (Fig.
6C). These results indicate that FOSL1
binds to the genomic loci and nucleates
enhancer formation.

Extending these analyses to patient
samples, we observed elevated expres-
sion of FOSL1 mRNA in TN basal tumors
relative to other breast cancer subtypes,
which increases with tumor grade (Fig.
6D). Furthermore, elevated expression
of FOSL1 is associated with worse clinical
outcomes (i.e., overall survival) in pa-
tients with ER-negative breast cancers,
but not ER-positive breast cancers (Fig.
6E), suggesting a role for FOSL1 as an
oncogene. Finally, to directly assess
a subtype-specific functional role of
FOSL1 in the biology of breast cancers,
we knocked down FOSL1 in breast cancer
cells andmonitored the proliferation and
viability of the cells, using knockdown of
Polo-like Kinase 1 (PLK1) as a positive
control. Knockdown of FOSL1 inhibited
the proliferation and decreased the via-
bility of several TN cell lines (Fig. 6F;
Supplemental Fig. S8D,E), but had no ef-
fect on MCF-7 Luminal A cells (Fig. 6G).

A parallel set of experiments with
PLAG1, another TF highly enriched in
the TN/normal clade (Fig. 4C), con-
firmed that PLAG1 also plays a key role
in enhancer formation and the biology
of TN cells (Supplemental Fig. S10). In
addition, we found that elevated expres-
sion of three other TFs in the TN/normal
clade (i.e., PRDM1, IRF1, and RUNX2) is
associated with better clinical outcomes
(i.e., distant metastasis-free survival) in
patients with ER-negative breast cancers,
but not ER-positive breast cancers
(Supplemental Fig. S11), suggesting roles

for these TFs as tumor suppressors. Taken together, our results
show that TFSEE can be used to identify breast cancer subtype-spe-
cific TFs that control the biology of those subtypes. In addition,
our analyses led to the discovery of TN-specific TFs, such as
FOSL1, that control the proliferation and viability of TN cells
and whose expression is predictive of clinical outcomes in
patients.

Figure 5. TFSEE-predicted transcription factors are enriched at sites of enhancer transcription. (A)
Genome browser views of transcribed enhancers (GRO-seq; H3K27ac and H3K4me1) (left) and corre-
sponding ChIP-qPCR experiments for their cognate predicted TFs (right) for two TFs highly enriched in
the TN/Normal-Like clade based on TFSEE: PLAG1 (top) and RUNX2 (bottom). The data shown are
from TN basal breast cancer cells (HCC-1937). Enhancer transcription provides a measure of activity
and the locations of the enhancers, whereas ChIP-qPCR confirms the binding of the predicted TF at
that site. The enhancers are designated by their genomic coordinates. A negative control region not
bound by the predicted TFs is shown for comparison. Each bar represents the mean + SEM, n = 3.
Asterisks indicate significant differences from the corresponding control (Student’s t-test, P-value <
0.05). (n.s.) not significant (Student’s t-test, P-value > 0.05). (B) A set of experiments similar to those
shown in A for two highly enriched TFs in the Luminal/HER2+ clade: FOXA1 (top) and HLF (bottom).
The data shown are from Luminal A breast cancer cells (MCF-7). Each bar represents the mean + SEM,
n = 3. Asterisks indicate significant differences from the corresponding control (Student’s t-test, P-value
< 0.05). (n.s.) not significant (Student’s t-test, P-value > 0.05).
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Discussion

The results from our analyses demonstrate that enhancer tran-
scription can be used to improve the fidelity of functional enhanc-
er identification. In addition, our study identified TFs that play
critical roles in the biology of specific types of breast cancers, in-
cluding Forkhead TFs, FOSL1, and PLAG1.More broadly, our study
described a genomic and computational approach for identifying
enhancers and their cognate TFs that play a critical role in the biol-
ogy of particular cell types, which should be applicable to a wide
variety of biological systems.

Enhancer transcription defines functional regulatory elements

and their cognate TFs

We and others have shown previously that enhancer transcrip-
tion, as defined by GRO-seq and related methods (e.g., PRO-seq),
is a robust way to identify regulatory elements, such as enhancers,
on a global scale (Hah et al. 2011, 2013; Wang et al. 2011; Core
et al. 2014; Chae et al. 2015; Heinz et al. 2015). In addition, we
have shown that the presence of enhancer transcription can be
used to distinguish between active enhancers and inactive TF bind-
ing sites (Hah et al. 2013; Franco et al. 2015). Other genomic

Figure 6. FOSL1 is enriched at transcribed enhancers in TN cells, regulates cell proliferation, and correlates with breast cancer patient outcomes. (A)
Genome browser views of a transcribed enhancer predicted to be bound by FOSL1 in TN cells (GRO-seq; H3K27ac and H3K4me1). The data shown
are from TN basal breast cancer cells (HCC-1937). (B) ChIP-qPCR for FOSL1 at two transcribed enhancers predicted to be bound by FOSL1, shown in a
TN basal cell line (HCC-1937). The enhancers are designated by their genomic coordinates. Genome browser shots for the enhancer found on Chr 5
are shown in A. Each bar represents the mean + SEM, n = 3. Asterisks indicate significant differences from the corresponding control (Student’s t-test, P-
value < 0.05). (C) siRNA-mediated knockdown of FOSL1 in a TN basal cell line (HCC-1937) decreases the transcription of cognate enhancers as determined
by RT-qPCR. The enhancers are designated by their genomic coordinates. Each bar represents the mean + SEM, n = 3. Asterisks indicate significant differ-
ences from the corresponding control (Student’s t-test, P-value < 0.05). (D) Box plots of FOSL1 mRNA expression levels in patient tumor samples confirm
enrichment of FOSL1 in Basal-like and in ER-negative (ER-) breast tumor samples, as predicted by the TFSEE analysis in breast cancer cell lines. Observed
differences are significant as determined by an ANOVA comparison of the means (P-value < 0.00001). (E) FOSL1 mRNA expression is predictive of clinical
outcomes in ER-negative (ER-) breast tumor patients. Kaplan-Meier survival analyses of patients expressing high levels of FOSL1mRNA (maroon line) exhibit
a poorer outcome compared to patients expressing low levels of FOSL1 mRNA (gray line). The breast cancer outcome-linked gene expression data were
accessed and graphed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO) tool (Ringnér et al. 2011). (F ) siRNA-mediated knock-
down of FOSL1 in two TN cell lines (MDA-MB-468 and HCC-1937) causes decreased proliferation and viability, as observed in proliferation assays (left) and
cell viability assays (right). siRNA-mediated knockdown of Polo-like Kinase 1 (PLK1) serves as a positive control. Each point or bar represents themean + SEM,
n = 3. Asterisks indicate significant differences from the corresponding control (Student’s t-test, P-value < 0.05). (G) siRNA-mediated knockdown of FOSL1
in Luminal A cell line (MCF-7) shows no significant effects on proliferation or viability compared to TN cells. siRNA-mediated knockdown of Polo-like Kinase
1 (PLK1) serves as a positive control. Each bar represents themean + SEM, n = 3. The asterisks indicate significant differences from the corresponding control
(Student’s t-test, P-value < 0.05). (n.s.) not significant (Student’s t-test, P-value > 0.05).
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methods that have been used to identify enhancers include (1)
DNase-seq, which measures accessibility (hypersensitivity) of the
genome (although indiscriminately between open promoters,
gene bodies, and enhancers); (2) ChIP-seq for histone modifica-
tions typically enriched at enhancers, such as H3K4me1 and
H3K27ac; and (3) ChIP-seq for common enhancer-enriched core-
gulators, such as the acetyltransferases EP300 (a.k.a., p300) and
CBP (Shlyueva et al. 2014). A directed approach using ChIP-seq
for a TF of interest can also be used, but this approach is biased
and requires prior knowledge about the TFs that are functioning
in a given cell type. These approaches yield thousands of putative
enhancers (e.g., Fig. 2E); the challenge is determining which of the
putative enhancers are functional in the cell type of interest.

TFSEE using GRO-seq data allows for the simultaneous iden-
tification of enhancers, assessment of enhancer activity and gene
expression, and identification of TFs that drive cell-type–specific
gene expression programs (Fig. 4A). TFSEE improves enhancer
identification by focusing the analysis on those enhancers that
are most likely to be functionally active in a given cell type.
Although TFSEE calls fewer enhancers from GRO-seq data than is
typically called using other types of enhancer-related genomic
data (Fig. 2E), the enhancers called from GRO-seq data exhibit
the greatest overlap with enhancers called using other approaches
(Fig. 2D). Transcribed enhancers called by three or four genomic
assays are more likely to be functional in the cell type in which
they are called than enhancers called by a single genomic assay.
Moreover, the functional indications from enhancer transcription,
which are not evident with other enhancer features (e.g., DNase I
hypersensitivity, histone modification enrichment), increase the
likelihood of identifying functional enhancers, as opposed to inac-
tive TF binding sites.

Forkhead family TFs in luminal and triple negative breast cancers

Our analyses identified TFs that play subtype-specific roles in
breast cancers, including Forkhead TFs. The Forkhead (FOX) pro-
teins comprise a diverse family of TFs with roles in a variety of bi-
ological systems, including cancers (Benayoun et al. 2011; Lam
et al. 2013). We found FOXF2, FOXQ1, and FOXC1 to be enriched
in TN and ER-negative breast tumors compared to other molecular
subtypes, whereas FOXI1, FOXA1, and FOXP2were enriched in lu-
minal and ER-positive breast tumors compared to other molecular
subtypes (Fig. 4E). The FOX-related results fromour TFSEE analyses
are well supported by the literature. For example, previous studies
have shown that FOXC1 regulates basal-like breast cancer cells by
activating NF-κB signaling (Wang et al. 2012) and predicts poor
overall survival in this breast cancer subtype (Ray et al. 2010).
Likewise, FOXA1 is a well-characterized TF critical for the estro-
gen-dependent growth and proliferation of luminal breast tumors
(Bernardo et al. 2010; Hurtado et al. 2011). Our results suggest that
additional exploration of the functions of the Forkhead family of
TFs in breast cancers is warranted.

FOSL1 and PLAG1: TFs driving the triple negative breast

cancer phenotype

Our studies also identified and verified FOSL1 (a.k.a., fra-1) as a key
TF in the biology of TN cells. In this regard, we found that FOSL1
enhancers are enriched in TN cells (Fig. 4C), and knockdown of
FOSL1 inhibits the proliferation and viability of TN cells (Fig.
6F). Furthermore, FOSL1 expression is elevated TN basal tumors
(Fig. 6D), a feature that is associated with poor clinical outcomes
in patients (Fig. 6E). Thus, FOSL1 exhibits hallmarks of a cancer

“driver,” which may be particularly active in TN cells. FOSL1 di-
merizes with Jun proteins to form AP-1 TF complexes (Shaulian
and Karin 2002; Shaulian 2010; Zhao et al. 2014), which function
as key regulators of gene expression in cancers (Eferl and Wagner
2003; Verde et al. 2007). FOSL1 has previously been implicated
in a variety of cancer types, including those of the colon, lung,
and breast (Young and Colburn 2006). FOSL1 acts to induce epi-
thelial-to-mesenchymal transitions and drive metastasis in breast
and other cancers (Diesch et al. 2014; Risolino et al. 2014; Bakiri
et al. 2015; Dhillon and Tulchinsky 2015; Iskit et al. 2015; Liu
et al. 2015).

Finally, our studies identified and verified PLAG1 as a key TF
in the biology of TN cells (Supplemental Fig. S10). PLAG1
(Pleomorphic adenoma gene 1 protein) is a zinc-finger transcrip-
tion factor, which has been implicated in cancer (Abdollahi
2007; VanDyck et al. 2007). Unlike FOSL1, little if any previous di-
rect evidence exists linking PLAG1 to breast cancers. Rather, the
gene encoding PLAG1 is consistently rearranged and subject to ac-
tivating reciprocal chromosomal translocations involving 8q12 in
pleomorphic adenomas of the salivary glands (Kas et al. 1997;
Abdollahi 2007; Van Dyck et al. 2007). Thus, TFSEE can be a useful
approach for identifying new TF drivers in cancers.

Collectively, our results provide a clear example of how inte-
grative computational analyses of genomic data can be used to un-
derstand the molecular mechanisms supporting the function and
biology of specific cell types.

Methods

Cell culture

All cell lines were purchased from the American Type Culture
Collection (ATCC) and were maintained, propagated, and plated
for experiments in the laboratory of Dr. Khandan Keyomarsi at
the MD Anderson Cancer Center. Cell proliferation was assessed
using a crystal violet staining assay, and cell viability was assessed
using CellTiter-Glo reagent (Promega) for cells transfected with
siRNAs using reverse transfectionmethodology. Additional details
about the cell culture conditions, cell proliferation and viability as-
says, and siRNA-mediated knockdown are provided in the
Supplemental Methods.

Kaplan-Meier and gene expression analyses in patient tumor

samples

Kaplan-Meier estimators (Kaplan and Meier 1958; Dinse and
Lagakos 1982) were generated using the Gene Expression-Based
Outcome for Breast Cancer Online (GOBO) tool (http://co.bmc.
lu.se/gobo/) (Ringnér et al. 2011) and the KM Plotter Tool (Szasz
et al. 2016). Gene expression levels in patient tumor samples
were also obtained using the GOBO tool.

Global run-on sequencing (GRO-seq)

Cells were collected at∼70%–80%confluence, and nuclei were iso-
lated as described previously (Luo et al. 2014). Nuclear run-on and
GRO-seq library preparation were performed as previously de-
scribed (Hah et al. 2011), with modifications (Danko et al. 2013;
Luo et al. 2014). After library quality control assessment using a
Bioanalyzer (Agilent), the samples were subjected to 50-bp sin-
gle-end sequencing using an Illumina HiSeq 2000 Sequencing
System. Additional details about the preparation of nuclei, nuclear
run-ons, GRO-seq library preparation, and sequencing are provid-
ed in the Supplemental Methods.
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Analysis of GRO-seq data

The GRO-seq data were analyzed using the groHMM package as
described previously (http://bioconductor.org/packages/release/
bioc/html/groHMM.html) (Hah et al. 2011; Luo et al. 2014;
Chae et al. 2015) and the approaches described below. Quality
control for the GRO-seq data was performed using the FastQC
tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
GRO-seq reads were trimmed to remove adapter contamination
andpoly(A) tails using the default parameters of Cutadapt software
(Martin 2011). Reads >32 bp long were retained for alignment to
the human reference genome using the BWA aligner v 0.6.1 (Li
and Durbin 2010). Transcript calling was performed using
groHMM, a two-state hidden Markov model–based algorithm as
described previously (http://bioconductor.org/packages/release/
bioc/html/groHMM.html) (Hah et al. 2011; Chae et al. 2015) on
each individual cell line. Enhancer transcripts were classified
into (1) short paired eRNAs; and (2) short unpaired eRNAs, as de-
scribed previously (Hah et al. 2013). The universe of expressed
eRNAs (short paired and short unpaired) was assembled and used
for further analyses.

The universe of expressed genes in each cell line was deter-
mined from GRO-seq data using an RPKM cutoff ≥2. The set of
nearest neighboring expressed genes for each enhancer defined
by an expressed eRNA was determined for each cell line. De novo
motif analyses were performed on a 1-kb region (±500 bp) sur-
rounding the peak summit or the transcription start site for short
paired and short unpaired eRNAs, respectively, using MEME
(Bailey et al. 2009). The predicted motifs were matched to known
motifs using Tomtom (Gupta et al. 2007).

Additional details about quality control and trimming,
read alignment and gene annotation, transcript calling using
groHMM, enhancer transcript calling, nearest neighboring gene
analyses, motif analyses, and the generation of box plots are pro-
vided in the Supplemental Methods.

RNA isolation, RT-qPCR, and RNA-seq

Cells were collected at ∼70%–80% confluence, and total RNA for
RT-qPCR and RNA-seq was performed using the RNeasy Mini Kit
(Qiagen). Changes in the expression of eRNAs and mRNAs were
analyzed by RT-qPCR, as previously described (Franco et al.
2015). mRNA-seq libraries were prepared using methods de-
scribed previously (Zhong et al. 2011). After library quality con-
trol assessment using a Bioanalyzer (Agilent), the samples were
subjected to 50-bp single-end sequencing using an Illumina
HiSeq 2000 Sequencing System. At least two biological replicates
were sequenced for each cell line to achieve a minimum of
roughly 65 million raw reads per cell line. Additional details
about RNA isolation, RT-qPCR and primers, RNA-seq library prep-
aration, and sequencing are provided in the Supplemental
Methods.

Analysis of RNA-seq data

The raw data were subjected to QC analyses using the FastQC
tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
The reads were then mapped to the human reference genome us-
ing the default parameters in TopHat (v2.0.12) (Trapnell et al.
2009). For expression analyses, FPKM values were calculated per
gene using Cufflinks (v.2.1.2) (Trapnell et al. 2010). Additional
details about quality control and trimming, read alignment,
and expression analyses are provided in the Supplemental
Methods.

ChIP-qPCR and ChIP-seq

ChIP was performed as previously described (Franco et al. 2015)
with a few modifications. Cells were grown to ∼70%–80% conflu-
ence and then cross-linked with 1% formaldehyde for 10 min at
37°C. ChIPed DNA was analyzed by qPCR using enhancer- or
gene-specific primers, or used for ChIP-seq. ChIP libraries were pre-
pared using a modified Kapa LTP Library Preparation kit (KAPA
Biosystems) for Illumina Platforms (Y Xi, W Li, K Tanaka, KL
Allton, D Richardson, J Li, HL Franco, A Nagari, V Malladi, LD
Coletta, et al., in prep.). The quality of the final libraries was as-
sessed using a 2200 TapeStation (Agilent Technologies). The librar-
ies were sequenced using a HiSeq 2500 sequencer (Illumina;
Single-end reads, 36 bp for all samples). At least two biological rep-
licates were sequenced for each cell line for a minimum of roughly
100million raw reads per cell line. Additional details about the an-
tibodies used for ChIP, the ChIPmethod, qPCR and primers, ChIP-
seq library preparation, and sequencing are provided in the
Supplemental Methods.

Analysis of ChIP-seq data

The raw reads were aligned to the human reference genome
using default parameters in Bowtie (ver. 1.0.0) (Langmead et al.
2009). The aligned reads were subsequently filtered for quality
and uniquely mappable reads using SAMtools (version 0.1.19)
(Li et al. 2009) and Picard (version 1.127; http://broadinstitute.
github.io/picard/). Relaxed peaks were called using MACS
(v2.1.0) (Feng et al. 2012) with a P-value = 1 × 10−2. Additional de-
tails about quality control and trimming, read alignment, and
peak calling are provided in the Supplemental Methods.

Predicting breast cancer subtype-specific TFs using TFSEE

We developed a pipeline in Python (Total Functional Score of
Enhancer Elements [TFSEE]) that combines GRO-seq, RNA-seq,
and ChIP-seq data with TFmotif information to predict TF driving
the formation of active enhancers in each breast cancer cell line, as
well as the locations of the cognate enhancers (the scripts are in-
cluded in a Supplemental File). The algorithm does the following
(for details, see Supplemental Material): (1) normalizes enhancer
expression using GRO-seq; (2) normalizes enhancer expression us-
ing ChIP-seq; (3) determines enhancer activity; (4) normalizesmo-
tif predictions; (5) normalizes TF expression using RNA-seq; and
(6) determines the Total Functional Score of Enhancer Elements
(TFSEE) and generates a heatmap.

Additional details about (1) normalization of enhancer activ-
ity, motif predictions, and transcription factor expression; (2) de-
fining total enhancer activity; (3) determining the total
functional score of enhancer elements (TFSEE); (4) pairwise
Pearson’s correlation analyses; and (5) the generation of heatmaps
are provided in the Supplemental Methods.

Oligonucleotide sequences

The sequences of all oligonucleotides used for RT-qPCR, ChIP-
qPCR, and siRNA-mediated knockdown are provided in the
Supplemental Methods.

Data access

Deep sequencing data from this study are available from the
NCBI’s Gene Expression Omnibus repository (GEO; http://www.
ncbi.nlm.nih.gov/geo/) under the following accession numbers:
GSE96859 (GRO-seq), GSE96860 (RNA-seq), and GSE85158
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(ChIP-seq). The custom scripts for TFSEE are provided in the
Supplemental Material.
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