Skip to main content
. Author manuscript; available in PMC: 2018 Feb 1.
Published in final edited form as: J Chem Theory Comput. 2017 Feb 13;13(3):1176–1187. doi: 10.1021/acs.jctc.6b01176

Table 1.

Bond Energies (De) and Adiabatic Excitation Energies (Te) in eV, and Geometries in Å for the Ground (X) and the First Three Excited States (Denoted as A, C, and D) of LiHd

propertya MSDFT MS-CASPT2 MRCI69 expt22,75
S0, X1Σ+
Re 1.6 1.588 1.589 1.595
De 2.223 2.449 2.522 2.515
LiH → Li+ + H 7.180 7.151
S1(2p), A1Σ+
Re 2.5 2.249 2.577 2.596
De 0.95 1.05 1.077 1.076
Te 2.92 3.24 3.29 3.288
Tvertb 3.40
S2(3s), C1Σ+
S2(3s), C1Σ+
Re(in) 2.125 2.117 2.023 2.0289
Re(o) 5.0 5.29 5.384 5.3789
R 2.5 2.91
ΔEdiss
c
0.12 0.06
De(in) −0.17 0.14 0.16
De(o) 0.95 1.08 1.15 1.0589
Te(in) 5.88 5.65 5.74
Te(o) 4.78 5.21 4.85 4.8322
S3(3p), D1Σ+
Re(in) 1.9, 2.75 2.1 2.822
Re(o) 10 7.9 10.522
De(in) 0.06 0.25 0.3322
De(o) 0.29 0.24 0.3322
Te(in) 6.0 6.2 5.922
Te(o) 5.7 5.922
a

(in) and (o) specify the inner energy minimum and outer energy minimum, respectively.

b

Vertical excitation energy at ground-state equilibrium geometry.

c

ΔEdiss denotes the barrier higher for dissociation (in eV).

d

The aug-cc-pVTZ basis set is used in all calculations using the multistate density functional theory (MSDFT) and multistate complete-active-space second-order perturbation theory (MS-CASPT2). The PBE0 density functional is used in MSDFT; the (2,9) active space is employed for MS-CASPT2.