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The ability to predict transcription factors based on sequence information in regulatory elements is a key step in systems-

level investigation of transcriptional regulation. Here, we have developed a novel tool, IMAGE, for precise prediction of

causal transcription factors based on transcriptome profiling and genome-wide maps of enhancer activity. High precision

is obtained by combining a near-complete database of position weight matrices (PWMs), generated by compiling public

databases and systematic prediction of PWMs for uncharacterized transcription factors, with a state-of-the-art method

for PWM scoring and a novel machine learning strategy, based on both enhancers and promoters, to predict the contribu-

tion of motifs to transcriptional activity. We applied IMAGE to published data obtained during 3T3-L1 adipocyte differen-

tiation and showed that IMAGE predicts causal transcriptional regulators of this process with higher confidence than

existing methods. Furthermore, we generated genome-wide maps of enhancer activity and transcripts during human mes-

enchymal stem cell commitment and adipocyte differentiation and used IMAGE to identify positive and negative transcrip-

tional regulators of this process. Collectively, our results demonstrate that IMAGE is a powerful and precise method for

prediction of regulators of gene expression.

[Supplemental material is available for this article.]

Genome-wide mapping of transcriptional enhancers and assess-
ment of their activity under different conditions constitutes a
powerful first step in the analysis of transcriptional networks.
The sequence information in the enhancers that change activity
can subsequently be used to predict transcriptional regulators in-
volved in mediating the transcriptional response. In this context,
the sequence specificity, or motif, of a transcription factor is typi-
cally represented by a position weight matrix (PWM), which is a
mathematical model that describes the log-likelihood of a tran-
scription factor to bind to any DNA sequence.

The first generation of methods to predict transcription fac-
tors involved in a particular transcriptional response utilizes these
PWMs to predict binding sites in enhancers in the vicinity of reg-
ulated genes. These methods range from simple PWM matching
(Kel et al. 2003; Heinz et al. 2010; Grant et al. 2011; Gama-
Castro et al. 2016; Tan and Lenhard 2016) to muchmore complex
modeling-based approaches (Pique-Regi et al. 2011; Zhong et al.
2013; Sherwood et al. 2014; Kähärä and Lähdesmäki 2015;
Jankowski et al. 2016; Chen et al. 2017). However, even with the
best prediction of binding sites, the identification of causal tran-
scription factors based only on motif enrichment in regulated en-
hancers is generally associated with a high false-positive rate,
thereby leaving experimentalists with too many candidate factors
to investigate. The false-positive rate can be significantly reduced
by integrating gene expression data, such that only factors with
a change in mRNA expression corresponding to the change in en-
hancer activity at predicted binding sites pass through the filter

(Schmidt et al. 2016). However, this clearly biases the analysis to-
ward transcription factors whose activity is regulated primarily
by the expression level.

Recently, a new method, ‘Motif Activity Response Analysis’
(MARA), for prediction of transcription factors involved in gene
regulation has been developed. The core function of MARA is to
model the contribution of a specific motif to gene expression, the
so-called ‘motif activity,’ based on motif occurrence and gene ex-
pression data using a machine learning approach (The FANTOM
Consortium & Riken Omics Science Center 2009; Balwierz et al.
2014). This represents a significant improvement over traditional
methods, as the identification of causal transcription factors in
MARA is not based on motif enrichment analysis but a direct pre-
diction of the effect of a motif. However, there are still several lim-
itations of this method. First, MARA does not allow for integration
of gene expression and enhancer activity (determined by, e.g.,
MED1 occupancy) or accessibility data (determined by, e.g.,
DNase I sensitivity). Instead, it uses motif occurrence within pro-
moter regions to model the contribution of motifs to gene expres-
sion or, alternatively,motif occurrencewithin enhancer regions to
model the contributionofmotifs to enhancer activity. Thus, it can-
not be used to predict transcription factors causal for gene expres-
sion based on sequence information in enhancers. Second, the
identificationofmotifs is basedonPWMmatchingusing a log-like-
lihood scoring scheme and a limited database of PWMs. This ap-
proach may be biased because the precision of the log-likelihood
scoring scheme is biased by the length and the complexity of the
PWMs (Dabrowski et al. 2015), which means that the method is
not equally sensitive toward all PWMs.
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Here, we present a novel tool termed ‘Integrated analysis of
Motif Activity and Gene Expression changes of transcription fac-
tors’ (IMAGE), which overcomes many of the current limitations
associated with PWM-based prediction of causal transcription fac-
tors. To build IMAGE, we collated a large number of publicly avail-
able PWMs, implemented solutions to predict binding specificities
of transcription factors with no knownPWM, and evaluated differ-
ent methods for PWM scoring. Based on this compendium of
PWMs and enhancer and gene expression data, IMAGE uses ma-
chine learning to predict causal transcription factors, as well as
their binding sites and target genes, with high confidence. Thus,
IMAGE represents a powerful, precise, and novel method for unbi-
ased prediction of key transcription factors driving specific gene
programs.

Results

Creation of an extended PWM database

In the current consensus annotation, the human genome is pre-
dicted to contain approximately 1447 transcription factors

(Wingender et al. 2013; Zhang et al. 2015). A comprehensive
search through the published motif databases revealed a total of
3607 experimentally determined position weight matrices
(Heinz et al. 2010; Weirauch et al. 2014; Kulakovskiy et al.
2016). These PWMs were collapsed to 2330 by removal of redun-
dant PWMs, as well as removal of PWMs of transcription factors
with no human paralogs (Fig. 1A). Since there are more nonredun-
dant PWMs than there are transcription factors, the binding spe-
cificity of some transcription factors must be described by several
PWMs. Manual inspection revealed that, although they are not re-
dundant, many PWMs for a specific transcription factor are very
similar, and therefore, they can be collapsed without significant
loss of information. To distinguish between PWMs for a given fac-
tor that can be collapsed and those that represent distinct binding
modes, we submitted the PWMs for each transcription factor to hi-
erarchical clustering. This approach assumes that small differences
in PWMs arise from technical variation, whereas large differences
represent different binding modes. Consistent with this assump-
tion, binding sites predicted only by a constituent motif, but not
the collapsed motif itself, are not more associated with transcrip-
tion factor binding than expected by random (Supplemental Fig.

Figure 1. Construction of an extended PWM database. (A) Several motif databases were collated in IMAGE. The databases (listed in the figure) were
combined, and only nonredundant motifs assigned to human transcription factors were kept. All motifs for a given transcription factor were compared
by correlation using HOMER (Heinz et al. 2010). The correlationmatrices were clustered by hierarchical clustering, and clusteredmotifs weremerged using
MATLIGN (Kankainen and Löytynoja 2007). The edges of themergedmotifs were trimmed usingMotIV (Mercier et al. 2011), and onlymotifs with a length
≥4 bp after trimmingwere included. (B) SREBF2motifs fall into two distinct clusters. The heatmap shows the clustering of themotifs (indicated by numbers
1 through 6) mapped to SREBF2. (C) SREBF2 motifs that cluster together are very similar, and each cluster represents a unique binding specificity. Each
SREBF2 motif was visualized using seqLogo (http://bioconductor.org/packages/release/bioc/html/seqLogo.html). Each group of motifs corresponds to
a cluster. (D) Pearson’s correlation coefficient for each transcription factor-motif pair, ordered by the correlation coefficient, between the known motifs
of the transcription factors and the motif predicted by DNA-binding domain alignment. Motifs were compared using HOMER (Heinz et al. 2010). (E)
Comparison of the experimentally determined motif for ALX homeobox 4 (ALX4) with the motif predicted based on DBD similarity, the aristaless related
homeobox (ARX) motif. (F) IMAGE contains at least one motif for the vast majority of transcription factors. The bars show the fraction of human transcrip-
tion factors in the IMAGE database that has a publicly available motif, a motif predicted by IMAGE, or no motif information.
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S1A). This suggests that genuine sequence specificity is not lost
during motif collapsing. For example, the PWMs describing the
binding specificity of sterol regulatory element binding transcrip-
tion factor 2 (SREBF2) partition into two clusters (Fig. 1B). One of
the clusters of PWMs is similar to an E-box-likemotif, and the oth-
er is similar to the sterol-response element (SRE) (Fig. 1C). This is
consistent with experimental data showing that SREBF2 binds to
both E-box-like sequences and SREs (Amemiya-Kudo et al. 2002;
Zeng et al. 2004). Clustering andmerging of all PWMs yielded a to-
tal of 896 PWMs (Fig. 1A). Thus, the clustering approach reduces
the complexity of the PWM library considerably (61.5%) but re-
tains biologically meaningful differences in binding specificities.

Extension of the PWM library by prediction

Of the 1447 putative transcription factors in the human genome,
only 718 couldbe assigned to a PWMin the library of 896 collapsed
PWMs. The majority (76.4%) of the 729 transcription factors with
no PWM belong to the C2H2 class of transcription factors. The
C2H2 class of transcription factors are particularly difficult to study
with respect to DNA binding affinity, since these transcription fac-
tors, on average, contain around 10DNA-binding domains (DBDs)
that do not all contact DNA simultaneously (Najafabadi et al.
2015), and since the transcription factors belonging to this class
are very diverse (Emerson and Thomas 2009; Stubbs et al. 2011).
Recently, a powerful tool, ZifRC, that can predict the sequence spe-
cificity of these C2H2 transcription factors was developed
(Najafabadi et al. 2015).We systematically analyzed all C2H2 tran-
scription factors with no known motifs using this tool and added
the resulting PWMs to our library. Thismeans that IMAGE, in con-
trast tomost other tools, is able to predict C2H2-class transcription
factor involvement in controlling gene expression.

For the remaining transcription factors that could not be as-
signed to a PWM, we took advantage of the fact that transcription
factors with closely related primary sequence of their DBDs tend to
have similar sequence specificities (Berger et al. 2008; Noyes et al.
2008; Alleyne et al. 2009; Bernard et al. 2012;Weirauch et al. 2014;
Zamanighomi et al. 2017). Therefore, PWMs of uncharacterized
transcription factors can be predicted from the sequence specific-
ity of transcription factors with similar DBDs. To do this, we first
constructed a database of the primary amino acid sequences of
the DBDs of all transcription factors with a known motif.
Second, we matched the amino acid sequence of the DBD of
all non-C2H2 transcription factors with no known motifs against
this database using blast (Camacho et al. 2009) and inferred PWMs
from the sequence specificity of the transcription factor with the
highest DBD sequence similarity. Cross-validation of this approach
for transcription factors with known PWMs demonstrated that the
predicted PWM is highly similar (R≥ 0.8) to the known PWM for
more than 70% of the factors. Furthermore, all predictions have
at least moderate correlation (R≥ 0.5), and for the ones with only
moderate correlation, the predicted PWM often displays a partial
match to the true PWM (Fig. 1D,E). Importantly, by employing
both PWMprediction and the ZifRC tool, 92.8%of all putative tran-
scription factors in the human genome can be assigned to one or
more PWMs in our extended library (Fig. 1F). To our knowledge,
this constitutes the, to date, most complete PWM database.

Determination of uniform P-value-based thresholds

One of the caveats of PWM matching is that the commonly used
log-likelihood scoring scheme is biased by the length and com-
plexity of PWMs (Dabrowski et al. 2015). In principle, this means

that a single log-likelihood threshold, where all PWMs predict
binding sites with maximum sensitivity and specificity, does not
exist. Alternative methods for scoring of PWM matches have
been developed by others (Kel et al. 2003; Hertzberg et al. 2005;
Touzet and Varré 2007; Pan 2008). Recently, P-value-based ap-
proaches have been adopted by large consortia, such as ENCODE
(Kheradpour and Kellis 2014) and HOCOMOCO (Kulakovskiy
et al. 2016). However, these approaches have, to our knowledge,
not yet been formally benchmarked and are not incorporated in
the commonly used tools for motif analysis. Here, we have applied
and benchmarked a P-value-based approach that uses the score
distribution to estimate thresholds for positive identification
of individual PWMs (Touzet and Varré 2007). To test the validity
of P-value-based scoring, we applied it to ENCODE data (The
ENCODE Project Consortium 2012). Briefly, bound sites of a tran-
scription factor were defined as the top 5000 peaks in a ChIP-seq
experiment, and unbound background sites were defined as
20,000 random DNase I hypersensitive sites that do not overlap
any sites with ChIP-seq signal (Fig. 2A). The false-negative and
false-positive rates were estimated for several different P-value
thresholds for PWMsmatching for several transcription factor-mo-
tif combinations. As an example, prediction of ELF1 binding sites
has optimal sensitivity (high true-positive rate) and specificity
(high true-negative rate) at a P-value of 5 × 10−4 (Fig. 2B,C).
Interestingly, this P-value threshold represents a local maximum,
where all tested transcription factor-motif combinations, on aver-
age, have the maximum predictive performance (Fig. 2D).
Similarly, we can also find a local maximum, where the transcrip-
tion factor-motif combinations, on average, have the highest pre-
dictive performance using log-likelihood scoring (Supplemental
Fig. S1B). However, the predictive power at the local maximum
for the log-likelihood-based approach is lower than for the P-val-
ue-based approach, and the standard deviation is larger, indicating
that the P-value-based approach, on average, performs better than
the log-likelihood-based approach. Importantly,we find that at the
local maxima of prediction power, all motifs perform close to their
individual maximal power in the P-value-based approach, while
there are significant outliers in the log-likelihood-based approach
(Fig. 2E). This shows that the P-value-based method implemented
in IMAGEhas a single optimal threshold acrossmany transcription
factor-motif pairs and that, in contrast to the log-likelihood-based
approach used by other methods, the P-value-based approach ro-
bustly scores PWMs with different lengths and complexity.

IMAGE—a novel tool for prediction of causal

transcription factors

In order to fully utilize the power of the extended PWM database
with a uniform P-value-based threshold, we designed a novel
two-stage machine learning model that we termed IMAGE. To
identify candidate transcription factors in IMAGE, the input se-
quences (i.e., regions that were predicted to be enhancers and pro-
moters based on activating histonemarks, chromatin accessibility,
or cofactor binding) are scanned for motif occurrences using the
extended PWM database and scored using the P-value-based ap-
proach. However, rather than looking for motif enrichment in a
particular group of sites, the effect of a motif on gene expression,
or the motif activity, is determined by modeling. This concept
was recently pioneered in the Motif Activity Response Analysis
tool, which predicts motif activity by modeling gene expression
from promoter-based motifs (The FANTOM Consortium & Riken
Omics Science Center 2009; Balwierz et al. 2014). In IMAGE, we

Analysis of motif activity and expression of TFs
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have expanded this method to a two-stage modeling approach,
that, in contrast to MARA, is not limited to promoters but models
the effect of motifs on gene expression based on enhancer maps
and integrates enhancer and gene expression data to arrive at high-
ly precise predictions (Fig. 3A). In step 1, IMAGE identifies target
enhancers of each motif. Here, IMAGE assumes that the enhancer
activity,measured by occupancy, is defined by the sumofmotif ac-
tivities multiplied by the number of motif occurrences in each en-
hancer. In step 2, IMAGE leverages this information to model the
effect of eachmotif on gene expression. Here, IMAGE assumes that
the transcriptional output of a gene is defined by the sum of motif
activities multiplied by the distance-weighted (weighted based on
linear genomic distance between the enhancer and transcriptional
start site such that distal enhancers are assigned a low weight and
nearby enhancers a high weight [Wang et al. 2016]) sum of motif
occurrences in all predicted target enhancers (fromstep 1) assigned
to that gene. Thus, IMAGE allows for prediction of motif activity
based on contribution to enhancer activity (step 1), as well as for
prediction of motif activity based on contribution to gene expres-
sion (step 2).

IMAGE accurately infers target sites of transcription factors

To determine the performance of the transcription factor binding
site prediction during step 1 of IMAGE, we used IMAGE to predict

transcription factor binding in enhancers during differentiation
of 3T3-L1 preadipocytes based on our previously published data
for gene expression (RNA-seq) and enhancer marks (MED1
ChIP-seq and DNase-seq) (Siersbaek et al. 2011, 2017). Potential
binding sites for peroxisome proliferator-activated receptor gam-
ma (PPARG), Jun proto-oncogene (JUN), JunB proto-oncogene
(JUNB), and glucocorticoid receptor (NR3C1) were predicted using
IMAGE, and the predictions were validated by comparison
with our previously published ChIP-seq data for these factors
(Siersbaek et al. 2014). For all four tested transcription factors,
the binding sites predicted by IMAGE (Fig. 3B, Model+) are signifi-
cantlymore occupied by the transcription factor compared to both
the occupancy at all enhancers and to the occupancy at enhancers
with motifs for the given transcription factor (Fig. 3B, Motif).
Furthermore, enhancers with motifs, but not predicted to be tran-
scription factor binding sites by IMAGE (Fig. 3B, Model–), are less
occupied by the transcription factor than all enhancers with mo-
tifs and the binding sites predicted by IMAGE (Fig. 3B, Model+).
Consistently, the binding sites predicted by IMAGE have the high-
est overlap with peak-detected sites for each transcription factor
(Fig. 3C, Model+), and visual inspection of the data shows that
IMAGE is capable of differentiating between unbound (Fig. 3D)
and bound (Fig. 3E) sites among enhancers of similar strength
with motifs. Finally, consistent with the expected activation pro-
file of PPARG and NR3C1, their IMAGE-predicted target sites

Figure 2. P-value-based threshold determination has a local maximum of sensitivity and specificity. (A) Scheme for benchmarking motif thresholds.
Fourteen ENCODE ChIP-seq and DNase-seq data sets (The ENCODE Project Consortium 2012) from three different cell types were used to validate the
P-value-based approach for cut-off determination by precision-recall statistics. Bound sites were defined as the top 5000 strongest sites in ChIP-seq.
Unbound sites were defined as 20,000 randomDNase I–sensitive sites that do not overlap a ChIP-seq peak. (B) Representative example of predictions across
many cut-offs. The plot shows the true-positive rate and false-positive rate for motif-based prediction of ELF1 binding sites at 11 different P-value cut-offs.
(C ) Visualization of a representative region containing both positive and negative prediction. The screenshot was generated using the UCSC Genome
Browser (Kent et al. 2002). It shows ELF1 binding sites (ChIP-seq), predicted ELF1 sites, and DNase-seq. (D) There is a local maximum in sensitivity mul-
tiplied by specificity using P-value-based PWM scoring. The line shows averaged prediction statistics across all 14 transcription factors (as indicated in A) at
different P-value cut-offs. Error bars represent the standard deviation. (E) There are no outliers in relative performance for the P-value-based approach. The
plot shows the predictive performance (sensitivity multiplied by specificity) of each of the 14 motifs that were calculated based on their P-value-based cut-
offs and their log-likelihood-based cut-offs. The relative performance is the predictive performance at the local maximum for either P-value-based or log-
likelihood-based cut-offs divided by the best predictive performance across all either P-value-based or log-likelihood-based cut-offs. The red arrows indicate
factor predictions with low relative performance at the local maximum.
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Figure 3. IMAGE predicts transcription factor binding sites with high confidence. The predictive power of IMAGE for identification of transcription factor
binding sites was investigated using previously published data from 3T3-L1 preadipocyte differentiation (Siersbaek et al. 2011, 2017). (A) Schematic work-
flow of IMAGE. The shaded red area depicts the linear-distance association between enhancers and genes. The height illustrates the weight associated with
each distance (y-axis on zoom-in). In step 1, the input sequences are scanned for motif occurrences using the P-value-based cut-off. Motifs that are only
predicted to bind transcription factors that are expressed below one normalized tag per kilobase are filtered away. We define a variable M, which contains
each remainingmotif, a variable E which contains each enhancer, and a variable S which contains each sample. Themotif activity of each remainingmotif is
determined using ridge regression to estimate ESM using the equation given in the figure. (OSE) Occupancy at enhancer E in sample S, (NME) number of
motif M in enhancer E, (ESM) effect of motif M in sample S. Subsequently, target enhancers are predicted by leave-one-out analysis. In step 2, the effect of
each motif on gene expression or motif activity is predicted using an additive model of transcriptional regulation and estimating ASM from the given equa-
tion. (DEG) Distance weight for enhancer E acting on gene G, (TME) target enhancer E of motif M, (NME) number of motif M at enhancer E, (ASM) motif
activity ofmotif M in sample S. Subsequently, target genes are identified by leave-one-out analysis. (B,C) Validation of IMAGE binding site prediction during
3T3-L1 adipocyte differentiation using ChIP-seq. (B) Boxplots show the ChIP-seq occupancy of PPARG (6 d after induction of differentiation), JUN (4 h after
induction of differentiation), JUNB (4 h after induction of differentiation), and NR3C1 (4 h after induction of differentiation) (Siersbaek et al. 2014) at either
all putative enhancers defined by MED1 signal (all), all putative enhancers containing the respective transcription factor motif (motif), all enhancers pre-
dicted to be target enhancers of the transcription factor by IMAGE (Model+), or all enhancers predicted not to be target enhancers of the transcription
factor by IMAGE (Model−). (∗) denotes a significant (P≤ 0.05) and nonnegligible effect (|Cohen’s d|≥ 0.2). (C) Heat map indicating the fraction of the
MED1 binding sites defined in B that overlap with peak-detected sites based on ChIP-seq data. (D,E) Examples of MED1-bound enhancers with PPARG
motifs that are unbound ([D] Peak 1: Chr 3: 151738674, Peak 2: Chr 8: 11273745, Peak 3: Chr 11: 51687839, Peak 4: Chr 2: 167420113, Peak 5: Chr
3: 41234389) or bound ([E] Peak 1: Chr 6: 144702629, Peak 2: Chr 6: 82598119, Peak 3: Chr 7: 29610142, Peak 4: Chr 11: 98447544, Peak 5: Chr 4:
108506609) by PPARG. Screenshots were generated using the USCS Genome Browser showing MED1 ChIP-seq data from day 0, 4 h, day 2, and day
7, and PPARGChIP-seq data fromday 6 following adipogenic stimulation of 3T3-L1 preadipocytes. Presence of PPARGmotifs and IMAGE predicted binding
sites is indicated below the screenshots. (F ) Predicted enhancers of PPARG and NR3C1 have a temporal pattern of activation that is congruent with the
activation of the transcription factors. The boxplots show the MED1 tag count at predicted target enhancers of PPARG and NR3C1 at the indicated
time points during differentiation in 3T3-L1 cells.
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displayed maximal MED1 occupancy late and early in adipogene-
sis, respectively (Fig. 3F). In order to assess the ability of IMAGE to
leverage different sources of enhancer marks, we compared predic-
tions based on MED1 ChIP-seq data to those based on DNase-seq
data. We find that there is a large overlap, which is significantly
higher than expected at random, between predicted target sites us-
ing either MED1 ChIP-seq or DNase-seq data (Supplemental Fig.
S1C). Taken together, these analyses demonstrate that IMAGE
identifies binding sites with high confidence from different types
of enhancer signatures (cofactor ChIP-seq and DNase-seq) and
that the prediction of binding sites by IMAGE is accurate.

IMAGE predicts causal regulators and their target genes

with high confidence

To determine the ability of IMAGE to predict transcription factors
that play a causal role in mediating a given transcriptional
response, we applied the full IMAGE pipeline to our gene expres-
sion data (RNA-seq) and enhancer data (MED1 ChIP-seq) during
3T3-L1 differentiation, as described above. IMAGE step 1 predicts
a total of 484 motifs that are bound by 530 transcription
factors, which have significant changes in motif activity, i.e., are
predicted to contribute to changes in enhancer activity, during
adipogenesis.

Out of these, 164 motifs (78 high confidence, 86 medium
confidence) bound by 146 transcription factors (73 high confi-
dence, 73 medium confidence) are identified by IMAGE step 2 as
causal regulators of gene expression during 3T3-L1 differentiation.
Themajority of the transcription factors predicted to bind to these
motifs (134/146, 91.8%) are both differentially expressed andhave
differentialmotif activities. The predicted transcription factors and
their motifs constitute only 28.1% and 33.8% of all differentially
expressed transcription factors and differentially regulated motif
activities, respectively (Fig. 4A). This demonstrates that IMAGE
predicts only a subset of the differentially regulated transcription
factors to be causal for transcriptional regulation and that a signifi-
cant proportion (8.2%) of the causal transcription factors are not
differentially expressed during adipogenesis. In order to validate
that the transcription factors identified using IMAGE play an im-
portant role in adipogenesis, we analyzed several sources of data,
includingGO terms, correlation between adipose tissue expression
and BMI (Keller et al. 2011), a large-scale overexpression screen
(Gubelmann et al. 2014), and a large-scale knockdown screen
(Söhle et al. 2012). We find that the group of transcription factors
predicted by IMAGE to be high confidence regulators of adipogen-
esis is highly enriched for transcription factors known to be in-
volved in regulation of fat cell differentiation as defined by gene
ontology (Fig. 4B). Furthermore, this group is highly enriched for
transcription factors whose expression in adipose tissue correlates
with BMI (Supplemental Fig. S1D) and which affect lipid accumu-
lation upon both knockdown (Fig. 4C) and overexpression
(Supplemental Fig. S1E). Notably, for the prediction of causal reg-
ulators of adipogenesis, IMAGE outperforms all other testedmeth-
ods, including those focusing on differential expression of
transcription factors combined with motif enrichment within
dynamically regulated enhancers (Fig. 4B,C; Supplemental Fig.
S1D,E). IMAGE achieves this high enrichment by having a higher
precision compared to the other tested methods (Supplemental
Fig. S1F). In a direct comparison between IMAGE and MARA, we
find that both methods are useful for the identification of causal
transcription factors but that IMAGE has higher precision than
MARA, probably due to the more advanced model and data inte-

gration approach in IMAGE (Supplemental Fig. S1G). Overall,
these results demonstrate that IMAGE offers more precise predic-
tions of causal transcription factors than existing methods.

Importantly, we find that the temporal changes in motif ac-
tivity throughout adipocyte differentiation of 3T3-L1 preadipo-
cytes for many transcription factors are consistent with the
reported changes in the activity of these factors during adipogen-
esis. For example, motif activities of JUN, NR3C1, and cAMP re-
sponsive element binding protein 1 (CREB1) peak during early
adipogenesis, corresponding to the time at which these factors
have been reported to be most active (Zhang et al. 2004; Steger
et al. 2010; Siersbaek et al. 2011). In contrast, motif activity of per-
oxisome proliferator activated receptor gamma and CCAAT/en-
hancer binding protein alpha (CEBPA) peaks during late
adipogenesis (Fig. 4D, left panel), when these factors are reported
to be maximally active (Cao et al. 1991; Tontonoz et al. 1994;
Yeh et al. 1995). This indicates that IMAGE accurately predictsmo-
tif activities and their changes. Furthermore, we find that there is
generally a strong correlation between the temporal profile of
the motif activity, as determined by genome-wide expression pat-
terns, and the expression level of the subset of genes predicted to
be target genes (Fig. 4D, left and right panel). This is exemplified
by predicted PPARG target genes that, on average, are induced dur-
ing late stages of adipogenesis (Fig. 4E) concurrently with the acti-
vation of PPARG itself. Importantly, the predicted target genes of
PPARG are highly enriched for biological pathways such as the
‘PPAR signaling pathway’ and pathways related to lipid metabo-
lism (Supplemental Fig. S1H), and they are also highly enriched
among genes with significantly blunted expression upon knock-
down of PPARG in 3T3-L1 adipocytes (Fig. 4F). In comparison to
target genes predicted based on PPARG ChIP-seq data (i.e., by
proximity between PPARG peaks and transcription start sites),
we find that the IMAGE-predicted PPARG target genes are ∼2.5-
fold more likely to be significantly blunted by knockdown (Fig.
4F). Taken together, this shows that IMAGE predicts target genes
with very high precision and outperforms ChIP-seq in terms of ac-
curacy. Interestingly, we find that transcription factors with a sig-
nificant and strongly positive motif activity in 3T3-L1 adipocytes
are more often transcriptional activators than repressors, whereas
transcription factors with a significant and strongly negativemotif
activity are more often transcriptional repressors than activators
(Fig. 4G). This suggests that IMAGE may also be able to help re-
searchers determine the effect of transcription factors on their tar-
get genes through comparison of the temporal profiles of motif
activity and target gene expression.

IMAGE predicts novel transcriptional regulators with

high accuracy

In order to further demonstrate the potential of IMAGE to predict
causal transcription factors, we applied IMAGE to amuch less char-
acterized model system, the immortalized human mesenchymal
stem cell (MSC) line, hMSC-TERT4 (Simonsen et al. 2002). The
transcriptional network that drives the commitment and adipo-
cyte differentiation of these multipotent stem cells is not well
understood. Thus, we mapped enhancers and enhancer activity
by MED1 ChIP-seq and transcriptional output by RNA-seq at dif-
ferent time points during commitment and differentiation of
these cells, i.e., immediately prior to addition of differentiation
cocktail (day 0), and at 4 h, 1 d, 3 d, 7 d, and 14 d after addition
of the adipogenic cocktail. This data set provides insight into hu-
man adipocyte differentiation from MSC at hitherto unsurpassed
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temporal resolution. IMAGE identified 115 causal transcription
factors (bound to 124 motifs) with high confidence and 122 addi-
tional transcription factors (bound to 125 motifs) with medium
confidence. From this list of 237 transcription factors, we excluded

all transcription factors which had previously been studied in the
context of adipogenesis, and from the remaining transcription fac-
tors, we chose six transcription factors with different expression
levels and patterns (Supplemental Fig. S2A) and different motif

Figure 4. IMAGE identifies regulators of adipogenesis with high confidence. The predictive power of IMAGE for identification of important transcriptional
regulatorswas investigatedusingpreviously publisheddata from3T3-L1preadipocytedifferentiation (Siersbaeket al. 2011, 2014, 2017). (A) IMAGEpredicts
causal regulators of 3T3-L1 adipocyte differentiation, including many that are not differentially expressed during differentiation. The Venn diagram shows
the overlap between transcription factorswith a significant change in IMAGEmotif activity based onMED1ChIP-seq (n = 2) and RNA-seq (n = 2) during 3T3-
L1 adipogenesis, and transcription factors with a significant change in gene expression (RNA-seq, n = 2) at any point during differentiation. The numbers
represent all transcription factors that have significant changes in motif activity and/or gene expression. Numbers in parentheses indicate the subset iden-
tified by IMAGE as high or medium confidence causal transcription factors. (B,C ) Comparison of the predictive power of IMAGE and various other methods
for predicting transcriptional regulators of adipogenesis previously defined as belonging to theGO term ‘fat cell differentiation’ (B), or previously identified in
a knockdown screen to affect lipid accumulation during 3T3-L1 adipocyte differentiation (Söhle et al. 2012) (C). The bar plot shows the predictive power of
the indicatedmethods as determined by the enrichment of the predicted factors over all transcription factors. The differentmethods comparedwith IMAGE
are: (1) random selection (Random); (2) all expressed transcription factors (≥1 log2-transformed read per kilobase) (Expres., All); (3) all expressed and differ-
entially expressed transcription factors (≥1 log2-transformed readper kilobase and Padj≤ 0.05) (Expres., Dynamic); (4) all transcription factorswhosemotif is
significantly enriched in MED1-bound enhancers compared to genomic background (Motif, All); (5) transcription factors whose motif is significantly en-
riched in differentially regulated enhancers (Padj≤ 0.05) compared to genomic background (Motif, Dynamic); and (6) integration of the groups containing
dynamically expressed transcription factors and transcription factors with motif enrichment in differentially regulated enhancers compared to genomic
background (dMotif + dExpress). (D)Motif activities recapitulate the transcriptionalwavesduring adipocyte differentiation in3T3-L1 cells. Heatmapofmotif
activity of all motifs with significant changes in motif activity during 3T3-L1 differentiation (left panel) and average expression of predicted target genes of
thesemotifs (rightpanel) at the different time points following induction of differentiation, day 0, 4 h, and day 2 andday 7. (E) Example showing the average
mRNA expression of genes predicted by IMAGE to be regulated by PPARG. Bar plot shows average gene expression for target genes of two replicates (E1 and
E2) during 3T3-L1 differentiation. (F ) Comparison of prediction of PPARG target genes based on IMAGE and based on PPARGChIP-seq. The bar plot shows
the enrichment of predicted PPARG target genes (predicted using either PPARGChIP-seq data [Siersbaek et al. 2011] or IMAGE) among the group of PPARG-
dependent genes (Schupp et al. 2009). PPARG-dependent genes are defined as genes significantly regulated during adipogenesis in 3T3-L1 control cells
(Padj≤ 0.01) but with at least twofold less repression or induction upon knockdown of PPARG in mature 3T3-L1 adipocytes. The enrichment of IMAGE-pre-
dicted or ChIP-seq-predicted (PPARG peak within ±25 kb of the transcription start site) target genes is calculated by comparing the fraction of predicted
target genes that are experimentally defined as PPARG-dependent relative to a randomized control fractionusing size-matched randomizedgroupsof target
genes and dependent genes. Background enrichment was estimated by 1000 permutations of randomizing the predicted target genes and calculating the
same enrichment. The error bars indicate the standard deviation across 1000 permutations. (G) Motif activity can be used to distinguish between transcrip-
tion activators and repressors. Thebar plot shows the log2 ratio between the Jaccard similarity coefficient betweenmotifswith significantly positive (P≤ 0.05,
motif activity≥ 0.005) motif activity at day 7 of differentiation and transcription factors only marked as activators in the UniProt annotation, or motifs with
significantly negative (P≤ 0.05, motif activity≤−0.005) motif activity at day 7 of differentiation and transcription factors only marked as repressors in the
UniProt annotation (Apweiler et al. 2004).
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activity levels and patterns (Supplemental Fig. S2B). Importantly,
three of the transcription factors predicted to bind to these selected
motifs would most likely not have been included on the short list
using other approaches, since one (heat shock transcription factor
1 [HSF1]) is not significantly regulated during adipogenesis, and
two (teashirt zinc finger homeobox 1 [TSHZ1] and special AT-
rich sequence-binding protein 1 [SATB1]) do not have public mo-
tifs, butwere assigned to theirmotifs by IMAGEbased onDBD sim-
ilarity (Fig. 5A).

We knocked down each of the six transcription factors
(Supplemental Fig. S2C) and evaluated their impact on the ability
ofMSCs to undergo adipocyte differentiation as determined by lip-
id accumulation (Oil Red O) (Fig. 5B,C) and RNA-seq (Fig. 5D).
Knockdown of five out of the six transcription factors significantly
affects lipid accumulation during differentiation, two of the tran-
scription factors (HSF1 and MYB proto-oncogene-like 1 [MYBL1])
lead to an increase in lipid accumulation compared to control cells,
whereas knockdown of three of the transcription factors (MYC as-
sociated zinc finger protein [MAZ], SATB1, and TSHZ1) leads to a
decrease in lipid accumulation (Fig. 5B,C). Knockdown of the
last transcription factor (Nuclear Factor, Interleukin 3-regulated
[NFIL3]) did not result in a significant change in the average Oil
Red O stained area (Fig. 5B,C). Consistent with the effects on lipid
accumulation, we find that the expression of known adipocyte
marker genes as determined by RNA-seq is increased upon HSF1
knockdown and trends upward upon MYBL1 knockdown, where-
as expression of these genes is decreased upon knockdownofMAZ,
SATB1, or TSHZ1 (Fig. 5D). Importantly, we find that the predicted
target genes of all of these five transcription factors are highly en-
riched for genes affected by their knockdown (Supplemental Fig.
S2D). Furthermore, we find that binding sites of all five transcrip-
tion factors (inferred using public ChIP-seq data) overlap signifi-
cantly more than expected with MED1-bound enhancers in
hMSC-TERT4 cells (Supplemental Fig. S2E). Collectively, this indi-
cates that IMAGE accurately identifies novel transcriptional regu-
lators associated with enhancers and predicts both their binding
site specificity and gene regulatory events.

The identification of five novel transcription factors (HSF1,
MYBL1,MAZ, SATB1, and TSHZ1) affecting adipogenesis both pos-
itively andnegatively promptedus to investigatewhetherwe could
identify common downstream regulatory pathwaysmediating the
effects of these factors based on the RNA-seq data fromknockdown
experiments. We focused on metabolic pathways and correlated
the effect of the transcription factors on gene expressionwith their
effect on lipid accumulation. Intriguingly, we found only six
metabolic pathways significantly affected by all five factors and
correlating with lipid accumulation (Supplemental Table S1). As
expected, the ‘metabolism of lipids’-pathway is significantly en-
riched for genes induced during differentiation (Supplemental
Table S1). Furthermore, this pathway is also enriched for genes ex-
pressed at higher levels at day 7 of differentiation upon eitherHSF1
or MYBL1 knockdown compared to control and, for genes ex-
pressed at lower levels, upon MAZ, TSHZ1, or SATB1 knockdown
compared to control (Fig. 5E), consistent with the effect of the
knockdown of these factors on lipid accumulation. Interestingly,
two of the six pathways, i.e., ‘cholesterol biosynthesis’ and ‘regula-
tion of cholesterol biosynthesis by SREBP (SREBF),’ are not signifi-
cantly enriched for genes regulated between day 0 and day 7 of
differentiation (Supplemental Table S1), yet they are enriched for
genes regulated inamanner thatcorrelateswith inductionofdiffer-
entiation markers and lipid accumulation upon knockdown of
eachof the five transcription factors (Fig. 5F). To further interrogate

the regulation of cholesterolmetabolism under knockdown condi-
tions,weused the recently developed tool SPOT (Kimet al. 2016) to
infer intracellularmetabolic flux based on our transcriptomic data.
As expected, the flux through the lipolysis and lipid synthesis path-
ways is increased at day 7 of differentiation compared to day 0 in
control cells, and the flux positively correlates with induction of
differentiation markers and lipid accumulation upon knockdown
of the five transcription factors (Supplemental Fig. S2F). Consistent
with the pathway analysis, we found that the predicted metabolic
flux through many of the metabolic reactions involved in choles-
terol synthesis, including the rate-limiting conversion of hydroxy-
methylglutaryl-CoA to mevalonate, is increased upon HSF1 or
MYBL1 knockdown and decreased upon MAZ, SATB1, or TSHZ1
knockdown compared to control (Fig. 5G), indicating that these
transcription factors affect cholesterol synthesis in a manner that
correlates with their effect on adipogenesis. Collectively, these re-
sults demonstrate that IMAGE is a powerful tool for identification
of novel causal transcription factors, several of which would have
eluded detection by most other methods, and that the integrated
analysis of these novel regulators can lead to prediction of novel
regulatory pathways.

Discussion

In this study, we have developed a new and powerful computa-
tional tool, IMAGE, which, based on time-resolved genome-wide
profiling of gene expression and enhancer activity, can predict
transcription factors that are causally involved in transcriptional
responses. IMAGE uses a novel machine learning model for tran-
scriptional regulation that is based on the activity of both enhanc-
ers and promoters, and subsequently, integrates gene expression
with motif activity analysis, thereby allowing for a prediction of
causal transcription factors that is superior to existing methods
with respect to precision of predictions.

We used public databases to collect the largest possible set of
PWMs and collapsed the database by correlation analysis to reduce
library complexity. Furthermore, the databasewas significantly ex-
panded by including prediction of motifs for transcription factors
with unknown binding preferences. The resulting database covers
PWM for 92.8% of all human transcription factors and is to our
knowledge currently the most comprehensive motif database.
Often, positive identification of amotif depends on reaching a cer-
tain threshold on a log-likelihood scale. However, the precision of
log-likelihood thresholds is dependent on the complexity and
length of the PWM (Dabrowski et al. 2015), and it is therefore im-
possible to define a unified threshold across all PWMs. Here, we
identify motif thresholds uniformly by applying a P-value-based
approach. Importantly, benchmarking on ENCODE data demon-
strates that this approach has a local maximum where all tested
motifs perform close to their best performance. This indicates
that the P-value-based approach is not affected by the length or
complexity of the PWM. Collectively, the exhaustive prediction
of PWMs, using established methods, forming an extended
PWM library combined with uniform P-value-based scoring
scheme represents a significant leap forward in the pursuit of un-
biased identification of putative transcriptional regulators by mo-
tif analysis.

One important problem in traditional motif enrichment
analysis is that eachmotif is analyzed independently, even though
it is known that transcription factor binding to DNA is dependent
on chromatin state and cross-talk with other transcription factors
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Figure 5. IMAGE predicts transcription factors controlling human MSC commitment and differentiation with high confidence. (A) Table listing the six
transcription factors chosen among the transcription factors predicted to be causally involved in adipocyte differentiation of hMSC-TERT4 cells based on
IMAGE analyses of enhancer activity (MED1 ChIP-seq, n = 2) and gene expression (RNA-seq, n = 2). It is indicated which genes are differentially expressed
(DE: Padj≤ 0.05) during adipocyte differentiation andwhethermotifs were experimentally derived (Direct) or inferred based on similarity to other transcrip-
tion factors. (∗) indicates that the motif was identified with medium confidence. (B,C) The majority of the causal transcription factors predicted by IMAGE
have an impact on lipid accumulation. (B) Representative images at low and high magnification of Oil Red O staining of hMSCs transfected with the in-
dicated siRNAs and differentiated to adipocytes for 14 d. (C) Quantification of the Oil Red O stained area using ImageJ from a 3×3 grid (nine random lo-
cations, recorded at 10× magnification) for each replicate (n = 2). (D) The candidate factors regulate the expression of adipocyte marker genes. The heat
map shows the expression of 10 well-known adipocyte marker genes (lipoprotein lipase [LPL], fatty acid binding protein 4 [FABP4], adiponectin [ADIPOQ],
peroxisome proliferator activated receptor gamma [PPARG], phosphoenolpyruvate carboxykinase 1 [PCK1], perilipin 1 [PLIN1], perilipin 4 [PLIN4], hor-
mone sensitive lipase [LIPE], cell death inducing DFFA like effector c [CIDEC], and CCAAT/Enhancer binding protein alpha [CEBPA]) as determined by
RNA-seq in hMSC-TERT4 cells differentiated to adipocytes for the indicated time points with or without knockdown of each of the candidate factors.
(E,F) The candidate factors regulate the expression of genes involved in both metabolism of lipids and cholesterol biosynthesis in a manner that correlates
with their impact on lipid accumulation. Enrichment of genes belonging to the ‘Metabolism of lipids’ (E) or the ‘Cholesterol biosynthesis’ (F) pathways
(Reactome database [Croft et al. 2014]) among genes that are up-regulated and down-regulated upon knockdown of the indicated transcription factors.
The bar plot shows the log2 enrichment of genes that are expressed to a significantly (Padj≤ 0.05) higher (green upward facing arrow) or lower (red down-
ward facing arrow) level at day 7 of differentiation upon the indicated knockdown compared to control. The enrichment is calculated by comparing the
fraction of genes within that pathway that are expressed to either a higher or a lower level upon knockdown compared to control relative to the fraction of
all genes that are expressed to either a higher or a lower level upon knockdown compared to control. Significant enrichments (Padj≤ 0.1) are denoted with
green bars. (G) The change in metabolic flux through most reactions assigned to cholesterol metabolism or squalene and cholesterol synthesis correlate
with the change in lipid accumulation upon knockdown of the candidate factors. The heat map shows the predicted scaled and centeredmetabolic flux of
all metabolic reactions assigned to cholesterol metabolism or squalene and cholesterol synthesis that reached a flux of at least 0.1 µmol per g dw per
h. Metabolic fluxes were predicted by the SPOTmethod (Kim et al. 2016) from transcriptome data at day 7 in the different knockdowns and in the control
using a model of human metabolism (Recon 2) (Thiele et al. 2013). The top step converting HMG-CoA to mevalonate is the rate-limiting step.
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(Slattery et al. 2011; Arvey et al. 2012; Yáñez-Cuna et al. 2012). A
previous method, MARA (Balwierz et al. 2014), has approached
this problem by using modeling across all motifs to estimate motif
activity, based on either motif occurrence in promoters and gene
expression, or motif occurrence in enhancers and enhancer activ-
ity. Although this is a major step forward in the analysis of tran-
scriptional regulation based on motifs, it is incomplete since it
neglects the interplay between enhancers and promoters in gene
expression analysis. Our novel tool, IMAGE, extends on MARA
by utilizing a more complete combinatorial and additive model.
This combinatorial approach is not restricted tomodeling gene ex-
pression based only on promoters; instead, our model integrates
the signal from all enhancers in the vicinity of each promoter us-
ing distance-weighting. Importantly, even with distance-weight-
ing, enhancer-to-gene assignment is not supported by direct
evidence. Thus, there is inevitably some noise derived fromwrong
assignment of enhancers to genes. However, in spite of that,
IMAGE outperforms MARA for identification of causal transcrip-
tion factors. This shows that the gain of precision by leveraging en-
hancers outweighs the addition of noise from wrong assignment
of enhancers to promoters. In addition, IMAGE also integrates
gene expression data with the enhancer maps to restrict the anal-
ysis to include only transcription factors that are expressed in the
given cell type. Importantly, we designed IMAGE to be as user-
friendly as possible while maintaining transparency. Thus, we
wrote the IMAGE code in human-readable programming languag-
es and provide user-friendly guidelines. Furthermore, we have de-
signed IMAGE to process input files directly from easy-to-use
upstream pipelines, such as iRNA-seq (Madsen et al. 2015) and
the HOMER toolbox (Heinz et al. 2010). Notably, the use of input
directly from iRNA-seq allows the user to use intron-based analysis
of RNA-seq data for a more accurate prediction of transcriptional
events.

IMAGE is widely applicable, as it can be used to predict causal
transcription factors involved in the regulation of gene expression,
e.g., in response to differentiation signals or metabolic signals, as
well as multigroup comparison studies, such as cell type compari-
sons. We tested the performance of IMAGE extensively by analyz-
ing the ability to predict transcriptional regulators of 3T3-L1
preadipocyte differentiation. This cell line constitutes an ideal
model system for validation due to the many large data sets avail-
able for this cell system. Using this cell line, we confirm that the
target sites predicted for each motif in step 1 of IMAGE on average
display strong binding of the corresponding transcription factors
and that the target enhancers are activated with a temporal pat-
tern, which is consistent with the activation profiles of the respec-
tive transcription factors. Collectively, this indicates that IMAGE
provides precise prediction of which motifs are bound in enhanc-
ers andwhich transcription factors bind to these. IMAGE identifies
81 motifs bound by 76 transcription factors as high confidence
causal regulators of adipogenesis during 3T3-L1 differentiation.
These 76 transcription factors are significantly enriched among
transcription factors assigned to the ‘fat cell differentiation’ GO
term, and importantly, the enrichment of IMAGE-predicted tran-
scription factors is higher than enrichment of transcription factors
predicted by other methods, including gene expression analysis,
motif enrichment, simple integration of expression and motif en-
richment, or MARA. Furthermore, transcription factors predicted
by IMAGE also display a greater enrichment for factors that have
a significant impact on lipid accumulation upon knockdown or
overexpression compared with transcription factors predicted by
other methods. These results demonstrate that IMAGE outper-

forms existing methods for prediction of key transcriptional regu-
lators. Furthermore, we show that IMAGE is also capable of
identifying target geneswith greater accuracy thanChIP-seq-based
prediction of target genes, as exemplified by the predicted target
genes of PPARG. Collectively, this demonstrates that IMAGE pre-
dicts causal transcription factors as well as their binding sites and
target genes with high precision.

In order to further demonstrate the ability of IMAGE to pre-
dict novel key transcriptional regulators, we profiled transcription-
al output and mapped enhancers and enhancer activity during
commitment and adipocyte differentiation of human MSCs at
hitherto unsurpassed temporal resolution. When IMAGE was ap-
plied to this data set, IMAGE predicted 237 transcription factors
(115with high confidence, 122withmediumconfidence) to be in-
volved in controlling gene expression during this process. Several
of these have already established roles in adipogenesis; however,
others have not previously been identified as being involved in
MSC commitment or adipocyte differentiation. From these, we
chose six different transcription factors with currently unknown
roles. We purposely chose transcription factors that have inferred
motifs, as well as nondynamic transcription factors, as these are
not normally identified by alternative approaches. Knockdown
of each of these factors showed that five out of six affect lipid accu-
mulation as determined by lipid accumulation and RNA-seq,
thereby demonstrating that IMAGE predicts causal transcription
factors with very high precision. Interestingly, further interroga-
tion of gene expression showed that all these transcription factors
regulate pathways related to cholesterol biosynthesis in a manner
that correlates positively with their effect on adipogenesis. This is
particularly interesting since these cholesterol pathways are not
normally regulated during adipocyte differentiation of these hu-
man MSCs. This suggests that these pathways are required for adi-
pogenesis even though they are not significantly induced at the
transcriptional level during adipogenesis. Consistent with this, it
has been shown that treatment of preadipocytes with statins in-
hibits differentiation into mature adipocytes (Nakata et al. 2006;
Nicholson et al. 2007).

In conclusion, we have developed a novel tool, IMAGE, for
precise prediction of transcription factors and target enhancers
that are causally involved in driving specific transcriptional re-
sponses in time series or multigroup comparison studies, such as
comparisons of cell types. IMAGE offers several advantages over
existing tools and strategies, including a more complete database
of transcription factor motifs and a more advanced model of tran-
scriptional regulation to identify causal regulators. Importantly,
the tool is easy to use, transparent, and flexible in terms of input
data.

Methods

Motif collection and cut-off determination

A list of all human transcription factors was generated by overlap-
ping TFClass (Wingender et al. 2013) and AnimalTFDB 2.0
(Zhang et al. 2015). Motifs were collected from Cis-BP (Weirauch
et al. 2014), HOMER (Heinz et al. 2010), and HOCOMOCO
(Kulakovskiy et al. 2016). Only motifs that could be mapped to a
human transcription factor were included, and redundant motifs
were removed. For transcription factors with several motifs, a cor-
relation score between the motifs was calculated using HOMER
(Heinz et al. 2010) and clustered using hierarchical clustering.
Clusters were defined using a tree height of 0.5, and all motifs
within a cluster were aligned and merged using MATLIGN
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(Kankainen and Löytynoja 2007). The edges of all motifs were
trimmed to the first position with information content of at least
0.3 usingMotIV (Mercier et al. 2011). Onlymotifs of at least 4 bp in
length after trimming were included. For eachmotif, cut-offs were
calculated using TFMPvalue using a max granularity of 1 × 10−6 to
allow efficient calculation of long motifs (Touzet and Varré 2007).

Motif prediction and cross-validation

The primary amino acid sequence of all human transcription fac-
tors was extracted from Cis-BP (Weirauch et al. 2014) and
UniProt (Apweiler et al. 2004). For all transcription factors with a
known motif, we constructed a database of the primary amino
acid sequences of their DBDs. To predict the motif of a non-C2H2
zinc finger transcription factor, we extracted its DBD and searched
for the best match in the DBD database using BLAST (Camacho
et al. 2009). Predictionswere only included if the sequence similar-
ity had an E-score less than 1. For C2H2 zinc finger transcription
factors, the protein sequence was submitted to ZifRC (Najafabadi
et al. 2015) using a motif span of 0, and the longest motif was ex-
tracted. To cross-validate the DBD-based predictions, we predicted
themotif of 290 transcription factorswith analreadyknownmotif,
excluding self-hits. Thepredictedmotifwas compared to the source
motif by correlation using HOMER (Heinz et al. 2010).

Motif search, calculation of motif activities, and target prediction

IMAGE searches formotifs using our extended PWMdatabasewith
P-value-based cut-offs using HOMER (Heinz et al. 2010).
Subsequently, motifs without any hits in the supplied sequences
and motifs mapping to transcription factors with low expression
(default threshold: 1 normalized read per kilobase) are removed.
To predict target enhancers, IMAGE performs ridge regression.
The motif matrix is centered, and the user-supplied enhancer
activity matrix of a normalized tag is centered and scaled. For
each sample, ridge regression is performed using glmnet
(Friedman et al. 2010) with 10-fold cross-validation. The model
that is solved is:

OE,S =
∑

M

AS,M ·NE,M .

OE,S is the sample- and enhancer-specific occupancy. AS,M is
the sample- andmotif-specificmotif activity.NE,M is the enhancer-
and motif-specific motif frequency. In other words, the enhancer
activity at a specific position in a particular sample is given by
the sum of all motif activities multiplied by their motif frequency
at that site. Target enhancers are identified by leave-one-out-based
analysis. We define target enhancers of each motif as sites where
the motif is present and where the accuracy of the IMAGE model
decreases upon leaving out that motif of the analysis. IMAGE
uses the predicted sites to calculate motif activities for gene expres-
sion using an integrated model of enhancers using a similar ridge
regression scheme to solve:

EG,S =
∑

M

AS,M ·
∑

E

DE,G · TE,M ·NE,M .

EG,S is the sample- and gene-specificmRNA expression.AS,M is
the sample- andmotif-specificmotif activity.NE,M is the enhancer-
and motif-specific motif frequency. TE,M is the enhancer- and mo-
tif-specific target prediction.DE,G is the enhancer- and gene-specif-
ic distance-weight calculated as in Wang et al. (2013) but
subsequently scaled between 0 and 1. Target genes are identified
by leave-one-out-based analysis. We calculate a P-value-like score
based on the drop in prediction accuracy decreases upon leaving
out that motif, as well as the predicted presence of binding sites
near the gene. Genes with a score below 0.005 that are differen-

tially regulated, as well as expressed above 1 normalized reads
per kb, are defined as target genes.

Validation of IMAGE

For testing sets, we used our previously published MED1 ChIP-seq
and RNA-seq (GSE95533) (Siersbaek et al. 2017) and DNase-seq
(GSE27826) (Siersbaek et al. 2011) data from different time points
during differentiation of 3T3-L1 preadipocytes. Transcription fac-
tor ChIP-seq data (GSE56872 and GSE27826) (Siersbaek et al.
2014) from the same time points were used for validation of pre-
dicted binding sites. RNA-seq from 3T3-L1 adipocytes treated
with siPPARG or siControl (GSE14004) (Schupp et al. 2009) were
processed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/
geo2r/). Prediction of target genes was validated by comparison
to large-scale screening by overexpression (Gubelmann et al.
2014) or knockdown (Söhle et al. 2012) (analyzed using redundant
siRNA activity analysis [Konig et al. 2007]), as well as GO annota-
tion (Blake et al. 2015) and genes whose expression in human ad-
ipose tissue correlate with BMI (Keller et al. 2011). Transcription
factor annotations were extracted from the UniProt database
(Apweiler et al. 2004). For overlap analysis between MED1-bound
enhancers and the binding sites of candidate transcription, puta-
tive peaks (GSE105189, GSE91636, GSE66248, GSE91585,
GSE44588) were downloaded. The two data sets from mouse
were lifted to the human genome using liftOver, and all five
were overlapped with MED1-bound enhancers using HOMER
(Heinz et al. 2010).

Culture, differentiation, and transfection of human mesenchymal

stem cells

Immortalized human mesenchymal stem cells, hMSC-TERT4,
were cultured and differentiated essentially as previously described
(Simonsen et al. 2002). Briefly, 2 d post-confluency, cells were in-
duced to undergo adipogenesis by switching the cells to DMEM
supplemented with 10% fetal bovine serum, 10 µg/mL insulin,
1 µM rosiglitazone, 100 mM dexamethasone, and 500 µM isobu-
tylmethylxanthine. Differentiation media was replaced on day 2,
4, 7, 9, and 11. Knockdown of selected TFs was done 3 d prior to
induction of the differentiation using reverse transfection with
DharmaFECT (Thermo Fisher Scientific) and a pool of three differ-
ent siRNA sequences (MISSION, Sigma).

Oil Red O staining

Following 14 d of differentiation, cells were fixed with 4% parafor-
maldehyde for 30min, stainedwithOil RedO (300mg/mLOil Red
O in isopropanol diluted60:40 v/v inwater) for 30min andwashed
in PBS. Whole-well images were captured with a Nikon D100 cam-
era, and microscopic images were captured in color using a 10×
phase contrast objective using a Leica DM IRB/E microscope.
Image quantification was carried out using Fiji (Schindelin et al.
2012). Briefly, all images were split into RGB channels, and the
area stained byOil RedOwas quantified using the identical thresh-
olds for all images based on the blue channel. For eachwell, at least
10 images from randomly picked locations were analyzed.

Genome-wide studies in human mesenchymal stem cells

mRNA-seq was performed according to a standard protocol as pre-
viously described (Schmidt et al. 2016). Briefly, humanmesenchy-
mal stem cells, treated or differentiated as indicated in individual
figures, were harvested in TRIzol (Thermo Fisher Scientific), and
the RNA was purified using Econo Spin columns (Epoch Life
Sciences). Library preparation, including RNA fragmentation and
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cDNA synthesis, was performed according to the manufacturer’s
instructions (TruSeq 2, Illumina). Sequencing data were mapped
to the hg19 assembly of the human genome using STAR (Dobin
et al. 2013). (The major difference between hg19 and hg38 is the
addition of alternative loci, which more accurately captures varia-
tion in the human genome. Since IMAGE does not analyze human
variation, the choice of genome will not significantly impact the
results. Therefore, hg19 was chosen to make the data as easy to
use as possible, since currently, the majority of data sets are
mapped using hg19.) Gene counts were quantified using iRNA-
seq (Madsen et al. 2015). Differential expression analysis was per-
formed using edgeR (Robinson et al. 2010). Gene ontology enrich-
ment analysis was performed using GOseq (Young et al. 2010)
against the Reactome database (Croft et al. 2014) or the KEGG da-
tabase (Kanehisa et al. 2016). Metabolic flux estimations were per-
formed using SPOT (Kim et al. 2016) and Recon v2 (Thiele et al.
2013).

MED1 ChIP-seq was performed essentially as previously de-
scribed (Siersbaek et al. 2011, 2012). Briefly, humanmesenchymal
stem cells, treated or differentiated as indicated in individual fig-
ures, were cross-linked for 20 min in 0.5 MDSG (Proteochem), fol-
lowed by 10 min in 1% formaldehyde. Chromatin was sheared
using a Bioruptor (Diagenode), immunoprecipitation was per-
formed using MED1 antibody (SC-8998, Santa Cruz), and
ChIP’ed DNA was prepared for sequencing according to the man-
ufacturer’s instructions (Illumina). Sequencing data was mapped
to the human genome (hg19) using STAR (Dobin et al. 2013).
Peaks were identified and tags were counted using HOMER
(Heinz et al. 2010). Differential occupancy analysis was performed
using edgeR (Robinson et al. 2010).

Data access

The high-throughput sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE104537. The complete R code for analyses of 3T3-L1 and
hMSC data has been submitted to GitHub at https://github.com/
JesperGrud/IMAGE and is in the Supplemental Material. The
IMAGE pipeline used for this paper is available in the
Supplemental Material. For the newest version, as well as instruc-
tions and examples, go to the Bioinformatics Tools pane at http
://sdu.dk/mandrupgroup.
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