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Abstract

Administrative claims and electronic health records are valuable resources for evaluating

pharmaceutical effects during pregnancy. However, direct measures of gestational age are

generally not available. Establishing a reliable approach to infer the duration and outcome of

a pregnancy could improve pharmacovigilance activities. We developed and applied an

algorithm to define pregnancy episodes in four observational databases: three US-based

claims databases: Truven MarketScan® Commercial Claims and Encounters (CCAE), Tru-

ven MarketScan® Multi-state Medicaid (MDCD), and the Optum ClinFormatics® (Optum)

database and one non-US database, the United Kingdom (UK) based Clinical Practice

Research Datalink (CPRD). Pregnancy outcomes were classified as live births, stillbirths,

abortions and ectopic pregnancies. Start dates were estimated using a derived hierarchy of

available pregnancy markers, including records such as last menstrual period and nuchal

ultrasound dates. Validation included clinical adjudication of 700 electronic Optum and

CPRD pregnancy episode profiles to assess the operating characteristics of the algorithm,

and a comparison of the algorithm’s Optum pregnancy start estimates to starts based on

dates of assisted conception procedures. Distributions of pregnancy outcome types were

similar across all four data sources and pregnancy episode lengths found were as expected

for all outcomes, excepting term lengths in episodes that used amenorrhea and urine preg-

nancy tests for start estimation. Validation survey results found highest agreement between

reviewer chosen and algorithm operating characteristics for questions assessing pregnancy

status and accuracy of outcome category with 99–100% agreement for Optum and CPRD.

Outcome date agreement within seven days in either direction ranged from 95–100%, while

start date agreement within seven days in either direction ranged from 90–97%. In Optum

validation sensitivity analysis, a total of 73% of algorithm estimated starts for live births were

in agreement with fertility procedure estimated starts within two weeks in either direction;

ectopic pregnancy 77%, stillbirth 47%, and abortion 36%. An algorithm to infer live birth and

ectopic pregnancy episodes and outcomes can be applied to multiple observational data-

bases with acceptable accuracy for further epidemiologic research. Less accuracy was

found for start date estimations in stillbirth and abortion outcomes in our sensitivity analysis,

which may be expected given the nature of the outcomes.
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Introduction

Administrative claims databases and electronic health records are valuable resources for evalu-

ating effects of exposures, including prescription drug exposures during pregnancy, on preg-

nancy outcomes. Comprehensive drug exposure safety information for pregnant populations

is generally unavailable when a drug first comes to market as randomized clinical trials rou-

tinely exclude pregnant women from study. Pregnancy registries, usually established when a

medication is marketed, are expensive to execute. They capture relatively modest numbers of

pregnancies compared to administrative claims databases and electronic health records and

are subject to recall bias, especially if the exposure data are collected after delivery.

The use of claims and electronic health record data in the study of pregnancy exposures has

several advantages including capture of prescription dispensing data, longitudinal follow-up

from drug exposure through pregnancy outcome, potential mother-infant linkage, and large

enough samples to study rare pregnancy outcomes. Accurate prescription dispensing, preg-

nancy episode start dates, and pregnancy episode end dates are necessary to avoid drug expo-

sure misclassification. However, direct measures of gestational age are usually not available in

claims databases and electronic health records. This creates challenges when estimating preg-

nancy start dates and understanding the potential impact of drug exposure on a fetus at a

given gestational age.

Prior attempts have been made to infer pregnancy episodes in observational data [1–10]. A

few focused exclusively on live births, excluding other birth outcomes such as abortions (6, 7,

10). Some estimated pregnancy start by subtracting an estimated gestational age from the preg-

nancy outcome date [2, 6, 9, 10], while others used early pregnancy markers or combined both

methods to infer start [1, 3–5, 7, 8]. Early pregnancy markers such as the nuchal ultrasound

procedure can be used to infer pregnancy start based on clinical care guidelines (recom-

mended gestational age for procedure can be subtracted from procedure date to infer a preg-

nancy start). A few efforts assigned start of pregnancy to first pregnancy care record instead of

inferred gestational age of infant [3, 4, 8]. This approach would generally estimate a later preg-

nancy start as clinical care is not sought until a few weeks after pregnancy begins. All methods

of estimating gestational age have some margin of error. Relying on only one method runs the

risks of inaccuracies of that particular method. For example, use of last menstrual period

(LMP) could be biased because it is not accurately remembered by the pregnant woman or is

not recorded. Because some proxies are more accurate than others, a hierarchical approach

that utilizes the collective predictive accuracy of each method could be beneficial when one has

multiple sources to estimate gestational age. Also, it is unclear if any of the above algorithms

could be applied to other data sources, as none of the prior published work evaluated perfor-

mance across multiple disparate databases. Therefore, it is advantageous to develop a single

validated algorithm against a common data model that can be applied to multiple data sources

so exposures and outcomes within different populations can be explored simultaneously. A

better case for generalizability of study results can also be made when multiple populations are

included in an analysis.

The objective of this study was to create a generic algorithm that could infer pregnancy epi-

sodes and a variety of outcomes (including live births, stillbirths, abortions and ectopic preg-

nancies) across several disparate observational data sources. We sought to incorporate all

appropriate pregnancy clinical care records into the pregnancy episode start estimation, rather

than simply subtracting an estimated gestational age from the pregnancy outcome date. The

algorithm was validated in three US-based claims databases and one UK primary care data-

base. The algorithm was developed in the Observational Medical Outcomes Partnership

(OMOP) Common Data Model [11] and could be applied to any observational data source
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which has been converted to the above data model. It is publicly available at https://github.

com/OHDSI/PhenotypeLibrary for use by any organization using this open-source commu-

nity standard.

Methods

Pregnancy episode algorithm details

Data sources. We applied the algorithm to four observational, de-identified data sources

(descriptions in Table 1).

Table 1. Observational data source descriptions.

Database Category Number of

patient lives

(millions)

Dates

represented

Additional details

Truven MarketScan1

Commercial Claims and

Encounters (CCAE)

Employer-based US

administrative health

claims

~119 1/1/2000-12/

31/2013

CCAE represents data from individuals enrolled in US

employer-sponsored insurance health plans, including fee-for-

service, preferred provider organizations, and capitated health

plans. The data includes adjudicated health insurance claims

(inpatient, outpatient, and outpatient pharmacy) as well as

enrollment data. Additionally, laboratory tests are captured for a

subset of the covered lives. Source data dictionaries include

National Drug Codes (NDC) for prescriptions, CPT-4, HCPCs,

ICD-9-CM for procedures, ICD-9-CM for diagnoses, and

LOINC for lab tests.

Truven MarketScan1 Multi-

state Medicaid (MDCD)

US Medicaid data from

enrollees in multiple states

~17 1/1/2006-12/

31/2013

MDCD contains adjudicated US health insurance claims for

Medicaid enrollees from multiple states and includes hospital

discharge diagnoses, outpatient diagnoses and procedures,

outpatient pharmacy claims, and ethnicity and Medicare

eligibility. Members maintain the same identifier even if they

leave the system for a brief period. The dataset lacks lab data.

Source data dictionaries include National Drug Codes (NDC)

for prescriptions, CPT-4, HCPCs, ICD-9-CM for procedures,

and ICD-9-CM for diagnoses.

Optum ClinFormatics1

(Optum)

US administrative health

claims (United Healthcare)

~41 1/1/2006-12/

31/2013

Optum is an adjudicated administrative health claims database

for members with private health insurance, who are fully insured

in commercial plans or in administrative services only (ASOs),

Legacy Medicare Choice Lives (prior to January 2006), and

Medicare Advantage (Medicare Advantage Prescription Drug

coverage starting January 2006). The population is primarily

representative of US commercial claims patients (0–65 years old)

with some Medicare (65+ years old); ages are capped at 90 years.

It includes data captured from administrative claims processed

from inpatient and outpatient medical services and prescriptions

as dispensed. The data also contain selected laboratory test

results (those sent to a contracted thirds-party laboratory service

provider) for a non-random sample of the population. Source

data dictionaries include National Drug Codes (NDC) for

prescriptions, CPT-4, HCPCs, ICD-9-CM for procedures, ICD-

9-CM for diagnoses and LOINC for lab tests.

Clinical Practice Research

Datalink (CPRD)

UK based general practice

electronic health record

~11.6 1987-6/30/

2013

CPRD is a governmental, not-for-profit research service, jointly

funded by the NHS National Institute for Health Research

(NIHR) and the MHRA, a part of the Department of Health,

UK. CPRD consists of data collected from UK primary care for

all ages. This includes clinical events, referrals, and lifestyle

information gathered from primary care practices, along with

medications as prescribed. Hospital, outpatient, and midwife

data are included if primary care physician transcribes patient

notes received from those facilities. Compliance varies by

practice. Source data dictionaries include Gemscript for

medications and Read for diagnoses, procedures, and additional

types of clinical data.

https://doi.org/10.1371/journal.pone.0192033.t001
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All databases are licensed by Janssen Research and Development, LLC and were trans-

formed to the OMOP Common Data Model v4 which has been described elsewhere [12, 13].

This study is based in part on data from the Clinical Practice Research Datalink obtained

under licence from the UK Medicines and Healthcare products Regulatory Agency (MHRA).

The protocol for this study (reference # 15_064) is provided with the submission (S1 ISAC)

and was approved by the Independent Scientific Advisory Committee (ISAC). This study used

only anonymized data in the Optum, CCAE, and MDCD databases without linkage to other

databases or pursuit of further details through, e.g., chart reviews. The New England Institu-

tional Review Board (IRB) has determined that use of databases in such studies does not

involve human subjects and is therefore exempt from IRB approval.

Inclusion/exclusion criteria. Pregnancy episodes were included in the final cohort if the

patient was female, between 12 and 55 years of age and had continuous enrollment during

their pregnancy episode. Women were allowed to have multiple pregnancy episodes. Any out-

come that did not have at least two associated pregnancy markers was excluded.

Code set for pregnancy markers and outcomes. The OMOP Common Data Model

allows for standardization of clinical structure and content across all databases. All content

(conditions, procedures and observations) in the OMOP Common Data Model are referred to

as concepts. The OMOP Standard Vocabularies are used to understand and make use of these

concepts [11, 14]. Native source codes are mapped to the dictionary that is considered stan-

dard for that domain (conditions, procedures, etc.) in the Standard Vocabularies. For instance,

Read codes from CPRD and International Classification of Diseases, 9th Revision, Clinical

Modification (ICD-9-CM) diagnosis codes from US claims databases are mapped to Systema-

tized Nomenclature of Medicine—Clinical Terms (SNOMED-CT) concepts.

For this study, concept sets for pregnancy markers used to infer outcomes and pregnancy

starts (S1 and S2 Tables) were developed using the OMOP Standard Vocabularies. Records

referring to pregnancy outcomes and markers were identified from CPRD and Optum. CCAE

and MDCR use the same source dictionaries as Optum. Pregnancy procedures were identified

by ICD-9-CM, Current Procedural Terminology, 4th Edition (CPT-4), Healthcare Common

Procedure Coding System (HCPCS), and SNOMED-CT concepts; conditions were identified

by SNOMED-CT concepts; and observations were identified by Logical Observation Identifi-

ers Names and Codes (LOINC) concepts. Observations in CPRD also included data from the

‘additional clinical details’ file.

Pregnancy concepts with 100 or more records in CPRD or Optum were categorized into

the following outcome classification categories: live birth, stillbirth, abortion (spontaneous and

induced), delivery, ectopic pregnancy, methotrexate exposure, surgery specific to ectopic preg-

nancy, and concepts highly associated with ectopic pregnancy per a disproportionality analy-

sis. The disproportionality analysis was conducted to identify additional codes that were

associated with ectopic pregnancy in CPRD, as it was common for only one ectopic pregnancy

code to appear in general practice data and we required two for a valid episode in the algo-

rithm. For the disproportionality analysis, prevalence of SNOMED-CT codes was assessed for

females age 15 to 55 with a full year of observation in 2012 and prevalence of SNOMED-CT

codes was also assessed during any pregnancy episode in CPRD up to 60 days after an ectopic

pregnancy diagnosis. A curated list of concepts highly associated with ectopic pregnancy was

derived from prevalence ratio higher than 5 in the ectopic pregnancy population vs. the 2012

female population. Pregnancy concepts in CPRD or Optum were used to infer pregnancy start

for the following categories: premature birth, gestational age in weeks, last menstrual period,

pregnancy confirmation, antenatal visit, pregnancy complication codes, threatened abortion,

alpha fetoprotein screening tests, nuchal translucency ultrasound, fertility procedures that date

conception, amenorrhea, contraceptive drug treatment, and urine pregnancy tests.
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Outcome assessment and classification. The definition of a pregnancy episode for this

work is the duration of time from the estimated last menstrual period date (pregnancy start)

and the date of the pregnancy outcome (pregnancy end). The algorithm was devised to infer

pregnancy start and end dates and outcome for each episode using observations in the data

through a series of sequential steps. The algorithm in pseudocode form (based on SQL lan-

guage used in algorithm) is shown in S1 and S2 Figs. Additional methods details are also pro-

vided in S1 Appendix.

In the first step of the algorithm, each pregnancy episode is classified into a pregnancy out-

come. An outcome assessment hierarchy was applied, similar to that used in the studies by

Mikolajcyzk et al [8] and Hornbrook et al [1], to classify episodes into outcome classes in

sequential order. Hornbrook et al [1] found that live births and stillbirths in US claims data

identified via ICD-9-CM diagnosis codes are most reliable so these are first in our hierarchy;

procedure codes identifying abortions and deliveries were considered less reliable. Abortion

procedure and diagnosis codes do not always provide guidance as to whether the abortion was

spontaneous or induced so only one abortion category was created. Outcomes were assessed

in this order:

• Live birth (at least one)

• Stillbirth

• Ectopic pregnancy

• Abortion

• Delivery record only

Independent outcome assessment per patient and classification steps were conducted as fol-

lows: starting with the first live birth record for a patient, the second live birth record was

assessed to see if it occurred after the necessary time interval indicating a clinically plausible

second pregnancy (S3 Table). S3 Table contains the minimum required duration between

successive outcomes. These time windows depend on the specific outcomes under consider-

ation and were adapted from the Hornbrook et al. [1] algorithm and clinically reviewed by two

physicians (DF, AF), one of whom (AF) is an obstetrician. Consecutive live birth concepts

occurring with more than the minimum required duration between them were classified as

independent pregnancy outcomes.

Next all stillbirth records for each patient were assessed in order of occurrence. Each still-

birth record was compared to all live births and stillbirths already classified as outcomes for

the patient, and was retained if it occurred outside the required window(s) of time between

outcomes. If an antenatal visit or pregnancy confirmation record was found during the 42

day period after the stillbirth record date classified above then that stillbirth outcome did not

become an independent pregnancy episode.

Next all ectopic pregnancy records for each patient were assessed in order of occurrence.

Each ectopic pregnancy record was compared to all previously classified outcomes for the

patient, and was retained if it occurred outside the required window(s) of time between out-

comes. Ectopic pregnancy outcomes were also required to have during the subsequent 14 day

period after the ectopic pregnancy record date: a methotrexate exposure, an ectopic preg-

nancy-related procedure, or a concept identified as highly associated with ectopic pregnancy

from the disproportionality analysis. The ectopic pregnancy did not become an independent

pregnancy episode if an antenatal visit or pregnancy confirmation record was found during

the 42 day period after the ectopic pregnancy record date. Ectopic pregnancy outcome dates
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were reassigned to the last treatment date (methotrexate exposure or ectopic pregnancy-

related procedure) in the 2 week period following the ectopic pregnancy record.

Next all abortion records for each patient were assessed in order of occurrence. Each abor-

tion record was compared to all previously classified outcomes for the patient, and was

retained if it occurred outside the required window(s) of time between outcomes. The abortion

outcome did not become an independent pregnancy episode if an antenatal visit or pregnancy

confirmation record was found during the 42 day period following the abortion record date.

Abortion outcome dates were reassigned to the last abortion date in the 2 week period follow-

ing the abortion record.

Lastly, delivery records for each patient were assessed in order of occurrence. Each delivery

record was compared to all previously classified outcomes for a patient, and was retained if it

occurred outside the required window(s) of time between outcomes. If an antenatal visit or

pregnancy confirmation record was found during the 42 day period following the delivery

date then that delivery outcome did not become an independent pregnancy episode. Delivery

outcomes were re-classified as live births.

Start date estimation. In the second step, pregnancy episode start dates were estimated.

For operating principles of the second step of the algorithm in pseudocode form see S2 Fig. In

S4 Table the following outcome-specific term windows are defined:

• Maximum pregnancy term—amount of time to search back from the outcome for all preg-

nancy markers that can be used to estimate start date, i.e. 301 days for live births.

• Minimum pregnancy term—Shortest possible gestational period for each outcome, i.e. 161

days for live births.

• ‘Retry’ period: number of days initiation of a subsequent pregnancy episode is clinically pos-

sible after a pregnancy outcome.

All time windows were determined based on estimates in the literature specific to each out-

come and through clinical review (DF, AF). Pregnancy start markers were considered for an

episode if they created a pregnancy term length that was greater than the minimum term

length and less than the maximum term length from S4 Table, and did not occur prior to the

first occurring prior outcome date plus the retry period for that outcome.

A hierarchy of available pregnancy markers was chosen that reflects their potential accuracy

to estimate start of the pregnancy episode. Pregnancy markers that directly provide gestational

age such as last menstrual period (CPRD only), gestational age in weeks and fertility proce-

dures that date conception were placed at the top of the hierarchy. Remaining markers consid-

ered for the hierarchy were screening tests administered during narrow gestational age

windows such as nuchal ultrasounds, markers that indicate possible first antenatal visit for the

pregnancy such as amenorrhea, and outcome-specific estimates. In order to select and place

these remaining possible pregnancy start markers in the hierarchy, their start estimates were

compared to start estimates from assisted conception procedures by pregnancy outcome in the

Optum database. Among pregnancy episodes with assisted conception, the percentages of pos-

sible additional markers that were within two weeks prior or after the fertility procedure-based

start date were calculated. This information was used to determine which markers were most

proximal to the fertility procedure date in order to place them in the hierarchy for estimating

starts in pregnancies without fertility procedures. The same analysis was done with nuchal

ultrasounds substituted for assisted conception procedures. See S5 and S6 Tables for results.

We inferred the pregnancy episode start dates by identifying the first observed event

amongst the pregnancy start marker hierarchy, as described below. If no pregnancy start

markers were available to estimate pregnancy start, we used an outcome-specific estimate.
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After the highest ranking observed marker was identified the specified number of days was

subtracted from the start marker date:

1. Last menstrual period date

2. Gestational age record date minus gestational age in days

3. Fertility procedure which dates conception record date minus 13 days

4. Nuchal translucency ultrasound record date minus 89 days

5. Alpha fetoprotein test record date minus 123 days

6. Amenorrhea record date minus 55 days

7. Urine pregnancy record date minus 55 days

8. Outcome-specific estimates (average gestational age estimate), adapted from Hornbrook

et al. [1] and Margulis et al. [7]: The episode was classified as preterm if an associated pre-

term marker was found, otherwise it was classified as full-term. From S7 Table, the out-

come-specific estimate was chosen based on outcome and term and subtracted from the

outcome date to obtain a pregnancy start date. If the immediately prior outcome date plus

retry period was greater than the estimated start, then pregnancy start became the prior out-

come date plus the retry period.

We adjusted the final pregnancy start date estimated with amenorrhea, urine pregnancy and

average gestational age estimates with contraceptive drug exposure and pregnancy confirma-

tion markers if present; see S1 Appendix ‘Start Date Estimation’ section for additional details.

Illustrative patient example. Fig 1 contains an illustration of the steps performed by the

pregnancy episode algorithm for a sample patient resulting in three classified pregnancy epi-

sodes and estimated start dates.

Construction of pregnancy episodes

All pregnancy episodes for the above-mentioned data sources were constructed. For each data

source for all pregnancy episodes, we generated outcome-type proportions, distribution of

start date estimation method used per pregnancy outcome, and distribution of length of preg-

nancy episodes and stratified each by start calculation method for live births.

Validation. Pregnancy episode validation efforts included review of 700 pregnancy epi-

sode profiles comprised of 50 CPRD and 50 Optum randomly drawn episodes for all 6 preg-

nancy outcomes. An additional 50 profiles of live birth episodes for each database were also

reviewed. The reviewers included a team of epidemiologists familiar with observational data

(AM, PR, DF, DG, YW, JP, HP); three out of seven were not involved in creation of the preg-

nancy episode algorithm (YW, JP, HP). CPRD and Optum were validated with electronic

patient profiles in order to assess the algorithm on both an electronic medical record database

(CPRD) and an administrative claims database (Optum). Optum was chosen from the three

administrative claims databases due to the size of the database and its generalizability. Like

Optum, CCAE is a US employer-based administrative claims database with the same source

dictionaries. MDCD uses the same source dictionaries as Optum as well, but contains a differ-

ent population. To limit the resource burden of patient profile review and validation efforts,

we chose all patient profiles for review from the two most disparate databases for patient

profile validation, Optum and CPRD, a claims database and an EHR database, respectively.

Optum only was chosen for assisted conception validation because assisted conception records

are not consistently entered in the CPRD.
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The data records that populated the pregnancy episode profiles originated from the CPRD

or Optum databases and present a time-ordered snapshot of clinical care received around the

time of the pregnancy episode. No medical chart review or abstraction was performed for this

validation. All data records (conditions, procedures, observations and drug exposures) for

each patient were included in electronic patient profiles ordered by days from the inferred

pregnancy episode start, along with the algorithm-derived pregnancy episode start and out-

come date, outcome chosen for the episode and possible start dates identified by the algorithm

from the hierarchy above. To assess operating characteristics of the algorithm, reviewers were

asked to answer six survey questions for each pregnancy episode which assessed different oper-

ating characteristics of the algorithm:

1. Was the patient pregnant during this episode?

2. Is the outcome classified correctly?

3. If the outcome is not classified correctly what should it be?

4. Is the outcome date assigned correctly?

5. If no, how many days after the algorithm inferred start should the outcome occur?

Fig 1. Illustration of steps performed by pregnancy episode algorithm for sample patient with three classified pregnancy episodes and estimated start

dates. LB: Live birth; SB: Stillbirth; ECT: Ectopic pregnancy; SA: Abortion; PCONF: Pregnancy confirmation marker; ULS: Nuchal ultrasound; AMEN:

Amenorrhea record.

https://doi.org/10.1371/journal.pone.0192033.g001
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6. What is your estimated start of pregnancy (days from algorithm inferred start, 0 means you

agree with inferred start)

For each data source, proportions of episodes which reviewers believed represented a preg-

nancy, had the correct outcome, and had the correct outcome date were generated by out-

come. Reviewer-preferred start date within seven days before or after the algorithm calculated

start, and reviewer preferred outcome date within seven days before or after the algorithm cal-

culated outcome date were also generated by outcome. The distribution of reviewer preferred

outcomes for incorrect algorithm outcomes, the distribution of reviewer estimated pregnancy

start difference in days from the algorithm start (< -14, -8 thru -14, -1 thru -7, 0, 1 through 7, 8

through 14 and> 14 days) and the distribution of the reviewer preferred outcome date differ-

ence in days from the algorithm outcome date (< -14, -8 through -14, -1 through -7, 0, 1

through 7, 8 through 14 and> 14 days) were determined, all stratified by outcome, data source

and method used for pregnancy start calculation as applicable.

A sensitivity analysis was performed to validate the algorithm start estimation against assis-

ted conception fertility procedures that in theory accurately date conception for all outcomes.

Within the population of Optum pregnancy episodes with these procedures, we compared

pregnancy starts calculated using fertility procedures to start estimation using the next highest

marker in our hierarchy. Optum was chosen for this analysis because assisted conception pro-

cedures are not entered consistently in the CPRD, and for the same reasons stated above the

Optum results were intended to be generalized to CCAE and MDCD.

Results

Characterization of pregnancy episodes

A total of 885,608 pregnancy episodes were found in CPRD, 1,087,626 in Optum, 3,278,013 in

CCAE and 518,112 in MDCD. Distributions of pregnancy outcome types were similar across all

data sources: live birth proportions were 71.59%, 72.84%, 72.85% and 79.83%, abortion 27.16%,

25.59%, 25.49% and 18.05%, stillbirth 0.45%, 0.47%, 0.45% and 0.78% and ectopic pregnancies

0.79%, 1.10%, 1.21% and 1.35% in CPRD, Optum, CCAE and MDCD, respectively.

In Fig 2 for CPRD, 63.4% of live birth episodes used a last menstrual period, gestational age

record or fertility procedure record for start estimation; while 31.1% estimated start using the

average gestational age estimate. A total of 51.4% of live births in Optum used the date of an

alpha fetoprotein test or nuchal ultrasound to estimate start date; 17.9% used an amenorrhea

or urine pregnancy test record; 28.1% used the average gestational age estimate.

Optum and Truven median pregnancy episode length of 277 was attained for live births

using nuchal ultrasound dates for start estimation; CPRD had median length of 282. Truven

median episode length of 111 was attained for abortions using nuchal ultrasound dates for

start estimation; Optum 113; CPRD 102. Truven median episode length of 58 was attained for

ectopic pregnancies using nuchal ultrasound dates for start estimation; Optum 63. Truven

median episode length of 187 was attained for stillbirths using nuchal ultrasound dates for

start estimation; Optum 185; CPRD 207 (S8 Table).

In Fig 3 for Optum, pregnancy episode lengths calculated with alpha fetoprotein test mark-

ers were distributed as follows: 270–279 days (27.1%); and 280–289 days (30.4%). In CPRD,

pregnancy episode lengths calculated with last menstrual period markers were distributed as

follows: 270–279 days (25.3%); and 280–289 days (33.7%). Amenorrhea and urine pregnancy

markers created more episodes longer than > = 290 days; for instance, in Optum, 24.7% of

episodes were 290–299 days long using amenorrhea records to estimate start of pregnancy,

while 6.7% of episodes were 290–299 days long when nuchal ultrasound dates were used.
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Validation results

Performance was rated for six different operating characteristics of the algorithm from survey

question responses generated by electronic profile review of the pregnancy episodes. The sur-

vey questions 1) Was the patient pregnant during this episode? and 2) Is the outcome classified

correctly? were answered affirmatively for 99–100% of all outcome and database categories.

Survey question 3) If the outcome is not classified correctly what should it be? was only

answered affirmatively for one Optum episode. The algorithm classified this episode as an

abortion while the reviewer classified the episode as an ectopic pregnancy outcome. Remain-

ing survey question results can be found in Fig 4.

For all outcomes, the proportion of episodes in Optum with 0 days difference between

reviewer estimated starts and algorithm starts were: using alpha fetoprotein screening test

(92.9%), amenorrhea diagnosis (92.2%), average gestational age estimates (90.2%), nuchal

ultrasound (95.9%) and urine pregnancy test (97.4%) (Fig 5). In CPRD, the last menstrual

period pregnancy marker performed best when compared to reviewer estimated pregnancy

starts, with 100% algorithm-reviewer agreement with 0 days difference. The average gesta-

tional age estimate method yielded 89% pregnancy episodes with 0 days difference and gesta-

tional age records in weeks yielded 88.2% with 0 days difference (Fig 6).

Table 2 indicates that for all CPRD outcomes, the algorithm chose the outcome date on the

same day as the reviewer preferred outcome date 96.8% of the time. In Optum for all out-

comes, the algorithm chose the outcome date on the same day as the reviewer preferred out-

come date 97.1% of the time. Table 3 shows results from the Optum validation sensitivity

Fig 2. Distribution of pregnancy algorithm start estimation method groups for all pregnancy episodes from each data source (CPRD, Optum, Truven

CCAE, and Truven MDCD) by outcome (abortion, ectopic pregnancy, live birth, and stillbirth). Legend for start estimation methods in stacked bars:

Group 1 = last menstrual period, gestational age record, fertility procedure; Group 2 = alpha-fetoprotein test, nuchal ultrasound; Group 3 = amenorrhea

record, urine pregnancy test record; Group 4 = average gestational age estimate.

https://doi.org/10.1371/journal.pone.0192033.g002
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analysis, which revealed that for the population of pregnancy episodes that had associated

assisted conception fertility procedures (19,656 episodes), 48.9% of live births starts that were

estimated with the next highest marker in the hierarchy were within seven days before or after

the pregnancy start that was estimated with the fertility procedure.

Discussion

In this study, we developed an algorithm to infer pregnancy episodes and their outcomes from

observational data, and applied the algorithm across the CPRD, Optum, Truven CCAE and

MDCD databases. Distributions of pregnancy outcome types were similar across all four data

sources and pregnancy episode lengths found were as expected for all outcomes. The valida-

tion was performed via review of electronic patient profiles and completion of a survey by per-

sonnel familiar with observational data. Highest agreement between reviewer chosen and

algorithm operating characteristics was achieved for questions assessing pregnancy status and

accuracy of outcome category with 99–100% agreement for all data sources. Outcome date

agreement within seven days in either direction ranged from 95–100%, while start date agree-

ment within seven days in either direction ranged from 90–97%. In Optum, a total of 73% of

algorithm estimated starts for live births and a total of 77% of ectopic pregnancies were in

agreement with fertility procedure estimated starts in our sensitivity analysis within two weeks

Fig 3. Distribution of duration of all pregnancy episodes, with episode lengths shown in 10 day increments for live births, stratified by method of pregnancy

start estimation and data source (CPRD, Optum, Truven CCAE, and Truven MDCD). Legend for start estimation methods referenced in row panels:

LMP = last menstrual period

GEST = gestational age record

INFERT = fertility procedure

ULS = nuchal ultrasound

AFP = alpha-fetoprotein test

AMEN = amenorrhea record

URINE = urine pregnancy record

AVG = gestational age estimate

ALL = all start estimation methods combined.

https://doi.org/10.1371/journal.pone.0192033.g003
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in either direction. However, stillbirth estimated starts agreed 47% of the time, and abortion

36%. Therefore, according to the patient profile validation exercise, start estimations for all

outcomes were fairly accurate while the sensitivity analysis found abortion and stillbirth start

estimations less accurate than live birth and ectopic pregnancy. We believe this is acceptable

accuracy for live births and ectopic pregnancies considering the potential sample size and pre-

scription accuracy observational data offers and the challenge that repeat delivery procedure

billings and rule-out diagnoses create in the electronic record, however there may be less accu-

racy around stillbirth and abortion start date estimations.

Strengths and limitations

With this study we attempted to build on prior pregnancy algorithm studies using observa-

tional data in the literature by incorporating relevant features across the spectrum into a single

algorithm. To the best of our knowledge, there is no prior algorithm that incorporates all of

the following features: assessment of multiple pregnancy outcomes (live birth, stillbirth, abor-

tion and ectopic pregnancy), start estimation leveraging a hierarchy of available start markers,

internal validation using electronic patient profiles with consideration of the patient’s entire

clinical experience, and validation of the generic algorithm across multiple, disparate data

sources.

Various algorithm limitations and caveats are important to note. For instance, in order to

classify pregnancy outcomes in the data, our algorithm referred to a table containing the short-

est period of time that can occur between any two outcomes. If an outcome being assessed was

too close to another outcome that was already inferred by the algorithm (either the outcome

was higher in the outcome hierarchy or was the same outcome with an earlier date) then that

outcome was discarded. In this way, multiple billings related to the same health care episode

were not counted as separate pregnancy episodes. This was necessary because multiple clinical

care records that are billed separately on different dates for various aspects of delivery care are

Fig 4. Performance rating for five operating characteristics of algorithm (survey questions 1,2,4–6) from electronic profile review survey.

https://doi.org/10.1371/journal.pone.0192033.g004
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common in observational data. We found in our analysis that administrative billing databases

such as Optum and CCAE are prone to this scenario; electronic health records such as CPRD

generally record fewer diagnoses and procedures around a single health care episode. It is pos-

sible valid outcomes with record dates too close in days per S3 Table would not be captured.

A second challenging clinical care situation frequently recorded in the data included a

missed abortion rule-out diagnosis prior to a preterm live birth. Rule-out diagnoses are billings

for tests ordered to diagnosis symptoms, where the suspicion rather than the confirmation of

the diagnosis is recorded to justify reimbursement. Again, this scenario is more common in

Optum and CCAE; in CPRD codes for ‘working diagnoses’ can be chosen instead which were

not utilized by our algorithm. Excluding candidate abortion or ectopic pregnancy episodes

with pregnancy confirmation within 42 days after also helped to eliminate these rule-out diag-

noses. However, it is possible some rule-out diagnoses were considered by the algorithm to be

valid outcomes.

Initially, an attempt was made to create two abortion outcomes: spontaneous and induced.

After validation with patient profiles, we determined the algorithm could not classify an abor-

tion as induced or spontaneous with acceptable accuracy; a proportion of abortion diagnosis

and procedure concepts were sufficiently ambiguous that a determination was difficult to

Fig 5. The distribution of reviewer estimated pregnancy start difference in days from the algorithm start (< -14, -8 thru -14, -1 thru -7, 0, 1 through 7, 8

through 14 and> 14 days) in the Optum database, stratified by pregnancy outcome (all outcomes, live birth, abortion, ectopic pregnancy, and stillbirth)

and method used for pregnancy start estimation. Legend for start estimation methods referenced in row panels:

LMP = last menstrual period

GEST = gestational age record

INFERT = fertility procedure

ULS = nuchal ultrasound

AFP = alpha-fetoprotein test

AMEN = amenorrhea record

URINE = urine pregnancy record

AVG = average gestational age estimate

ALL = all start estimation methods combined
�If percentages do not add up to 100%, reviewer indicated difference in days from the algorithm could not be determined.

https://doi.org/10.1371/journal.pone.0192033.g005
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make during initial creation of outcome code set and in certain cases mappings from native

source dictionaries to Common Data Model concepts created additional ambiguity.

Also, ectopic pregnancies were classified only if treatment or a record type identified by the

disproportionality analysis was found within two weeks after initial diagnosis. Scholes et al.

Fig 6. The distribution of reviewer estimated pregnancy start difference in days from the algorithm start (< -14, -8 thru -14, -1 thru -7, 0, 1 through 7, 8

through 14 and> 14 days) in the CPRD database, stratified by pregnancy outcome (all outcomes, live birth, abortion, ectopic pregnancy, and stillbirth) and

method used for pregnancy start estimation. Legend for start estimation methods referenced in row panels:

LMP = last menstrual period

GEST = gestational age record

INFERT = fertility procedure

ULS = nuchal ultrasound

AFP = alpha-fetoprotein test

AMEN = amenorrhea record

URINE = urine pregnancy record

AVG = average gestational age estimate

ALL = all start estimation methods combined
�If percentages do not add up to 100%, reviewer indicated difference in days from the algorithm could not be determined.

https://doi.org/10.1371/journal.pone.0192033.g006

Table 2. End of pregnancy episode date accuracy: Reviewer chosen date categorized by difference from algorithm derived date.

Data Source Outcome < -14 days

N(%)

-8 thru -14 days

N(%)

-1 thru -7 days

N(%)

0 days

N(%)

1 thru 7 days

N(%)

8 thru 14 days

N(%)

> 14 days

N(%)

CPRD All Outcomes 4 (0.6) 6 (0.9) 2 (0.3) 674 (96.8) 10 (1.4) 0 0

Live Birth 2 (0.7) 0 0 286 (98.6) 2 (0.7) 0 0

Ectopic 0 2 (2) 2 (2) 90 (90) 6 (6) 0 0

Abortion 2 (1) 2 (1) 0 202 (98.1) 0 0 0

Stillbirth 0 2 (2) 0 96 (96) 2 (2) 0 0

Optum All Outcomes 4 (0.6) 6 (0.9) 4 (0.6) 678 (97.1) 0 2 (0.3) 4 (0.6)

Live Birth 0 0 0 286 (99.3) 0 0 2 (0.7)

Ectopic 2 (2) 0 2 (2) 94 (95.9) 0 0 0

Abortion 2 (1) 6 (2.9) 0 198 (94.3) 0 2 (1) 2 (1)

Stillbirth 0 0 2 (2) 100 (98) 0 0 0

https://doi.org/10.1371/journal.pone.0192033.t002
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found that�2 visits with an ectopic pregnancy code (procedures and diagnoses) within 180

days is highly predictive of a true ectopic pregnancy based on chart review [15]. Our time win-

dow of two weeks was more restrictive since treatment is commonly administered in an emer-

gency fashion for ectopic pregnancy. However, it is possible some true ectopic pregnancy

episodes were missed by our algorithm because of delayed treatment.

The requirement that an episode have two pregnancy records, which was meant to exclude

historical references to pregnancy outcomes, may also have excluded legitimate episodes with

only a single outcome record and no other pregnancy markers. In CPRD, more pregnancy epi-

sodes were discarded for this reason. It is likely this occurred because primary care physicians

were not transcribing pregnancy care into the primary record and only recording birth out-

comes. In Optum and CCAE, multiple billings for the same health care episode made exclu-

sion of the pregnancy episode due to less than one pregnancy care record less common.

Finally, our algorithm was not designed to distinguish between singleton and multiple births.

The algorithm outcome hierarchy utilized will classify a delivery with at least one live birth as a

live birth outcome; if a live birth occurred along with a stillbirth in a multiple birth, the out-

come would be classified as a live birth.

From Fig 2 it can be seen that pregnancy care records used to estimate start of pregnancy in

CPRD have a different distribution than those used to estimate start in Optum, CCAE and

MDCD. In CPRD, 52.8% of pregnancy starts were estimated using last menstrual period

(LMP), gestational age record, fertility procedure, all of which were rated highest in the hierar-

chy of available pregnancy markers. It is likely CPRD pregnancy start estimation was more

accurate because of the high prevalence of LMP records available in the data and lack of LMP

data in Optum, CCAE and MDCD, though the patient profile survey does not reflect this.

Maximum pregnancy terms (i.e. 301 days for live births) were used to search backward from

the outcome date for codes that could help define pregnancy starts, so earlier pregnancy-

related codes would not be found by the algorithm. Margulis et al. also found that dates based

on screening tests were less accurate than average gestational age estimates to estimate preg-

nancy start when compared with delivery discharge records for live births [7]. The analysis we

performed to determine the hierarchy of available pregnancy markers may have had different

results because we defined minimum and maximum pregnancy terms allowed in the algorithm

so that screening tests performed well outside the clinical guideline windows were not used to

estimate pregnancy start.

Table 3. Optum validation sensitivity analysis: Algorithm chosen pregnancy start categorized by difference in either direction from infertility procedure derived

start.

Pregnancy outcome Days difference in either direction Pregnancy episodes % agreement

Abortion < = 7 days 1090 20.03

Abortion 8–14 days 890 16.35

Abortion > 14 days 3462 63.62

Ectopic Pregnancy < = 7 days 96 39.51

Ectopic Pregnancy 8–14 days 90 37.04

Ectopic Pregnancy > 14 days 57 23.46

Live Births < = 7 days 6749 48.91

Live Births 8–14 days 3366 24.39

Live Births > 14 days 3684 26.7

Stillbirth < = 7 days 54 31.4

Stillbirth 8–14 days 26 15.12

Stillbirth > 14 days 92 53.49

https://doi.org/10.1371/journal.pone.0192033.t003
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A trade-off was made with the elevation of amenorrhea and urine pregnancy test markers

above average gestational age estimates in our hierarchy, so that adverse outcomes such as

abortion and stillbirth had potentially increased start date accuracy and live births and ectopic

pregnancy had potentially decreased accuracy when amenorrhea and urine pregnancy markers

were used. This would have less of an effect in CPRD which had few of these markers associ-

ated with live births and more of a possible effect in Optum with 17.9% of live birth episodes

using amenorrhea and urine pregnancy markers to estimate start. In Optum, Fig 3 illustrates

that episodes with amenorrhea and urine pregnancy markers used as start estimation had a

larger proportion of post-term pregnancies than would be expected. It is possible a percentage

of women sought care a week or so earlier than the estimated eight weeks after last menstrual

period.

Given that our algorithm uses a hierarchical approach, combining many of the criteria that

have been previously used to infer pregnancy episodes, it is expected that our approach yields

more robust capture of estimated pregnancy episodes than has been previously documented.

Internal validation of the algorithm by multiple clinicians and epidemiologists using a sample

of patient profiles showed high validity and reliability across both EHR and administrative

claims databases. External patient charts may have been available for some of the pregnancy

episodes, but the chart costs and personnel hours required exceeded study budget allocation.

While both internal and external validation methods are widely used in observational studies,

there are advantages and limitations to both with no clear consensus on a gold standard

[16,17]. Our novel approach enabled our algorithm to be compared to expert opinion of

clinicians’ and epidemiologists’ determination of a true pregnancy episode after viewing all

data elements within each patient record. This was determined by the authors to be the most

appropriate validation measure as it is a direct measure of how well a derived algorithm can

accurately sort through data elements to identify those that indicate pregnancy. A better

understanding of whether or not observational databases themselves contain accurate infor-

mation on pregnancy occurrences could potentially be achieved by using external validation,

however, this is outside the scope of our paper.

We acknowledge several limitations inherent to our internal validation method. For

instance, the internal review done on pregnancy episodes with algorithm estimates visible to

reviewers may have caused reviewers to agree with the algorithm if there was a lack of claims

or EHR records to provide guidance, even if a shorter or longer pregnancy term may have

been a more reasonable estimation for that episode. This may have increased reviewer agree-

ment and caused the electronic review to overestimate accuracy, especially for outcomes like

AB, ECT and SB which often did not have early pregnancy start markers. Though it was not

possible for our study, comparison with an external data source, such as hospital birth records,

would have mitigated this issue for represented outcomes. Also, four out of seven reviewers

were involved in creation of the pregnancy algorithm and may have anchored their validation

on the same information the algorithm utilized. Three reviewers were unaware of the method-

ology used in the algorithm.

Though a total of 73% of Optum algorithm estimated starts for live births and 77% of

algorithm estimated starts for ectopic pregnancies were in agreement with fertility proce-

dure estimated starts in our sensitivity analysis within two weeks in either direction, there

was less agreement for abortion and stillbirth. This was possibly due to misclassification of

infertility treatment date, but it is more likely that in the absence of pregnancy start markers,

gestational age estimates are more accurate for full-term live births (280 days) and ectopic

pregnancies (56 days) than for stillbirths (196 days) and abortions (70 days); the possible

ranges of episode length for abortions and stillbirths are wider than for live births and still-

births making estimation more difficult. This is potentially aggravated by the fact that
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stillbirths and spontaneous abortions may not be clinically recognized for a period of time

after the event.

When considering the larger research agenda of establishing exposure effects in pregnancy,

there are advantages and limitations inherent to observational data. The pregnancy algorithm

does allow us to examine length of pregnancy as an outcome to evaluate preterm birth, how-

ever, other outcomes associated with the child, such as malformations, are data captured in the

child’s record, and require creation of a mother-child linkage which is not in scope for defin-

ing start/end of pregnancy. Also, exposure may be under- or overestimated for a number of

reasons. Administrative claims databases reflect billed insurance claims. Recorded diagnoses

and procedures are the basis of reimbursement and the checks and requirements applied to

such information may serve to improve its accuracy. The exposure information that is cap-

tured is based on prescriptions (EHRs such as CPRD) or dispensings (claims data) rather than

on recall, though there is no way to be certain the patient actually took the medication that was

prescribed or dispensed. Conditions must also be diagnosed, and in the case of administrative

claims databases, billed for. If a patient has a visit for more than one condition, each condition

may not be recorded or billed separately, which may lead to under-diagnosis in the database.

Services that providers know in advance will be denied will be inconsistently submitted as

bills, and therefore, inconsistently recorded. Some additional information is limited, such as

information on severity, physiology, and reason for testing. Covered services for which claims

are not submitted are not included, such as immunizations provided through grocery-store

immunization clinics. Rule-out diagnoses are another inherent limitation to claims databases,

and have been discussed previously and addressed within our algorithm. Primary care data-

bases such as CPRD have inconsistent recording of clinical care in hospital and specialist or

outpatient settings. Despite these limitations, the advantages of observational data outlined

earlier allow for unique opportunities to longitudinally evaluate the association between expo-

sures and outcomes, particularly in hard to reach and understudied populations such as preg-

nant women.

Conclusion

In this study, we developed an algorithm to infer pregnancy episodes and their outcomes and

applied the algorithm across four observational databases. To the best of our knowledge, there

is no prior algorithm that incorporates all of the following features: assessment of multiple

pregnancy outcomes (live birth, stillbirth, abortion and ectopic pregnancy), start estimation

leveraging a hierarchy of available start markers, internal validation using electronic patient

profiles with consideration of the patient’s entire clinical experience, and validation of the

generic algorithm across multiple, disparate data sources.

Validation survey results were highly positive, with agreement at least 90% of the time with

reviewer chosen characteristics. During algorithm design, care was taken to avoid defining

rule-out diagnoses and repeat billings as separate pregnancy episodes and validation survey

results indicated these situations were handled correctly for our sample. Our examination of

all pregnancy markers that could be used to estimate start of pregnancy and establishment of a

hierarchy was successful as evidenced by pregnancy terms that generally align with expecta-

tions, excepting term lengths in episodes that used amenorrhea and urine pregnancy tests as

start estimation. Additionally, agreement of reviewer chosen pregnancy starts with algorithm

chosen pregnancy starts in the electronic profile validation was high. The validation sensitivity

analysis using fertility procedures that date conception also suggests an acceptable level of

accuracy is reached in start date estimation by the algorithm for live births and ectopic preg-

nancies. An algorithm to infer live birth and ectopic pregnancy episodes and outcomes can be
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applied to multiple observational databases with acceptable accuracy for further epidemiologic

research. Less accuracy was found for start date estimations in stillbirth and abortion outcomes

in our sensitivity analysis, which may be expected given the nature of the outcomes.
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