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Abstract

For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an 

ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as 

occasional parasites or endophytes, but the one lichen–one fungus paradigm has seldom been 

questioned. Here we show that many common lichens are composed of the known ascomycete, the 

photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are 

embedded in the cortex, and their abundance correlates with previously unexplained variations in 

phenotype. Basidiomycete lineages maintain close associations with specific lichen species over 

large geographical distances and have been found on six continents. The structurally important 

lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently 

contain two unrelated fungi.

Most definitions of the lichen symbiosis emphasize its dual nature: the mutualism of a single 

fungus and single photosynthesizing symbiont, occasionally supplemented by a second 

photosynthesizing symbiont in modified structures (1–4). Together, these organisms form 

stratified, often leafy or shrubby body plans (thalli) that resemble none of the symbionts in 

isolation, a feature thought to be unique among symbioses (1). Attempts to synthesize lichen 

thalli from the accepted two components in axenic conditions, however, have seldom 
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produced structures that resemble natural thalli (5, 6). Notably, a critical structural feature of 

stratified lichens, the cortex, typically remains rudimentary in laboratory-generated 

symbioses (5). Recently, it has been suggested that microbial players, especially bacteria, 

may play a role in forming complete, functioning lichen thalli (7). However, although 

culturing and amplicon sequencing have revealed rich communities of microbes (7, 8), 

including other fungi (8–10), no new stably associated symbiotic partners have been found.

The recalcitrance of lichens to form thalli in vitro means that characterizing symbiont gene 

activity (e.g., through transcriptomics) requires an approach that works with natural thalli. 

We used metatranscriptomics to better understand the factors involved in forming two 

macrolichen symbioses, Bryoria fremontii and B. tortuosa. These two species have been 

distinguished for 90 years by the thallus-wide production of the toxic substance vulpinic 

acid in B. tortuosa, causing it to appear yellowish, in contrast to B. fremontii, which is dark 

brown (11). Recent phylogenetic analyses have failed to detect any fixed sequence 

differences between the two species in either the mycobiont (Ascomycota, 

Lecanoromycetes, Bryoria) or the photobiont (Viridiplantae, Trebouxia simplex) when 

considering four and two loci, respectively (12, 13). We hypothesized that differential gene 

expression might account for the increased production of vulpinic acid in B. tortuosa.

We first selected 15 thalli (six from B. fremontii and nine from B. tortuosa, all free from 

visible parasitic infection) from sites across western Montana, USA, for mRNA 

transcriptome sequencing. An initial transcriptome-wide analysis of single nucleotide 

polymorphisms (SNPs) for Ascomycota and Viridiplantae transcript subsets showed no 

correlation between genotype and phenotype in B. fremontii and B. tortuosa, confirming 

previous results (12, 13) (Fig. 1, A and B). Next, we estimated transcript abundances by 

mapping raw reads back to a single, pooled metatranscriptome assembly and binning by 

taxon. Restricting our analyses to Ascomycota and Viridiplantae revealed little differential 

transcript abundance associated with phenotype (Fig. 1, C and E). Taken together, these 

analyses confirm previous conclusions that the two lichen species are nomenclatural 

synonyms (12) but still provide no explanation for the underlying phenotypes (which we 

shall continue to refer to by their species names for convenience). However, by expanding 

the taxonomic range to consider all Fungi, we found 506 contigs with significantly higher 

abundances in vulpinic acid–rich B. tortuosa thalli. A majority of these contigs were 

annotated as Basidiomycota (Fig. 1D). These data suggested that a previously unrecognized 

basidiomycete was present in thalli of both species but was more abundant whenever 

vulpinic acid was present in large amounts.

We next sought to determine whether this uncharacterized basidiomycete was specific to the 

studied Bryoria species or could be found in other lichens. From metatranscriptome contigs 

containing ribosomal RNA (rRNA) basidiomycete sequences, we designed specific primers 

for ribosomal DNA [rDNA; 18S, internal transcribed spacer (ITS), and D1D2 domains of 

28S) to screen lichens growing physically adjacent to Bryoria in Montana forests. Each 

assayed lichen species carried a genetically distinct strain of the basidiomycete, indicating a 

high degree of specificity. Furthermore, we found that Letharia vulpina, a common lichen 

species growing intermixed with Bryoria, maintained basidiomycete genotypes that were 

distinct from those in Bryoria, not only in Montana but also in northern Europe (fig. S1). 
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When assaying for the basidiomycete across the seven main radiations of macrolichens in 

the class Lecanoromycetes, we found related basidiomycete lineages associated with 52 

lichen genera from six continents, including in 42 of 56 sampled genera of the family 

Parmeliaceae (fig. S2). As a whole, these data indicate that basidiomycete fungi are 

ubiquitous and global associates of the world’s most speciose radiation (14) of 

macrolichens.

To place the basidiomycete lineages in a phylogenetic context, we generated a 349-locus 

phylogenomic tree by using gene sequences inferred from our transcriptome data set and 

other available genomes (table S1). This analysis placed the basidiomycete as sister to 

Cystobasidium minutum (class Cystobasidiomycetes, subphylum Pucciniomycotina) with 

high support (Fig. 2A). The only previously known lichen-associated members of 

Cystobasidiomycetes are two species of Cyphobasidium, which is hypothesized to cause 

galls on species of Parmeliaceae (15). When incorporated into a broader sample of published 

cystobasidiomycete rDNA sequence data (16–18), the majority of our lichen-derived 

sequences form a strongly supported monophyletic clade with Cyphobasidium (Fig. 2B). 

Using current classification criteria (18), the lichen-associated lineages would include 

numerous new family-level lineages, and we recognize this set of subclades as the new order 

Cyphobasidiales (19). Applying a relaxed molecular clock to our phylogenomic tree (Fig. 

2A) shows the Cystobasidium-Cyphobasidium split occurring around the same time as the 

origin of three of the main groups of lecanoromycete macrolichens in which 

Cyphobasidiales species occur, suggesting a long, shared evolutionary history. Two fossil 

calibrations place this split at around 200 million years before the present (figs. S4 and S5).

Our initial microscopic imaging failed to reveal any cells that we could assign to 

Basidiomycetes with certainty. Furthermore, attempts to culture the basidiomycete from 

fresh thalli were unsuccessful. We therefore developed protocols for fluorescent in situ 

hybridization (FISH) targeting specific ascomycete and cystobasidiomycete rRNA 

sequences. Cystobasidiomycete-specific FISH probes unambiguously hybridized round, ~3- 

to 4-μm-diameter cells embedded in the peripheral cortex of both B. fremontii and B. 
tortuosa (Fig. 3 and movie S1). Consistent with the transcript abundance data, these cells 

were more abundant in thalli of B. tortuosa (Fig. 3), where they were embedded in 

secondary metabolite residues (movie S1). Imaging of other lichen species likewise revealed 

cells of similar morphology in the peripheral cortex (fig. S6). Composite three-dimensional 

FISH images from B. capillaris show the cells occurring in a zone exterior to the 

lecanoromycete (Fig. 4 and movie S2) and embedded in polysaccharides (Fig. 4C), 

explaining why these cells are not observed in scanning electron microscopy (Fig. 4A). In 

some species, such as L. vulpina, the abundance of hybridized living cells was low, but 

selective removal of the polysaccharide layer through washing revealed high densities of 

collapsed, apparently dead cells within the cortex (fig. S7). These dead cells may explain the 

paucity of the FISH signal in some experiments. The mononucleate single cells (fig. S8C), 

evidence of budding, and absence of hyphae or clamp connections are consistent with an 

anamorphic or yeast state in Cystobasidiomycetes. FISH imaging of Cyphobasidium galls 

on the lichen Hypogymnia physodes, obtained from Norway, confirmed the link to the 

sexual or teleomorphic state (fig. S8), which appears to develop rarely (15). These data 
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suggest that the gall-inducing form of Cyphobasidium completes its life cycle entirely within 

lichens.

It is remarkable that Cyphobasidium yeasts have evaded detection in lichens until now, 

despite decades of molecular and microscopic studies of the Parmeliaceae (20–22). It seems 

likely that the failure to detect Cyphobasidium in both Sanger and amplicon sequencing 

studies (8) is due to multi-template polymerase chain reaction bias. The most widespread 

clade of Cyphobasidium possesses a 595–base pair group I intron inserted downstream of 

the primer binding site ITS1F, doubling the template length of ITS, a popular fungal barcode 

(23). This, combined with low background abundance, can push a template below detection 

thresholds (24). Also, we cannot rule out that Cyphobasidium yeasts have actually been 

sequenced and discarded as presumed contaminants.

The lichen cortex layer has long been considered to be key for structural stabilization of 

macrolichens, as well as for water and nutrient transfer into the thallus interior (6, 25). Most 

macrolichens possess a basic two-layer cortex scheme consisting of conglutinated internal 

hyphae and a thin, polysaccharide-rich peripheral layer (25). However, the internal cellular 

structure is not uniform across lichens (26), and the composition of extracellular 

polysaccharides is poorly known (27). In Bryoria, the layer in which Cyphobasidium yeasts 

occur has not been recognized as distinct from the cortex (11), although in other parmelioid 

lichens, a seemingly homologous layer has sometimes been referred to as the “epicortex” 

(20). The discovery of ubiquitous yeasts embedded in the cortex raises the prospect that 

more than one fungus may be involved in its construction, and it could explain why lichens 

synthesized in vitro from axenically grown ascomycete and algal cultures develop only 

rudimentary cortex layers (5).

In many lichens, the peripheral cortex layer in which Cyphobasidium yeasts are embedded is 

enriched with specific secondary metabolites (25), the production of which often does not 

correlate with the lecanoromycete phylogeny (28). The assumption that these substances are 

exclusively synthesized by the lecanoromycete must now be considered untested. In B. 
fremontii, differential transcript and cell abundance data, along with physical adjacency to 

crystalline residues, implicate Cyphobasidium in the production of vulpinic acid, either 

directly or by inducing its synthesis by the lecanoromycete. Confirming a link by using 

transcriptome or genome data is impossible until the enzymatic synthesis pathway of 

vulpinic acid is described. However, related pulvinic acid derivatives are synthesized by 

other members of Basidiomycota (29).

The assumption that stratified lichens are constructed by a single fungus with differentiated 

cell types is so central to the definition of the lichen symbiosis that it has been codified into 

lichen nomenclature (30). This definition has brought order to the field, but may also have 

constrained it by forcing untested assumptions about the true nature of the symbiosis. We 

suggest that the discovery of Cyphobasidium yeasts should change expectations about the 

potential diversity and ubiquity of organisms involved in one of the oldest known and most 

recognizable symbioses in science.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Genome-wide divergence and transcript abundance of fungi and algae, based on symbiont 
subsets extracted from wild Bryoria metatranscriptomes.
(A and B) Unrooted maximum likelihood topologies for (A) the Ascomycota member 

(lecanoromycete) and (B) the Viridiplantae member (alga) within the lichen pair B. 
fremontii and B. tortuosa, based on 30,001 and 25,788 SNPs, respectively. Numbers refer to 

metatranscriptome sample IDs (table S2). Scale bars indicate the average number of 

substitutions per site. (C to E) Logarithm of the fold change (logFC) between vulpinic acid–

deficient (B. fremontii) and vulpinic acid–rich (B. tortuosa) phenotypes in 15 Bryoria 
metatranscriptomes, plotted against transcript abundance (logCPM, logarithm of counts per 

million reads). Only transcripts found in all 15 samples were included. Ascomycota 

transcripts only are shown in (C). All fungal transcripts are shown in (D), with taxonomic 

assignments superimposed; a plot with statistically significant transcript differential 

abundance is shown as an inset. Viridiplantae transcripts are shown in (E). Red dots indicate 

a log fold change with P < 0.05 in (C), (E) (highlighted with arrows), and the inset of (D).
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Fig. 2. Placement of Cyphobasidiales members and their diversity within lichens.
(A) Maximum likelihood phylogenomic tree based on 39 fungal proteomes and 349 single-

copy orthologous loci. Dating based on a 58-locus subsample shows relative splits between 

Cyphobasidiales and Cystobasidium minutum and splits leading to the lecanoromycete 

genera Xanthoria, Cladonia, and Bryoria (colored bars indicate 95% confidence intervals; 

fungi occurring in lichens are shown in green). (B) Maximum likelihood rDNA phylogeny 

of the class Cystobasidiomycetes, with images of representative lichen species from which 

sequences were obtained in each clade; thick branches indicate bootstrap support >70%. 

Shaded triangles are scaled to the earliest branch splits of underlying sequence divergence in 

each clade. Full versions of the trees are shown in fig. S3.
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Fig. 3. Differential abundance of Cyphobasidiales yeasts in B. fremontii and B. tortuosa.
(A) B. fremontii, with (B) few FISH-hybridized live yeast cells at the level of the cortex. (C) 

B. tortuosa, with (D) abundant FISH-hybridized cortical yeast cells (scale bars, 20 μm).
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Fig. 4. Fluorescent cell imaging of dual fungal elements in lichen thalli.
(A) Scanning electron microscopy image of a thallus filament of B. capillaris (scale bar, 200 

μm). (B) FISH hybridization of B. capillaris thallus, showing Cyphobasidiales yeasts (green) 

and the lecanoromycete (blue) with algal chlorophyll A autofluorescence (red). The volume 

within the two vertical lines is visualized on the right; the unclipped frontal view is shown at 

the top. Movie S2 shows an animation of the three-dimensional ~100-μm z-stack. (C) Detail 

of yeast cells (scale bar, 5 μm).
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