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Abstract

Over the last forty years, there has been tremendous progress in understanding the biological 

reactions of reactive oxygen species (ROS) and reactive nitrogen species (RNS). It is widely 

accepted that the generation of ROS and RNS is involved in physiological and pathophysiological 

processes. To understand the role of ROS and RNS in a variety of pathologies, the specific 

detection of ROS and RNS is fundamental. Unfortunately, the intracellular detection and 

quantitation of ROS and RNS remains a challenge. In this short review, we have focused on the 

mechanistic and quantitative aspects of their detection with the use of selected fluorogenic probes. 

The challenges, limitations and perspectives of these methods are discussed.
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1. Introduction

It has been more than forty years since McCord and Fridovich discovered that 

erythrocuprein, known as superoxide dismutase (SOD), catalyzes the dismutation of the 

superoxide radical anion (O2
•−) [1]. This discovery attracted the attention of the scientific 

community to the role of reactive molecular oxygen metabolites in biological processes. The 

group of reactive oxygen species (ROS) and reactive nitrogen species (RNS) consists of 
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hydrogen peroxide (H2O2), protein and lipid peroxides (ROOH), hypochlorous acid (HOCl), 

peroxynitrite (ONOO−) and radical oxidants, including O2
•−, hydroxyl (•OH), peroxyl 

(ROO•) and thiyl radicals (RS•), nitrogen dioxide (•NO2) and carbonate radical anion 

(CO3
•−).

Since the discovery of SOD, tremendous progress in understanding the biological reactions 

of ROS and RNS and their physiological significance has been made, yet their intracellular 

detection and quantitation remain a challenge [2–4]. Several ROS-sensitive probes 

producing easily detectable and relatively stable products have been developed. In addition 

to spin trapping techniques [5,6], luminescent probes have also become widely used tools in 

the studies on oxidative stress.

A variety of small molecule fluorescent probes are available for detecting ROS and RNS in 

cells. Their rational use requires a deep understanding of the mechanism of their action. In 

most cases, the probe is oxidized to the corresponding fluorescent product. Determination of 

the reactivity pattern of the primary products of this process (i.e., probe-derived radicals) is 

of great importance for understanding of reaction mechanisms and proper interpretation of 

experimental data [2].

In this article, we discuss the mechanisms of oxidative transformation of selected 

fluorogenic probes: hydroethidine (detection of O2
•−), Amplex® Red (detection of H2O2), 

and boronate-based fluorogenic probes (detection of peroxynitrite and hydroperoxides).

Hydroethidine and the detection of superoxide radical anion

Superoxide radical anion is formed by the process of one-electron reduction of molecular 

oxygen. It can be produced in vivo by a number of oxidases (NADPH oxidases family [7] 

and xanthine oxidase [8]), by the mitochondrial electron transport chain [9], or by redox 

cycling agents (e.g., paraquat and menadione) in the presence of electron donors [10,11]. In 

a protic environment, O2
•− undergoes spontaneous (k = 2 × 105 M−1s−1) [12] or SOD-

catalyzed dismutation (k = 1.6 × 109 M−1s−1) [13] to form O2 and H2O2. Superoxide radical 

anion is the primary ROS produced in vivo and a precursor of H2O2.

Two major groups of probes are used for the detection of O2
•−. The first group comprises 

chemiluminescent probes (e.g., lucigenin, luminol and its derivative, L-012, Fig. 1A) that 

react with ROS to form a product in the excited state, which relaxes to ground state with the 

emission of photons (Fig. 1B and C). Chemiluminescent probes have been widely utilized 

due to their high sensitivity. The mechanism of probes oxidation involves several 

intermediates, including probes-derived radicals. The major limitation of their use is that the 

radical intermediates react with O2 leading to the formation of O2
•− (Fig. 1B and C) [2,14–

16]. This reactivity should be considered when interpreting chemiluminescence data. 

Moreover, those probes do not react directly, or react slowly with superoxide, while other 

biologically relevant oxidants (or reductants) can react with them, producing radical 

intermediates, which further complicate the system. The second major group of probes 

consists of fluorogenic probes: dichlorodihydrofluorescein (DCFH), dihydrorhodamine 

(DHR) (Fig. 2A), hydrocyanines (Fig. 2B), and hydroethidine (HE) along with its analogs 

hydropropidine (HPr) and MitoSOX™ Red (Fig. 2C). In the case of 
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dichlorodihydrofluorescein and dihydrorhodamine, one has to keep in mind that the radical 

intermediates formed upon one-electron oxidation react rapidly with oxygen to generate 

O2
•− (Fig. 3A and B) [17,18].

Hydrocyanines, proposed recently as a tool for the imaging of ROS and O2
•− production 

[19], still await better characterization of their specificity and chemical reactivity towards 

biologically relevant oxidants.

Hydroethidine is a cell-permeable probe that reacts with superoxide to form a unique marker 

product, 2-hydroxyethidium (2-OH-E+), whereas another red fluorescent product, ethidium 

(E+), is formed in the reaction with other cellular oxidants (Fig. 4) [20]. HE has been used 

for the detection of O2
•− in a variety of biological systems, ranging from intracellular 

organelles to whole organs in live animals [21,22]. The reaction of HE and superoxide 

involves a radical mechanism. In the first step, hydroethidine reacts with hydroperoxyl 

radical HO2
• or other one-electron oxidants to form a HE radical cation. Because the 

oxidation of HE by superoxide at pH 7.4 is rather slow (k = 6.2 ± 0.8 × 103 M−1s−1) [23], 

the first step of HE oxidation in cells seems more likely to be achieved by other oxidants. 

Importantly, the radical intermediate does not react with O2, thus the generation of 

superoxide by probe-derived radicals is avoided. HE radical cation combines rapidly with 

superoxide (k = 2 × 109 M−1s−1) to generate a specific oxidation product, 2-

hydroxyethidium [24]. Although superoxide-specific (2-OH-E+) and non-specific (E+) 

oxidation products have slightly different fluorescent spectra, the distinction between them 

is difficult using currently available fluorescence techniques [25]. The formation of 2-OH-E+ 

has to be confirmed and quantitated with the use of other analytical techniques (e.g., HPLC 

with fluorescence detection or LC-MS) [26,27]. The HE–derived radical can also produce an 

HE-HE dimer, which can be further oxidized to the HE-E+ and E+-E+. The measurement of 

E+ and the dimers (HE-HE, HE-E+ and E+-E+) provides useful information about the 

cellular oxidation of HE [28]. It has been suggested that 2-OH-E+ formation should be 

considered only as a qualitative indicator of intracellular superoxide production [29–31].

Hydroethidine analogs (e.g., hydropropidine and MitoSOX™ Red, Fig. 2C) can be used for 

the detection of superoxide with the same limitations as assigned to HE [28]. 

Hydropropidine, a water-soluble analog of HE, possesses a highly localized positive charge 

that prevents its cellular uptake, making this probe a convenient tool for measurements of 

extracellular superoxide. It seems possible that in the presence of horseradish peroxidase, 

(HRP) the sensitivity of detection for extracellular superoxide with hydropropidine can be 

significantly increased. Recently, we have shown that the addition of HRP to HE and 

xanthine/xanthine oxidase system dramatically enhances 2-OH-E+ formation [31].

The requirement of HPLC separation for 2-OH-E+ from other HE oxidation products is the 

major limitation of superoxide detection in cells. The rational design and synthesis of new 

hydroethidine analogs is needed to make real-time monitoring and/or imaging of superoxide 

in biological systems possible [32].
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Amplex Red and the detection of hydrogen peroxide

Hydrogen peroxide can be generated in vivo, directly by an enzymatic two-electron 

reduction of O2 or from dismutation of O2
•− [13,33]. H2O2 can be produced by several 

enzymes, such as L-amino acid oxidase, urate oxidase, glycolate oxidase and monoamine 

oxidase [34,35]. H2O2 is assumed to be an important signaling molecule regulating enzymes 

such as protein kinases and phosphatases [36–38].

Hydrogen peroxide is a neutral molecule that can diffuse through lipid membranes. It can 

slowly react with thiols, which can lead to the formation of sulfenic acids or sulfoxides [39]. 

High H2O2 toxicity is ascribed to •OH formed through the Fenton reaction. To protect cells 

from H2O2 toxicity, the iron pool in cells is tightly controlled, and cells possess endogenous 

enzymatic H2O2 scavengers: peroxiredoxins, glutathione peroxidases, and catalase [40–42].

Currently, there are very few methods that yield reliable quantitative data on H2O2 

production in cells. One method is the Amplex® Red (AR, 10-acetyl-3 7-

dihydroxyphenoxazine) assay, which is based on the enzymatic oxidation of a resorufin 

derivative [43]. Amplex® Red is a colorless and non-fluorescent compound that upon 

oxidation by H2O2, in the presence of HRP, is transformed into a highly fluorescent 

resorufin [43]. The mechanism of its oxidation involves a multi-step reaction (Fig. 5). In the 

first step Amplex® Red undergoes one-electron oxidation to form an AR-derived radical, 

which subsequently can be oxidized by H2O2/HRP. AR-derived radicals can also undergo 

dismutation to form the secondary transient product. Further de-N-acetylation of that 

product leads to the formation of resorufin [44]. The Amplex® Red assay is assumed to be 

highly selective toward H2O2. However, our results indicate that AR can also be oxidized by 

other oxidants [45]. Moreover, the traces of resorufin present in the sample are able to 

photosensitize Amplex® Red when exposed to visible light (e.g., excitation light during 

monitoring of Amplex® Red oxidation). The rate of photooxidation is increased when HRP 

is present [46,47]. Therefore, real-time, fluorescence-based monitoring of Amplex® Red 

oxidation should not be used for quantitative analysis of H2O2 formation. Additionally, 

NADH and reduced glutathione in the presence of HRP can interfere with the measurement 

[4,48]. Our results indicate that the addition of peroxynitrite can lead to the oxidation of 

Amplex® Red [44]. The mechanism of this reaction involves the formation of oxidizing 

radicals (i.e., CO3
•− and •NO2) from the decomposition of peroxynitrite. Pulse radiolysis 

experiments have indicated that those radicals are able to oxidize Amplex® Red. HRP can 

significantly increase the yield of resorufin from Amplex® Red oxidation by peroxynitrite 

[44].

Boronate probes and the detection of peroxynitrite and hydroperoxides

Boronate-based probes have recently emerged as a versatile tool for detecting ROS and 

RNS. It has been proposed that boronate-derivatives of fluorescent dyes can be used as 

convenient and selective probes for H2O2. The first reported fluorogenic boronate probe for 

H2O2 was p-dihydroxyborylbenzyloxycarbonyl derivative of 7-aminocoumarin. The 

mechanism of detection was based on the oxidative deprotection of the fluorescent 

aminocoumarin reporter (Fig. 6A) [49]. In 2004, Chang et al. described the synthesis of a 

diboronate derivative of fluorescein PF1 (Fig. 6B) [50]. During the next decade many 
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boronate-based fluorogenic probes were designed and synthesized. Generally, the 

mechanism of action of boronate probes is based on oxidative transformation of non- or 

weakly fluorescent boronates into strongly fluorescent products [49–51].

Reactivity towards oxidants—The oxidation of arylboronates in alkaline solutions of 

H2O2 was reported for the first time over 80 years ago [52]. However, at physiological pH, 

the reaction between boronate and H2O2 is slow (k ~ 1–2 M−1s−1) [53]. Thus, it has been 

postulated that in biological systems oxidation of boronate probes by H2O2 seems rather 

unlikely [54].

Several other oxidants can also convert boronates into corresponding phenols. That reaction 

is typical for hypohalous ions and nucleophilic peroxy oxidants (Fig. 7) [53,55,56]. A few 

years ago, we demonstrated that boronates react rapidly with hypochlorite and peroxynitrite 

anions [51,53] (Fig. 7). We also showed that boronates can be oxidized by selected organic 

hydroperoxides [57,58].

The mechanism of peroxynitrite-derived oxidation—Peroxynitrite (ONOO−) is a 

primary product of the reaction between nitric oxide (•NO) and O2
•− (k ~ 1010 M−1s−1) [59]. 

We have recently demonstrated that peroxynitrite is also produced in the reaction of O2 with 

HNO (k = 1.8 × 104 M−1s−1) [60]. Although peroxynitrite possesses a relatively short half-

life in biological systems, it is able to diffuse through biological membranes, and it can 

diffuse up to two cell diameters distance [61]. ONOO− is a relatively strong non-radical 

oxidant. Under physiological conditions, it exists in acid-base equilibrium with its 

protonated form, peroxynitrous acid (ONOOH, pKa = 6.8). Peroxynitrite can directly 

oxidize low molecular weight thiols, as well as sulfhydryls groups in proteins. This 

compound can also react with CO2 (high concentration in vivo, k = 4.6 × 104 M−1s−1) [62]. 

The product of this reaction is unstable and decomposes up to 35% into •NO2 (nitrating 

radical) and CO3
•− (strong one-electron oxidant). In the absence of scavengers, homolysis of 

ONOOH, considered as a minor pathway in biology, yields •OH and •NO2 radicals [63]. 

Formation of such radicals leads to the oxidation and nitration of relevant targets, such as 

amino acids (tyrosine, phenylalanine and histidine), sugars (deoxyribose) and lipids [59,64].

Boronates react rapidly, directly and stoichiometrically with ONOO− (k ~ 106 M−1s−1) to 

form corresponding phenols (80–90% yield) [53]. We showed that the remaining 10–20% 

can be ascribed to minor products derived from radical intermediates [53,57,60,65].

The reaction mechanism for peroxynitrite-derived oxidation of boronates has been studied 

and described in detail (Fig. 8) [57,60,65]. The formation of anionic adduct of peroxynitrite 

to the boronate moiety is the first reaction step. There are two pathways of subsequent 

transformation of the adduct. The first pathway (80–90%) proceeds via heterolytic cleavage 

of the O-O bond in the anionic adduct and results in the formation of the major phenolic 

product. The second, minor pathway involves homolytic cleavage (~ 10–20%) of the 

peroxide bond and results in the formation of a RB(OH)2O•− radical anion, which undergoes 

further spontaneous fragmentation with the formation of phenyl radicals [57,60,65]. As the 

minor free-radical pathway is specific for the reaction of boronates with peroxynitrite, the 

formation of phenyl radical-derived minor products may be used to support its identification 

Dębowska et al. Page 5

Pharmacol Rep. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig. 8) [60]. During the last few years, the formation of such peroxynitrite specific products 

was shown for simple arylboronate compounds [57], mitochondria targeted isomeric 

arylboronates [65] as well as for fluorogenic boronate probe coumarin 7-boronic acid (CBA) 

[69]. We have demonstrated that such products are of diagnostic value and can be used as a 

“peroxynitrite fingerprint” [60,66].

Detection of peroxynitrite in cell culture studies—The usefulness of boronate 

probes for monitoring peroxynitrite generation in cellular systems was first shown in a study 

performed on activated macrophages, RAW 264.7 [67]. Recently [54], a boronate-based 

bioluminescent probe Peroxy Caged Luciferin-1 (PCL-1, Fig. 9), previously reported as a 

selective probe for hydrogen peroxide [68], was shown to detect peroxynitrite in 

macrophage cells [54]. After reaction of PCL-1 with an oxidant, luciferin is released, and in 

the presence of ATP and luciferase, luciferin is oxidized producing a bioluminescence 

signal.

Detection of protein hydroperoxides with the use of boronate probes—Boronate 

probes can also be used to detect other oxidants in a complex biological system. Recently, 

we have shown that CBA is oxidized to the highly fluorescent 7-hydroxycoumarin by amino 

acid and protein hydroperoxides [58]. Based on this observation, we have developed a 

fluorometric real-time assay to detect protein hydroperoxides (Fig. 10) generated in cells. 

The use of CBA probe is a convenient way to detect and determine protein hydroperoxides, 

superior to other assays i.e., FOX or iodometric assays (both FOX and iodometric assays 

possess several limitations, as discussed elsewhere [69]).

Global profiling of oxidants

Recently, we proposed a “global profiling approach” [67] with the use of a set of selected 

fluorogenic probes for simultaneous real-time monitoring of oxidants formation in living 

cells. Such an approach seems to be an ideal tool for complete characterization of cellular 

ROS and RNS generation under oxidative stress conditions. Hydroethidine or 

hydropropidine [23] can be used to monitor superoxide and/or other oxidants formation. 

Boronate probes can be used to detect peroxynitrite, and the Amplex Red/HRP assay can be 

used to detect both H2O2 and peroxynitrite [67,70]. As it has been emphasized, the proper 

identification of the oxidant is not possible without simultaneous HPLC-based 

measurements verifying the identities of the monitored fluorescent species [67,70].

With a better understanding of the redox chemistry of the probes and the recent 

developments in rapid HPLC analyses of 2-hydroxyethidium and hydroxycoumarin [67], 

rigorous high throughput profiling of various reactive oxygen and nitrogen species in 

biological systems seems closer than ever to being a reality.
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Figure 1. 
(A) Chemical structures of chemiluminescent probes for the detection of superoxide radical 

anion, (B) The mechanism of superoxide-dependent oxidative transformation of lucigenin, 

(C) The mechanism of oxidative transformation of luminol.
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Figure 2. 
Chemical structures of fluorogenic probes for the detection of superoxide radical anion: (A) 

dichlorodihydrofluorescein (DCFH) and dihydrorhodamine (DHR), (B) hydrocyanines, (C) 

hydroethidine (HE) and its analogs.
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Figure 3. 
Mechanisms of one-electron oxidation of (A) dichlorodihydrofluorescein (DCFH) and (B) 

dihydrorhodamine (DHR).
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Figure 4. 
Proposed radical mechanism of the oxidative transformation of hydroethidine (HE).
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Figure 5. 
Mechanism of the oxidative transformation of Amplex® Red (AR) in its deprotonated form 

under basic conditions.
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Figure 6. 
The reaction of hydrogen peroxide with (A) p-dihydroxyborylbenzyloxycarbonyl derivative 

of 7-aminocoumarin and (B) diboronate derivative of fluorescein (PF1).
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Figure 7. 
Proposed mechanisms of oxidation of boronate probes by various oxidants.
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Figure 8. 
Mechanism of the reaction between peroxynitrite and boronic probes.
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Figure 9. 
Mechanism of the detection of hydrogen peroxide or peroxynitrite by Peroxy Caged 

Luciferin-1 (PCL-1).
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Figure 10. 
Fluorometric, real-time assay for protein hydroperoxides based on the CBA probe.

Dębowska et al. Page 20

Pharmacol Rep. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	Hydroethidine and the detection of superoxide radical anion
	Amplex Red and the detection of hydrogen peroxide
	Boronate probes and the detection of peroxynitrite and hydroperoxides
	Reactivity towards oxidants
	The mechanism of peroxynitrite-derived oxidation
	Detection of peroxynitrite in cell culture studies
	Detection of protein hydroperoxides with the use of boronate probes

	Global profiling of oxidants

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

