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Abstract

Objective—To review published empirical literature on the use of smartphone-based passive
sensing for health and wellbeing.

Material and Methods—A systematic review of the English language literature was performed
following PRISMA guidelines. Papers indexed in computing, technology, and medical databases
were included if they were empirical, focused on health and/or wellbeing, involved the collection
of data via smartphones, and described the utilized technology as passive or requiring minimal
user interaction.

Results—Thirty-five papers were included in the review. Studies were performed around the
world, with samples of up to 171 (median n=15) representing individuals with bipolar disorder,
schizophrenia, depression, older adults, and the general population. The majority of studies used
Android operating system and an array of smartphone sensors, most frequently capturing
accelerometry, location, audio, and usage data. Captured data were usually sent to a remote server
for processing but were shared with participants in only 40% of studies. Reported benefits of
passive sensing included accurately detecting changes in status, behavior change through
feedback, and increased accountability in participants. Studies reported facing technical,
methodological, and privacy challenges.

Discussion—Studies in the nascent area of smartphone-based passive sensing for health and
wellbeing demonstrate promise and invite continued research and investment. Existing studies
suffer from weaknesses in research design, lack of feedback and clinical integration, and
inadequate attention to privacy issues. Key recommendations relate to develop passive sensing
strategies matching the problem at hand, using personalized interventions, and addressing
methodological and privacy challenges.
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Conclusion—As evolving passive sensing technology presents new possibilities for health and
wellbeing, additional research must address methodological, clinical integration, and privacy
issues. Doing so depends on interdisciplinary collaboration between informatics and clinical
experts.
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1. INTRODUCTION

Patients’ disease management and preventive health behaviors benefit from the collection
and tracking of health-related data, from daily weights to calorie counts to pain scores [1, 2].
Clinicians, too, are increasingly interested in capturing patient-reported outcomes including
current status, symptoms and adverse events such as falls [3]. Patient, clinician, and
collaborative use of data to make decisions is the hallmark of an emerging era of personal or
precision medicine, ushered in by decades of advocacy [4] and a recent $215 million US
investment in precision medicine funding [5].

These trends are accompanied by the proliferation of personal health information systems
such as personal health records (PHR) systems [2], wearable consumer devices (e.g., activity
trackers [6]), and smartphone applications, which aid in capturing, storing, managing,
transmitting, interpreting, and acting on large volumes of patient data [7].

The 1998 American College of Medical Informatics (ACMI) Summit presciently identified
wearable computing systems as a way to achieve the “audacious goal” of empowering
individuals via biomedical informatics [8]. Wearable, portable, or mobile computing permits
continual passive sensing. the capture of data about a person without extra effort on their
part. The concept of passive sensing comes from extensive research conducted in the field of
ubiquitous computing, where it is also called ‘context-aware computing’ [9]. Two main
advantages of passive sensing over traditional data collection methods are that it is less
intrusive and enables just-in-time adaptive interventions based on data captured and
processed /n situ [10]. Passive sensing for health and wellbeing refers to various methods to
collect data from patients or lay users /n7 situwithout requiring their direct interaction with
any artifact or person (see Appendix Al for definition of this and related terms). Users may
be able to turn sensing on and off, but need not make any input to produce data collection.
The combined unobtrusiveness and pervasiveness of passive sensing makes it possible to
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gather data at any time, longitudinally, and with little stigma or additional burden on
patients’ awareness, memory, or behavior. Such benefits are especially useful in the domains
of mental health and mental illness, including dementia, schizophrenia, and mood disorders,
where data may be sensitive, stigmatized, and subject to distortion. Indeed, passive sensing
has been argued by mental health researchers as a promising component in ambulatory
assessment [11].

Passive sensing is not new but the related technology has evolved: for instance, physical
activity, sleep, and cardiovascular disease research has employed passive sensing for
decades, using an evolving suite of technologies from pedometers, polysomnography, and
cardiovascular implantable electronic devices to commercial wristband activity trackers,
smartwatches, and smartphones [12-15]. Mobile health technologies that can passively
collect information have been promoted in the medical literature as a way to reduce burden
and improve care for healthcare consumers [16].

Smartphones, in particular, are a novel technology for passive sensing described in the
literature but not systematically reviewed [17, 18]. Smartphones are unique because of their
increasing computational power and pervasiveness. As of 2015, 68% of US adults owned
smartphones, approaching the rate of desktop or laptop computer ownership (73%) [19].
Even among older adults, smartphone ownership has doubled from 18% to 42% between
2013 and 2016 [20]. Smartphones are used for various activities, including for health-related
purposes, by the majority of owners across all age groups [21]. Because a smartphone is
ubiquitous in the daily life of so many in the US and globally, sensing via smartphone may
be less obtrusive—though perhaps no less intrusive—than specialized wearable medical or
fitness devices.

Smartphones are of further interest for passive sensing because they combine multiple
sensors (Apple’s iPhone 7 has six [22], while the Samsung Galaxy S8 has eleven [23]). They
also capture behavioral data such as call, texting, or social media activity; have advanced
Internet, storage, and processing capabilities; and permit the creation of personal profiles
and personalized, just-in-time visualizations and alerts to users and their support network
[24]. Smartphones can be used to passively capture data such as speech characteristics,
location, and activity, which can be interpreted to assess depression, sleep, or loneliness.
These smartphone sensors have been used in multiple commercial applications, ranging
from car navigation to fitness tracking applications (see Appendix A2 for a fuller list of
smartphone sensors and examples of related commercial applications).

Although several reviews have examined the use of portable activity sensing devices [6] and
the use of smartphones generally for health and wellbeing [25-27], to our knowledge the
growing body of studies of smartphone-based passive sensing has not been systematically
reviewed. The goal of this study was to address this gap in the biomedical informatics
literature.
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2. OBJECTIVES

The main study objective was to review published literature on smartphone-based passive
sensing for health and wellbeing. Specific research questions were:

. To which health-related domains and populations has passive sensing via
smartphone been applied?

. What data collection approaches have been used for passive sensing via
smartphones?

. How were sensed data processed and used after acquisition?

. What are the benefits of passive sensing via smartphone?

. What are the challenges, such as privacy issues, of passive sensing via
smartphones?

3. METHODS

We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [28] to perform a systematic review of the literature on smartphone-
based passive sensing for health and wellbeing.

3.1 Type of Studies

Studies were included if they: 1) were empirical; 2) primarily focused on health and/or
wellbeing of participants; 3) involved the collection of data via smartphones; and 4)
described the utilized technology as passive or requiring minimal user interaction.

We included health-related studies of people with or without diseases. “Smartphone” was
defined as any phone equipped with a mobile operating system—Android, Apple iOS,
Symbian OS, Windows Mobile—on which applications can be installed to capture data from
the phone’s sensors. Passive was defined as data being collected without user input beyond
starting the application, apart from any data actively collected by the study for validation
purposes.

Studies were excluded if they used wearable devices paired with a phone because these did
not use the smartphone’s sensors. Studies that required participants to attach the smartphone
to their body, clothing, or a permanent fixture (e.g., furniture) were also excluded because
they did not use the device’s primary telecommunication, display, or input functions; for
example, most gait-tracking applications were excluded as they often used the phone as a
pure sensor device affixed to the waistline.

We included English-language studies published any time through January 2017, the last
month studied. Peer-reviewed journal papers and conference proceedings papers were
included; extended abstracts were excluded.
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3.2 Search Strategy for the Identification of Studies

We performed two searches in domain-specific databases representing computing and
technology (ACM) and medicine (MEDLINE), followed by cross-domain database searches
in Web of Science. This was followed by a cited reference search, whose findings were
duplicated in the database search. Queries were tailored to each database (Table 1).

4. RESULTS

We included in the full review a total of 35 publications [29-63], summarized in Tables 2-5.
These were selected from 3,246 returned results (Figure 1), with the majority of references
discarded for irrelevance (e.g., chemistry research), absence of sensor data (e.g., proof of
concept papers), and use of wearable devices. Several studies were excluded because they
collected data only under controlled laboratory conditions, for example, requiring
participants to sit and stand repeatedly to test a motion sensor.

Seventeen studies (49%) were performed by US research teams and 14 (40%) by Europeans.
Other studies originated in China [33, 49], Korea [48], and Mexico [58].

Mental health was the most common application domain for studies using passive sensing on
smartphones, with 18 (51%) studies on mental health: five (14%) on bipolar disorder; five
(14%) on depression; and three (9%) on schizophrenia. Other domains included sleep (6;
17%) and general health (4; 11%) (see Figure 2).

Seven studies integrated passive sensing in behavior change interventions [38, 52, 54, 55, 58,
60, 61], such as personalized feedback to promote exercise and healthy eating [55]. Other
studies used passive sensing to demonstrate the ability to capture or monitor data related to
health and wellbeing.

Study sample sizes ranged from 5 to 171, with a mean of 23.1+27.9 participants and a
median of 15. Three studies had open enrollment, meaning that participants downloaded an
application from an application portal (e.g., Apple AppStore, Google Play Store) [39, 47,
61]; these studies were characterized by high dropout rates. Twenty-four studies reported a
fixed study length, ranging from five days to a year, with a mean of 53.5+71 days and a
median of 30 [29, 32-35, 37, 38, 40, 41, 43-46, 49, 50, 53-60, 63]. Eleven others reported
variable between-subject study durations [30-32, 39, 42, 47, 48, 51, 52, 61, 62], citing
reasons such as rolling enrollment, participant dropout, and having no defined study length.

Nine studies included participants with a clinically-diagnosed mental health condition [29,
34, 36, 38, 41, 44, 45, 53, 62], two studied adults over 60 years old [58, 60], one enrolled
people with chronic heart failure [31], and one studied smokers [52]. Nine studies enrolled
university students [30, 32, 35, 40, 42, 46, 56, 59, 63] and another three recruited
participants on university campuses [49, 54, 55]. Other studies included participants from
various backgrounds [37, 39, 43, 47, 48, 50, 51, 57, 61].

Thirty (86%) of the reviewed studies were conducted between 2014 and January 2017 (cf.
Figure 3). During each of these three years, mental health studies made up more than 40% of
the publications.
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4.1 Summary of Reviewed Papers
4.2 Sensors Used

As seen in Table 6, studies captured data from a variety of smartphone physical sensors and
device analytics. The most used physical sensors were the accelerometer (25 studies), Global
Positioning System sensor (GPS; 22 studies), light sensor (10 studies), and microphone (9
studies). Studies also collected data on device analytics, including call logs (14 studies),
device activity (defined as screen on/off and device on/off; 11 studies), and Short Message
Service (SMS) patterns (frequency and/or recipients; 11 studies).

Most studies combined multiple sensors, an emerging strategy as phones have become more
energy efficient and the overhead of capturing data has diminished. Eleven studies recorded
input from five or more sensors [30, 32-36, 50, 59, 61-63], among which seven were mental
health studies. Studies with more than three sensors usually relied on machine learning
prediction models to process and interpret data; for example, one study combined
accelerometer as a proxy of physical activity and sleep, microphone as a proxy of social
activity, and GPS for location changes to infer daily stress levels [35]. Ten studies recorded
data from only one sensor, either the accelerometer or GPS [37, 41, 43, 46, 47, 51-53, 56,
60].

4.3 Operating systems

Thirty-one studies (89%) used the Android operating system (OS), compared to two using
Apple i0OS [37, 51], and one using the now-defunct Symbian OS [38]. This could be
explained by the access granted on Android phones, making it easier for data capture,
communication, and processing tasks to run in the background. In contrast, Apple’s iOS
made it harder for applications to access data from other applications without explicit user
permission. The operating system could not be ascertained for one study [46].

4.4 Validation Measures

To validate the interpretation of sensed data, studies employed various traditional measures
or other assessments of “ground truth,” hereafter referred to as validation measures. Most
studies then reported the correlation between validation measures and the interpretation
derived from processing sensor data. Studies of depression used the PHQ-8 or PHQ-9 self-
report instruments. Studies of bipolar disorder primarily used clinician assessments based on
a battery of scales [34, 44, 45, 53], although one used a self-report questionnaire [29]. For
sleep studies, smartphone sensor-based results were compared to those from a medical
activity tracker [51], a popular consumer activity tracker [40], laboratory-based
polysomnography [37], and self-report questionnaires or sleep diaries [30, 33, 50]. Other
studies used instruments relevant to their application domain, including questionnaires,
ecological momentary assessment (EMA), and professional assessments (e.g., for bipolar
disorder [44, 45, 53]). Studies differed in the timing of validation measures, from one-time
measures to seven measures per day (e.g., [59]) or pre-post assessments.
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4.5 Data Processing and Use

The software application used in most studies (21; 60%) communicated with a remote server
to save sensed data to a database for processing and, at times, within-study feedback to
participants. In eight studies, data were scrambled for privacy on the phone (via hashing or
anonymization of audio data) before being transmitted to the server [29, 30, 34-36, 57, 62,
63].

Server communication was not used in 10 studies (29%) [35, 37, 44, 45, 51, 53-56, 60]. Five
studies produced feedback locally [37, 47, 54, 55, 60], without any server communication;
for example, health status was processed directly on the phone in one study on predicting
health status from accelerometry [47]. Three studies performed complex calculations—data
classification or prediction modeling—directly on the smartphone [37, 54, 55]; for example,
sensed geographical locations were processed on the device to cluster physical activities [54,
55]. In four studies (11%) describing post-study processing, we could not determine whether
a remote server was used [30, 40, 43, 61].

Feedback to Participants—Fourteen studies (40%) reported providing some sort of
feedback to study participants [29, 31, 33, 37, 38, 40, 47-49, 52, 54, 55, 58, 61]. The
applications in five studies displayed graphs representing mental health status [29, 38], sleep
data [37], physical activity [47], and the mobile applications participants used the most [48].
Two studies provided prepared motivational messages to participants based on collected data
[31, 58] and three displayed tailored messages [52, 54, 55], e.g., “25% of the time you
smoke [is when] you are working” [52]. Three studies showed participants text descriptions
of their sensed data and/or sensor-predicted status, without encouraging behavior change
[33, 40, 49]. As an example of presenting both data and data-driven interventions, one study
displayed depression data as text and delivered micro cognitive behavioral therapy modules
based on the data [61]. A study published in 2011 only provided a text string depicting
predicted depression status on the smartphone, with more detailed graphical feedback
available on a companion website [38]. Two studies allowed clinicians to view their patients’
data through a separate web portal [31, 48]. Five studies computed the data locally [37, 47,
54, 55, 60] and provided feedback on the phone, whereas the rest required server
communication to provide feedback to participants.

Correlation with Validation Measures—In the vast majority of studies, data were
processed and correlated to validation measures, to test the validity of interpretations or
predictions made through passive sensing. In seven studies, the correlation was performed
while the study was ongoing [31, 37, 49, 54, 55, 60, 61] and after study completion in 23
studies. Data processing used different families of algorithms for interpreting or predicting
the participant’s status. The most popular were Support Vector Machine [29, 31, 39, 47, 58,
61], naive Bayes classifiers [43-45, 58], decision trees [38, 43, 50, 62], random forests [59,
61], and linear regression [30, 46, 57, 59]. Other prediction methods include Bayesian
networks [50] and logistic regression [57]. Five studies compared several machine learning
methods to predict participant status [43, 50, 58, 59, 61]. Some studies just performed
correlation analyses without prediction of the participant’s status, i.e. they did not establish a

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Cornet and Holden

Page 8

mathematical relationship between the sensor data and the validation measures [e.g., 39, 48,
53, 56, 63].

4.6 Benefits of passive sensing and related findings

Nearly all studies demonstrated or otherwise reported benefits of passive sensing using
smartphones. In mental health studies, findings included significant correlations with
validation measures and successful prediction models for some or all the studied variables
[29, 34, 44, 45, 53, 56, 57, 61-63]. For example, two bipolar disorder studies reported
precision and recall (or hit rate) over 94% for bipolar state change detection [44, 45], and
one study predicted bipolar states with precision and recall over 85% [29]. Sleep studies
reported sufficient precision, defined as the detection of sleep duration within a one-hour
margin [30, 40]. These results illustrate smartphone capability to deliver usable information
that can be integrated into behavior change interventions for health and wellbeing.

Seven studies demonstrated individualized or similar-user models as better for predicting
participant status compared to generalized models [39, 43-45, 54, 55, 61]. Two other studies
argued for using personal models on the basis that the relationship between sensed data and
behavior is individual-specific [35, 49].

Six studies conducted interviews or usability testing with their participants [36, 38, 40, 52,
55, 60]. Participants appreciated the ease of use of the system [36, 60] and that it did not
interfere with their everyday life [36, 40]. Participants valued receiving feedback [38, 52, 60]
as long as it was understandable [i.e., reported in a way target users could understand;40,
60], timely [52], and relevant to their lifestyle [55].

Studies also highlighted the objectivity of smartphone sensor measurements [31, 34, 36, 39,
41, 42, 44, 45, 49, 53], the ability to take frequent measurements [29, 34, 37, 38, 41, 55, 57],
the possibility of performing just-in-time and adaptive interventions [52, 55, 61], and
reduced burden for patients [29-31, 35, 53]. Authors also mentioned the ubiquity of
smartphones, the affordability of the interventions, and non-invasiveness.

4.7 Challenges of passive sensing

The apparent ease of deploying passive sensing campaigns for health and wellbeing was
counterbalanced by several reported challenges. Although not systematically reported across
studies, these challenges could be divided into three categories: technological,
methodological, and privacy issues.

Technological challenges—In two studies, authors reported battery drainage concerns
[31, 38]. Five studies mentioned the lack of sensor precision [38, 40, 41, 52, 60]; for
example, location data were sometimes inaccurate, leading to participant frustration [52].
Three studies reported not being able to access application data that would have been useful
in their prediction model [42, 48, 49].

Methodological challenges—Eleven studies noted concerns about generalizability due

to low sample size [44, 45, 56-59], possible sample bias [32, 35, 46, 48], and variability in
the study data sample [34, 35]. Seven studies reported a limited or null relationship between
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passively sensed data and validation measures [34, 38, 42, 46, 49, 50, 61]. Problems
encountered include low variability of symptoms in the sample [34, 38] (e.g., few manic
episodes occurring among bipolar participants during the study period [34]), noisy sensor
data [38], technical problems leading to unusable data [38, 42], trying to predict personal
phenomena with generalized models (e.g., for mood [49]), difficulty assessing “ground
truth” [50], and biased samples [46]. Some studies called for more data labeling from
participants, for example by having participants answer more frequent depression
questionnaires [38, 56], to better train the prediction models. Studies also reported
participants disabling the phone’s sensing capabilities [53] and not carrying their phones
[36, 41, 53].

Privacy issues—~Privacy issues were mentioned in 20 papers. Most papers did not
thoroughly discuss privacy issues, but merely described their methods for protecting data
privacy, which included the following:

. secure communication with external servers [34-36, 38, 39, 57, 62, 63],
. anonymization of data [30, 34, 44, 45, 57, 59, 62, 63],
. scrambling audio [29, 35, 36, 44],

. local storage/processing of data as opposed to sending data to an outside server
[44, 45, 54].

In one instance, study participants mentioned that they would not grant access to as much
information if the passive sensing application were a commercial product rather than coming
from a university [52].

Fifteen studies made no explicit mention of privacy or a plan for privacy protection [33, 37,
41, 43, 46-49, 51, 53, 55, 56, 58, 60, 61].

5. DISCUSSION

The reviewed studies illustrate the potential of passive sensing via smartphones in the
domain of health and wellbeing. Indeed, this review reveals the broad use of smartphone-
based passive sensing across application domains, with a particular representation of mental
health and sleep, two areas where passive sensing may be useful as a way to replace or
supplement self-report. A number of passive sensing strategies for data collection,
processing, and use were demonstrated, offering informaticians and healthcare researchers
several options for future passive sensing projects, including interesting emerging methods
such as machine learning or just-in-time processing and feedback. The reviewed studies
generally demonstrated feasibility and validity of smartphone-based passive sensing, the
latter evidenced by significant associations between traditional and sensing-based
assessments. Studies also concluded that passive sensing was more accurate and less
intrusive compared to self-report measures. However, additional work remains in several
areas, including evaluating the health benefits of interventions using smartphone-based
passive sensing, integrating passive sensing in clinical care programs, and addressing
important implementation issues such as privacy and technology acceptance.
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Using mobile phones for passive sensing is encouraging not only because of the potential
power of continual monitoring and feedback of health-related data but also because of the
non-intrusiveness of passive sensing. A smartphone-based passive sensing approach for
health and wellbeing is well aligned with the concept of minimally disruptive medicine,
defined as “a patient-centered approach to care that focuses on achieving patient goals for
life and health while imposing the smallest possible treatment burden on patients’ lives”
[64—-66]. Passive sensing can ease—or, minimally, not add to—*"work that is delegated to
patients and their families” [67], by facilitating or automating difficult tasks such as self-
monitoring or daily logging [68]. It can also positively affect health outcomes when used as
a component of behavioral intervention technologies [69]. Although passive data collection
raises other ethical issues, it is less likely to disrupt a person’s thoughts and activities than
diaries, paper questionnaires, telephonic or electronic prompts for data, and similar methods
[70, 71]. Mobile phones, in particular, may be less disruptive because they are often already
embedded in people’s routines and have broader market penetration than wearable activity
trackers or medical devices (e.g., Holter monitors).

Smartphones are also useful as a means for capturing passive data because they capture user-
specific social and personal user data, collected when users make calls, write and send texts,
manage contacts, or are simply present in an environment. They contain a multitude of
sensors, which can be used simultaneously, provided sufficient battery power. Smartphones
have other advantages such as their many functionalities (calling, data service, settings
control), Internet connectivity, advanced processors, and high-resolution display. However,
research needs to be done to test the hypotheses that, compared to other measurement
approaches, smartphone-based passive sensing is less disruptive, more effective, more
efficient, and more likely to be accepted and used over time.

5.1 Strengths and weaknesses of reviewed studies

The 35 reviewed studies applied passive sensing across domains of health and wellness,
demonstrating a degree of generalizability. Multiple studies in the area of mental health
showed it was feasible to use passive sensing, including ones capturing sensitive data such as
location [35, 56], in a domain surrounded by ethical issues related to privacy, consent, and
self-awareness. However, while people appear to accept sharing personal data for research,
they may be more reserved when commercial interests are present [52, 72]. At the same
time, not all domains were covered in the reviewed studies, raising questions about the
applicability of smartphone-based passive sensing for other diseases, multiple comorbid
conditions, and populations of older, cognitively impaired, rural-dwelling, or vulnerable
individuals. Overall, few studies reported participants’ views on passive sensing and privacy,
raising concerns about acceptance outside academic research studies, especially when
sensitive sensors—microphone, GPS—are used [73]. The concern is especially high for
research among ethnic minorities, for whom privacy is an important but perhaps
underappreciated concern [74].

The sample size of most studies was acceptable for feasibility assessment but not to
demonstrate clinical value, as others have noted about innovative health informatics research
[27, 75]. For example, Fiordelli et al.’s [75] systematic literature review of mobile health
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(mHealth) research between 2002 and 2012 found that the average sample size decreased
over the years, although the variety of study designs has increased as more clinical studies
have been performed over time. The majority of the studies reviewed here were able to
manage the technological challenges related to sensors, data processing, and security,
although in many cases this was easier to accomplish when studies were performed outside
of routine clinical care or with healthy volunteers, for example, university students enrolled
in a class [63].

Overall, although the studies were innovative, as a whole they did not demonstrate the use of
passive sensing in actual clinical contexts and did not measure or report changes in health
outcomes, as most studies were not interventional by nature. Studies generally dealt with
human-computer interaction (HCI) and technological issues rather than addressing questions
of clinical integration or scalability. Notably, only 18 papers (51%) were published in
healthcare venues. This may explain why issues such as privacy or health outcomes were not
comprehensively addressed and sometimes ignored.

In terms of study reporting, technical elements of the studies were usually sufficiently
reported. While older studies often had missing or inadequate information about settings and
implementation, recent studies tend to be more rigorous on these aspects—following a
global phenomenon in mHealth studies [76]—but for the most part fail to systematically
report challenges, especially ethics- and privacy-related ones. Systematically reporting
technological and methodological challenges, as well as the views of participants on ethics
and privacy, would benefit the planning and execution of future studies using passive sensing
on smartphones.

5.2 Recommendations

Choosing the right passive sensing strategy—Our review showed many different
ways to configure the data collection, processing, and use of a smartphone-based passive
sensing system. For example, studies differed in the number and type of sensors used,
location and timing of data processing, and the nature of feedback to users.

Interestingly, the number of sensors used in research studies has been relatively stable over
the years; the average sensor count across studies was between 2.5 and 4 for any given year.
As sensors have become more energy-efficient and smartphone makers have added
dedicated chips to process sensor data, it has become more practical to capture data from as
many sensors as possible, for subsequent processing as needed. However, as more data
streams are captured, it is important to derive new features—i.e., features that can be
deduced from raw sensor data, from simple mathematical calculations to the number of
speakers in a room—to facilitate machine learning [77]. These computed features should
match the problem at hand, such as speech detection for people with schizophrenia, an
indicator of social functioning [35].

An important distinction between studies was the nature of the input from participants. In a
few cases, the approach required little to no input from study participants, using
unsupervised machine learning algorithm classes, e.g., clustering. This can be used to learn
the correspondence between sensed data and an interpretation, such as how geographical
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coordinates inform a lack of mobility [55]. In most cases, however, participants were
required to label sensed data in the study’s initial stages, for example by tapping a button
each time a cigarette was smoked [52]. These labeled data points are especially helpful for
identifying outliers but may be less practical than completely passive strategies.

In general, given the many possible strategies for passive sensing, we recommend choosing a
combination of data collection, processing, and use that is based on project- and population-
specific needs: a mix-and-match or configural approach.

Personalized and Similar-User Models—A few of the studies reported null or weak
correspondence between sensed data and a phenomenon of interest. For example, in one
study the prediction of depression from sensor data yielded 60% accuracy [61]. However,
some have pointed out that what might be misconstrued as inaccurate sensor data could be
more valuable by applying personal rather than population-based prediction models [55]. A
particular pattern in one’s data may reveal something characteristic of that user [78]:
“different people will have different behavioral indicators of mental health difficulties” [35].
The use of personal sensing mirrors n-of-1 clinical trials and indeed, some have suggested
the use of sensing devices for n-of-1 trials [79].

An alternative to strictly individualized models is using “similar user” models, or models
grouping similar users to increase the volume of data to be used by machine learning
algorithms (e.g., [43]). While these models may have lower accuracy than personalized
models, they are more generalizable and do not rely on as much user-labeled data.

Next Steps for Passive Sensing—The advent of deep learning systems, combined with
increasing mobile computing power, suggest a future direction for passive sensing for
smartphones [80]. Initiatives such as Google’s TensorFlow and Apple’s Core ML enable
developers to train and use neural networks directly on smartphones in order to perform data
processing that formerly required a remote server, for example, offline language translation
[81-83]. These emerging technologies may ultimately permit rapid and context-sensitive
passive sensing, machine learning, and just-in-time personalized intervention delivery,
especially if integrated within existing frameworks for behavior change technologies (e.g.,

[84]).

Future work must also better address privacy, both conceptually and practically. Most studies
addressed data security via secure transmission or encryption, but future studies must also
tackle other privacy issues, for example, those related to the third-party use of personal data
or storage of data in databanks not controlled by device users [85]. Judging from the major
barriers to personal health records adoption [86], concerns about privacy may also deter
widespread adoption of passive sensing. Much like any new and spreading technology,
future studies must critically and comprehensively assess the acceptance and longitudinal
use of passive sensing systems [87] as well as any adverse consequences.

A major general recommendation to address some of the above issues is for technology
specialists (e.g., informaticists, computer scientists) to partner more effectively with clinical
experts to identify and address problems amenable to passive sensing [69, 88, 89]. Only
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through these kinds of partnerships can novel technologies be designed and assessed for
practical value, scalability, and sustainability. This partnership is especially important in
specialty fields such as mental health, where passive sensing is promising but has not
reached its full potential [26, 69, 88].

Recommendations for future research on passive sensing for health are compiled in Table 7.

6. LIMITATIONS

Because of the topic of the review and the infancy of the field, papers may not have been
captured in our search, despite the use of broad terminology and brand names (e.g., Android,
iPhone) in the search queries. This review was unique in focusing on mobile phone systems,
because of the advantages described above, but consequently did not incorporate the broader
literature on passive sensing using wearable devices such as activity trackers [75] or data
collection from social networks [17, 18]. Given the small and heterogeneous set of reviewed
papers, we were unable to apply a systematic quality evaluation system or draw conclusions
about effect sizes using quantitative meta-analysis.

7. CONCLUSION

As demonstrated by the present systematic review, the field of passive sensing for health and
wellbeing shows early promise, despite ongoing maturation. Several stakeholders may
benefit from future application of smartphone-based passive sensing: 1) users, who may in
the future be able to receive just-in-time or scheduled feedback on data without much
additional burden; 2) healthcare professionals, who may be able to receive more accurate
and timelier reports about their clients; and 3) researchers, who may gain access to rich
datasets with validated data concerning participants’ behavior. The use of data that are
patient-specific, accurate, and minimally burdensome may power future models of health
and healthcare that are smarter, more connected, and more personalized. However, there
remain multiple gaps between this vision and the present state of the art. In particular,
additional research is needed to address major issues such as clinical efficacy, integration of
newer analytic approaches including artificial intelligence (Al), privacy issues, and
implementation of passive sensing into actual clinical care. Addressing these issues will
require advances in both technology and in the composition of research teams towards
interdisciplinary collaborations of experts on technology, human-computer interaction, and
clinical care.
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A.1 Definition of Terms Related to Passive Sensing

Term

Definition

Ecological Momentary Assessment

“Repeated sampling of subject’s current behaviors and experiences in real time,
in subjects’ natural environments.” [11]

mHealth (mobile Health)

Mobile technologies for health or healthcare. This term includes technologies
used by health professionals or nonprofessionals [75]

Mobile Sensing

Term encompassing all portable technologies (phones, wearables, etc.) relying
on sensors. Mobile sensing is not limited to the individual but can be used to
capture crowd phenomena, as well as environmental phenomena. May require
user input to capture data.

Internet of Things

Communication of traditional physical objects (e.g., body weight scale, fridge)
with other objects and systems (e.g., electronic health records) via the Internet
[92].

Passive Sensing

Technique utilizing technologies capturing personal, crowd, or environmental
data with little to no user input or effort during data collection. Passive sensing
can be mobile but can also be embedded in the environment (e.g., thermal
Sensors).

Pervasive/Ubiquitous Technology

Computing devices that are present in the environment rather than as specific
machines [93]; their interfaces become “invisible, natural and everywhere” for
the user [94].

Smartphone

Cellular phones capable of performing advanced computing tasks whose features
can be extended through applications downloaded from the Internet [95].

A.2 Summary of Main External Smartphone Sensors Used in Passive

Sensing

Term Function Commercial Application Examples

Accelerometer & Gyroscope Determining the speed of Pedometer application. Activity tracking (e.g.,
movement in space as well as Google Fit)
speed of rotation of the device.

Antenna Detecting nearby cellular towers Contextual messages when entering a certain
and relaying the signal to the area (e.g., text messages received when
broadband processor for roaming in another country)
voice/SMS/data communication.

Bluetooth Detecting and communicating Wireless audio. Transmission of files between
with other Bluetooth-enabled phones.
devices.

Global Positioning System Receiving information of four or Car navigation (e.g., Google Maps Navigation)

(GPS) more GPS satellites to calculate

the position of the device.

Light sensor Determining the amount of light Automatic screen brightness adjustment.
reaching the device.

Microphone Capturing external sounds onto Audio recorder. Phone calls.
the device to for recording,

processing, or transmission [96]

Proximity sensor Detecting the proximity between Turning off the phone screen during calls.

the front of the phone and any
obstacle, such as a human face.
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153 Articles Retrieved

Page 20
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During Data Extraction

35 Articles Included

Figure 1.

PRISMA Diagram of the Literature Review Process
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Figure 2.
Domains of the reviewed papers.
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Figure 3.
Reviewed papers by year of publication (Note: January 2017 is merged with 2016).
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Table 1

Queries performed in four research databases, results returned, and papers retained.

Page 23

Accelerometer OR microphone OR “global positioning
system”) and (smartphone or “Mobile phone” or iphone OR
android OR “mobile sensor”) AND (health\" OR wellbeing
OR medicine OR hospital OR clinic OR nursing))

Database Query Results returned | Unique papers retained
ACM Digital Library - +(health™ wellbeing medicine hospital clinic nursing) + 1008 11
Association for Computing | (mobile smartphone iphone android) +(detect”™ sensing sensor
Machinery GPS Accelerometer microphone “global positioning
system”)
MEDLINE (PubMed) (detector OR detection OR sensing OR sensor OR GPS OR 1366 14
Accelerometer OR microphone OR “global positioning
system”) and (smartphone or “Mobile phone” or iphone OR
android OR “mobile sensor™)
Web of Science ((detector OR detection OR sensing OR sensor OR GPS OR 1318 10
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Table 6

Sensors used in reviewed studies.

Page 30

Physical Sensor

Papers

Device Analytics

Papers

Accelerometer

[29, 31-38, 40, 43-45, 47, 49-51, 53-55, 59-63]

Call logs

[29-34, 42, 44, 49, 58, 59, 61-63]

GPS

[31, 33-36, 38, 39, 41, 42, 44-46, 48, 52, 54-58, 61-63]

Device activity

[30-32, 34, 35, 40, 50, 57, 59, 61, 62]

Light sensor

[29, 33, 35, 36, 38, 40, 50, 59, 62, 63]

SMS patterns

[29, 30, 32-34, 49, 58, 59, 61-63]

Microphone [33, 35, 36, 40, 44, 50, 59, 62, 63] Application usage | [30, 32, 42, 48, 50, 59, 62, 63]
Bluetooth [36, 38, 42, 63] Browser history [30]

Antenna [34, 39] Calendar [61]

Proximity sensor | [31, 50]

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Cornet and Holden Page 31

Table 7

Research opportunities and related informatics methods.

Health and Wellbeing

« Extension of smartphone-based passive sensing to new health and wellbeing domains, such as caregiving (e.g., a notification sent when
somebody wakes up).

« Testing the integration of passive sensing into clinical care, care coordination, and telehealth.

« Studies of passive sensing for population health management and public health.

« Studies of passive sensing in the context of precision medicine.

« Controlled trials of efficacy and comparative effectiveness of passive sensing-enabled interventions on health outcomes.

Policy and Privacy

« Understanding privacy and data ownership concerns and preferences among potential end-users of smartphone-based passive sensing.
Specific technology topics for research on privacy include cross-application communication, cross-device communication, and health data
aggregators (e.g., Apple Health).

« Development and testing of new privacy and security protocols as well as strategies for users to set custom privacy and security settings.

« Implementation of a legal framework to address privacy and data ownership in passive sensing on smartphones, especially for sensitive
health domains such as mental health.

« Discussion of a legal framework to address failures in data protection strategies (e.qg., data leak), taking into account consumers, clinicians,
and researchers.

« Research on the effect of concerns about privacy on the acceptance and use of passive sensing technologies.

Analytic Models

« Comparison of personalized and similar-user models with general models across several measured phenomena to assess the relative fitness
of each model.

« Comparison of the same models between devices to see if significant differences exist.

« Focus on higher-level data and clinical interpretations (e.g., bipolar cycles) as the detection of lower-level data (e.g., sleep duration)
matures.

Human-Computer Interaction

« Analysis of cost effectiveness and efficacy of passive sensing on smartphones vs passive sensing with wearables and traditional methods
such as paper- based logging.

« Replication of studies with larger and more diverse samples.

« Combination of passive sensing technologies and other data sources for multiple conditions, using various strategies including pulling
composite data from a third party, such as the operating system or middleware (e.g., [90]).

« Integration with electronic health record (EHR) and personal health record (PHR) products in the contexts of personal health information
management and clinical use of patient-generated data [91].

« Development and testing of clinician-facing interfaces to efficiently and effectively utilize passively-acquired data.

« Longitudinal research on the acceptance and use of passive sensing technology for health, over time (months, years, decades).
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