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Abstract

Serum amyloid A (SAA) is an apolipoprotein that is robustly upregulated in numerous inflam-

matory diseases and has been implicated as a candidate pro-inflammatory mediator. How-

ever, studies comparing endogenous SAAs and recombinant forms of the acute phase

protein have generated conflicting data on the function of SAA in immunity. We generated

SAA3 knockout mice to evaluate the contribution of SAA3 to immune-mediated disease,

and found that mice lacking SAA3 develop adult-onset obesity and metabolic dysfunction

along with defects in innate immune development. Mice that lack SAA3 gain more weight,

exhibit increased visceral adipose deposition, and develop hepatic steatosis compared to

wild-type littermates. Leukocytes from the adipose tissue of SAA3-/- mice express a pro-

inflammatory phenotype, and bone marrow derived dendritic cells from mice lacking SAA3

secrete increased levels of IL-1β, IL-6, IL-23, and TNFα in response to LPS compared to

cells from wild-type mice. Finally, BMDC lacking SAA3 demonstrate an impaired endotoxin

tolerance response and inhibited responses to retinoic acid. Our findings indicate that

endogenous SAA3 modulates metabolic and immune homeostasis.

Introduction

Serum amyloid A (SAA), an acute phase lipoprotein, has been studied for decades as a robust

biomarker for a wide array of inflammatory and autoimmune disorders [1]. Multiple isoforms

of this protein have been identified, including: SAA1 and 2, which are highly homologous and

predominantly produced by the liver; SAA3, an acutely expressed isoform produced in non-

primate mammals; and SAA4, which is constitutively expressed and does not increase in

response to infection or injury [2]. In mice, SAA3 is the primary SAA isoform expressed in

epithelial and hematopoietic cells [3], and we have previously demonstrated a rapid increase in

Saa3 gene expression in the lung in response to a variety of pro-inflammatory stimuli capable

of inducing pulmonary innate and adaptive immune responses [4].

SAA has been reported to function as a circulating chaperone for retinoic acid (RA) [5]. RA

is critical to normal metabolic homeostasis and healthy adipose development [6, 7], and has

recently been found to promote adipose tissue browning via VEGF signaling [6]. SAA is also a
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potent opsonin of Gram-negative bacteria [8, 9] and can prevent viral entry into cells [10–12].

The revelation that SAA also performs chaperone functions for RA indicate that, in addition

to being a biomarker and possibly contributing to inflammation, SAA may also have key

homeostatic functions in lipid transport and inflammation resolution.

Dysfunctions in lipid metabolism are linked to obesity and metabolic disease. Obesity can

lead to a variety of inflammatory complications, including hepatic steatosis [13], hypertension

[14], and diabetes [15]. The increased storage of excess lipid in adipose tissue associated with

obesity general results in increased storage of excess lipid and increased numbers of highly

pro-inflammatory (M1) macrophages that cluster in “crown-like” structures and secrete ele-

vated levels of IL-1β, IL-6, TNFα, and MCP-1 [16–18]. These M1 macrophages not only exac-

erbate the inflammatory environment, but also inhibit the anti-inflammatory (M2) functions

of homeostatic adipose tissue macrophages, which include secreting IL-10, driving immune

tolerance in other cell types, and clearing up apoptotic cells and debris [18–20].

Our objective was to determine the role of SAA3 in innate immune processes. We have gen-

erated a mouse lacking SAA3 that, instead of showing decreased pro-inflammatory responses,

exhibits obesity and metabolic dysfunction, as well as increased pro-inflammatory myeloid cell

profiles within the adipose tissue. Additionally, lack of SAA3 leads to altered bone marrow-

derived dendritic cell (BMDC) cytokine secretion and repressed tolerogenic capabilities. These

results indicate that SAA3 is critical to the development of the innate immune system as well

as metabolic homeostasis.

Materials and methods

Mice

All animal experiments were conducted in accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and

efforts were made to minimize suffering. The work was approved by the University of Ver-

mont’s Institutional Animal Care and Use Committee (protocol #12–018). Sodium pentobar-

bital was administered via intraperitoneal injection for euthanasia. C57BL/6 mice were

purchased from Jackson Laboratories (Bar Harbor, ME). Targeted embryonic stem cells from

C57BL/6N mice in which the protein coding sequence of Saa3 was deleted were recovered

from cryopreservation and injected into albino C57BL/6 embryos through the Knock Out

Mouse Project (KOMP) at the University of California, Davis. Detailed information on the

generation of the SAA3-deficient embryonic stem cells is available at: http://www.velocigene.

com/komp/detail/13807. SAA3+/- mice were shipped to UVM and subsequently bred with

C57BL/6J mice for 10 generations. All animals were maintained on 12 hour light/dark cycle

and provided chow (~30% kCal from fat; TestDiet, St. Louis, MO) and water ad libitum in an

AALAC-accredited facility. In some studies, mice were provided Low-fat (10% kCal from fat)

and High-fat (60% kCal from fat) diets from Research Diets (New Brunswick, NJ) ad libitum.

Mice were between 18 and 24 weeks of age for all studies except for the BMDC generation

experiments, in which femurs from 8–10 week old mice were used.

RNA isolation and quantitative PCR

Tissues were snap-frozen and pulverized in a mortar and pestle in liquid nitrogen. RNA was

isolated from lung, liver, spleen, and kidney using the PrepEase kit (Affymetrix, Cleveland,

OH) according to manufacturer’s instructions. Visceral adipose tissue (VAT) and subcutane-

ous adipose tissue (SCAT) underwent phenol:chloroform extraction and RNA was further

purified using the PrepEase kit. cDNA was generated from total RNA using the iScript cDNA

synthesis kit (Bio-Rad, Hercules, CA) according to manufacturer’s instructions. Q-PCR was
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performed using primer pairs (see S1 Table) and SYBR Green Universal Taq Mastermix (Bio-

Rad). The levels of genes of interest were normalized to the house-keeping gene glyceraldehyde

3-phosphatase dehydrogenase (Gapdh), which did not differ between samples, and relative

gene expression was calculated using the ΔΔCT method as previously described [21].

Generation of stromal vascular fraction (SVF) from visceral adipose tissue

Mouse VAT was collected and placed into digestion buffer (2 mg/ml collagenase, 100 mM

HEPES, 120 mM NaCl, 50 mM glucose, 1 mM CaCl2, and 1.5% BSA) and processed using a

GentleMacs dissociator (Miltenyi, Auburn, CA) according to manufacturer’s instructions. Fol-

lowing centrifugation at (100 x g and 500 x g), floating adipocytes and the SVF pellet were col-

lected and processed for the preparation of cDNA.

Immunohistochemistry

Liver tissues were fixed in 10% neutral buffered formalin, embedded in paraffin and 5 μm sec-

tions were cut and mounted on slides prior to staining with hematoxylin and eosin or Oil Red

O. Hand processing, paraffin embedding, and staining were performed by the University of

Vermont Medical Center Surgical Pathology Department. Hand processing, paraffin embed-

ding, and staining were performed by the University of Vermont Medical Center Surgical

Pathology unit. Stained tissue was imaged using an EVOS XL microscope (Life Technologies)

at 20X (H&E) and 40X (Oil Red O).

BMDC generation and stimulation

Femurs and tibiae from mice were flushed and marrow was plated at 1 x 106 nucleated cells/

ml. Cells were cultured for 6 days in RPMI-1640 supplemented with 10% FBS and 5% condi-

tioned media from X63-GMCSF myeloma cells transfected with murine GM-CSF cDNA

(kindly provided by Dr. Brent Berwin, Dartmouth College). Media was replaced on days 2 and

4, and the adherent and lightly adherent BMDC, predominantly CD11b+CD11c+ by flow

cytometry, were collected on day 6. In some studies, BMDC were treated with 0.1 μM all-

trans-retinoic acid (ATRA) (Sigma-Aldrich, St. Louis, MO), which was provided at the same

time points at GM-CSF. In the tolerization studies, BMDC were treated with increasing doses

of LPS (Invivogen, San Diego, CA) for 24 hours. Following this initial stimulation, cells were

washed and DPBS, then challenged again with their tolerizing dose for a further 24 hours.

Cytokine analysis

Cell supernatants were analyzed for protein secretion with the following assays: IL-1β and

TNFα were measured by ELISA kits from BD Biosciences (San Jose, CA). IL-6, IL-10, and IL-

23 were analyzed by ELISA kits from R&D Systems (Minneapolis, MN). SAA3 was measured

either by ELISA or Milliplex assay (Millipore, Billerica, MA) according to manufacturer’s

instructions. Serum cytokines (IL-1β, IL-6, IL-10, IL-23, and TNFα) were measured by a cus-

tom a Magnetic Luminex Assay (R&D Systems). Kit information, including limits of detection,

can be found in S2 Table.

Statistics

Data were analyzed by two-tailed unpaired t-test or one-way or two-way ANOVA and Bonfer-

roni post-hoc test using GraphPad Prism 7 for Windows (GraphPad Software, Inc., La Jolla,

CA.). A p value smaller than 0.05 was considered statistically significant.
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Results

SAA3 deficiency promotes adult onset weight gain and dyslipidemia

A comparative analysis of organs from wild-type (WT) mice indicated that, as has been previ-

ously published [22], the expression of Saa3 is highest in the visceral adipose tissue (VAT) and

the lung, with substantially less being expressed in the liver, spleen, and kidney (Fig 1A). We

confirmed the effective elimination of Saa3 expression in our knockout (SAA3-/-) littermates

in the same tissues (Fig 1B), and then determined that levels of Saa1 and Saa2 were normal in

the VAT of SAA3-/- mice (Fig 1C). In the course of utilizing mice for in vivo studies, we

observed that SAA3-/- mice were consistently and significantly heavier than their wild-type lit-

termates (Fig 1D). This weight gain appeared to be the result of increased adipose tissue mass

in both male and female mice, as was observed for the VAT (Fig 1E). As there is a well-docu-

mented link between obesity and altered inflammatory responses [18, 23], we felt it prudent to

explore the obese phenotype in these mice. Analysis of VAT from SAA3-/- mice revealed sig-

nificant decreases in the expression of the insulin sensitive genes glucose transporter 4 (Glut4)

and insulin receptor substrate-1 (Irs1) (Fig 1F). Increased mass of white adipose tissue in obe-

sity is associated with elevated levels of tissue-resident pro-inflammatory macrophages. Sepa-

ration of the adipocytes and stromal vascular fraction (SVF) in wild-type mice revealed no

significant difference in the expression of Saa3 in both cell populations, but otherwise a clear

distinction between myeloid-specific genes (Irak3), and adipocyte-specific genes (Adipoq, Irs1,

and Fabp4) (Fig 1G). Analysis of the SVF from the VAT of WT and SAA3-/- littermates for the

pro-inflammatory-M1-related genes interleukin-6 (Il6), interleukin-1beta (Il1b), and tumor

necrosis factor alpha (Tnfa) revealed increased Il6 and Tnfa expression in the SAA3-/- myeloid

cells (Fig 1H). Furthermore, these cells had a downregulated expression of the anti-inflamma-

tory, M2-related genes arginase-1 (Arg1), vascular endothelial growth factor-alpha (Vegfa),
and resistin-like alpha (Retnla), encoding the protein known as Fizz1 (Fig 1I). The shift from

an M2 to an M1 pro-inflammatory phenotype is consistent with those observed in obese adi-

pose tissue [23, 24]. Serum from wild type and SAA3-/- mice was analyzed for cytokine con-

tent. IL-1β, IL-10, IL-23, and TNFα were below the limits of detection of the assay, however

both male and female SAA3-/- mice demonstrated variable levels of IL-6, which in males was

significantly increased in the SAA3-/- mice compared to WT (Fig 1J).

The obese state in SAA3-/- mice is accompanied by early indicators of non-

alcoholic fatty liver disease

Liver tissue from the obese SAA3-/- mice was visibly different from that of WT littermate con-

trols. Histological analysis revealed increased vacuolation in SAA3-/- hepatocytes (Fig 2A, top

row) and staining with Oil Red O confirmed increased lipid content in the SAA3-/- hepatic

cells compared to WT tissue (Fig 2A, bottom row). SAA3-/- mice demonstrated increased

gene expression for CD36, a fatty acid transporter linked to obesity and metabolic disease, and

decreased expression of the insulin-sensitive genes Glut4 and Irs1, with no change in the

expression of peroxisome proliferator-activated receptor γ coactivator-1 alpha (Pgc1a).

Expression of insulin-sensitive genes are decreased in SAA3-/- mice fed a

high-fat diet for 1 week

The inhibition of insulin-sensitive gene expression in the VAT and liver of the SAA3-/- mice,

along with their increased weight gain, suggested they may exhibit a predisposition for exacer-

bated responses to high-fat diet. Wild-type and SAA3-/- littermate mice were fed either a

high-fat diet (HFD) with 60% kCal from fat (lard) or a 10% kCal from fat low-fat diet (LFD)
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Fig 1. Characterization of SAA3-/- mice. Levels of basal Saa3 expression from wild-type (WT) mice were measured from VAT, lung,

liver, spleen, and kidney. Relative levels were compared to the kidney (A). WT and SAA3 knockout (SAA3-/-) littermates were analyzed by

Q-PCR for Saa3 gene expression in the same organs to confirm the deletion of Saa3 in the SAA3-/- mice (B). Characterization of different
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for one week. Previous studies have demonstrated that acute exposure to high-fat diet feeding

can induce rapid, systemic changes in hormone signaling and gene alteration [25, 26]. Even at

this early time point, all mice fed HFD gained significantly more weight compared to those on

the LFD, with the SAA-/- mice fed HFD increasing their weight significantly compared to WT

mice fed HFD (Fig 3A). Feeding the HFD led to significant increases in VAT, liver, and subcu-

taneous adipose tissue (SCAT) Saa3 gene expression in the WT mice, compared to WT mice

fed LFD. Gene expression levels of Saa1and Saa2 were unaffected in both adipose tissue types;

however, they, along with Saa3, were increased in the liver by feeding the HFD. (Fig 3B).

SAA1 and SAA2 production from the liver is critical to the acute phase response, and though

their expression is not altered basally in the SAA3-/- mice, the alterations observed in response

to HFD indicate a potential for a differential acute phase response in mice lacking SAA3 in

response to stimuli. SAA3-/- mice that were fed HFD demonstrated significant decreases in

Irs1 and Pgc1a in VAT and liver, and in Glut4 and Irs1 in SCAT compared to WT mice fed

HFD (Fig 3C).

Lack of SAA3 exacerbates the dendritic cell response to LPS and leads to

dysfunctional endotoxin tolerance

We next analyzed bone marrow progenitors that were differentiated in vitro into myeloid den-

dritic cells (BMDC), a cell type modeling those in vivo that participate in innate immune

responses and that function as antigen presenting cells to initiate adaptive immune responses

SAA isoforms was performed by Q-PCR from VAT (C). WT and SAA3-/- mice were analyzed at 18 weeks of age for total body weight (D)

and VAT weight (E). Insulin sensitive gene expression was analyzed by Q-PCR from VAT (F). Adipocyte and stromal vascular fractions

were confirmed for cell-specific genes in wild-type mice (G). SVF from the VAT of WT and SAA3-/- mice were analyzed by Q-PCR for

pro-inflammatory genes (H) and M2-related genes (I). Serum from WT and SAA3-/- mice was analyzed for circulating cytokines (J) n = 3-

9/group. � = p<0.05, �� = p<0.01, ��� = p<0.005, ���� = p<0.001.

https://doi.org/10.1371/journal.pone.0192352.g001

Fig 2. Livers from SAA3-/- mice demonstrate early signs of non-alcoholic fatty liver disease. Liver tissue from WT and SAA3-/- mice at 18 weeks of

age were fixed in 10% neutral-buffered formalin and stained for H&E (A, top row) and Oil-Red O (A, bottom row). Representative images are

presented. Q-PCR analysis from liver was performed for genes that regulate insulin sensitivity (B). n = 3-4/group. �p =<0.05, ���� = p<0.001.

https://doi.org/10.1371/journal.pone.0192352.g002

SAA3 is required for immunometabolic homeostasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0192352 February 1, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0192352.g001
https://doi.org/10.1371/journal.pone.0192352.g002
https://doi.org/10.1371/journal.pone.0192352


[27]. The BMDC were challenged with increasing doses of LPS, a component of gram-negative

bacterium, and cytokines from cell-free supernatants were measured at 4 and 24 hours. At 4

hours, BMDC from SAA3-/- mice produced significantly increased levels of IL-1β, IL-6, IL-23,

Fig 3. High fat diet leads to more substantial weight gain and insulin-sensitive gene repression in SAA3-/- mice. 18 week

old wild type (WT) and SAA3-/- mice were placed on high-fat diet (HFD = 60% kCal from fat) or low-fat diet (LFD = 10% kCal

from fat) for 7 days. Total body weight was measured each day (A). Comparisons displayed are between HFD-fed WT and

SAA3-/- mice. The expression of SAA isoforms in VAT was analyzed from WT mice on the LFD and HFD (B). Insulin-

sensitive gene expression was analyzed by Q-PCR from VAT, subcutaneous adipose tissue (SCAT), or liver of WT and SAA3-/-

mice fed HFD (C). n = 4-5/group. � = p<0.05, �� = p<0.01, ��� = p<0.005, ���� = p<0.001.

https://doi.org/10.1371/journal.pone.0192352.g003
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and TNFα in response to 10 or 100 ng/ml LPS compared to BMDC from wild-type mice (Fig

4A, top row). Increased secretion of IL-6, IL-23, and TNFα remained at 24 hours (Fig 4A, bot-

tom row). It is also of note that by 24 hours, untreated SAA3-/- BMDC had secreted ~300 ng/

ml of TNFα even in the absence of LPS treatment, whereas BMDC from unstimulated WT

mice had undetectable TNFα levels. Spontaneous secretion of pro-inflammatory cytokines

and exacerbated responses to LPS are suggestive of dysregulated inflammatory resolution. Pre-

vious studies indicate that after initial exposure to LPS, a secondary restimulation with LPS

will result in decreased secretion of pro-inflammatory cytokines such as IL-1β and TNFα, and

a compensatory increase in the anti-inflammatory cytokine interleukin-10 (IL-10), an effect

known as “endotoxin tolerance” [28, 29]. In a separate experiment, BMDC from WT and

SAA3-/- mice were challenged with LPS for 24 hours (Fig 4B, top row), and subsequently

rechallenged with LPS for another 24 hours (Fig 4B, “Tolerized” bottom row). In the initial

response to LPS, SAA3-/- BMDC produced less IL-10 and more TNFα than WT controls (Fig

4A, top row). After restimulation, WT BMDC continued to secrete IL-10, but the production

of both IL-1β and TNFα were significantly decreased (Fig 4B, bottom row, white bars). How-

ever, SAA3-/- BMDC continued to strongly secrete IL-1β and TNFα, and maintained lower

levels of IL-10 (Fig 4B, bottom row, black bars), indicating weakened endotoxin tolerance in

these cells.

SAA3 is required for normal BMDC responses to retinoic acid

Retinoic acid has the ability to induce tolerogenic myeloid cells [30, 31]. BMDC were gener-

ated as in the previous experiment, with the addition of 0.1 μM all-trans-retinoic acid (ATRA)

provided with each feeding of GM-CSF over a 7 day differentiation period. WT cells differenti-

ated in the presence of ATRA demonstrated an increased expression of Saa3, as well as

increased expression of both retinoic acid receptors alpha (Rara) and beta (Rarb) (Fig 5A).

The SAA3-/- BMDC failed to significantly increase expression of Rara. BMDC at day 7 were

also washed, plated, and challenged with 100 ng/ml LPS for 24 hours. Differentiation with

ATRA allowed for the LPS-induced release of IL-10 from WT cells, which was diminished

from the SAA3-/- cells. Strikingly, while ATRA inhibited IL-1β release from WT cells, it signif-

icantly increased the production of this cytokine from SAA3-/- cells (Fig 5B).

Discussion

Serum amyloid A has been observed to increase ~1000 fold in the serum in response to a num-

ber of infection and injury models [1]. Additionally, tissue-specific expression of Saa3
increases in mice in response to a variety of stimuli [4]. Given its rapid and robust increase

under inflammatory and autoimmune conditions, it has long been speculated that SAA is a

mediator of the inflammatory process. We and others have published data suggesting this is

the case using a commercially available recombinant form of SAA [4, 32, 33]. However, the E.

coli-derived recombinant form of SAA that is almost uniformly used by investigators elicits

strong pro-inflammatory responses not shared with the endogenous form of SAA [34]. Specifi-

cally, whereas recombinant apoSAA promoted neutrophil activation and pro-inflammatory

cytokine production, human plasma containing highly elevated levels of SAA displayed neither

of those effects. These results imply that further characterization of the differences in pro-

inflammatory activities between recombinant and endogenous SAA is warranted. Conse-

quently, our observations suggest that the robust production of SAA3 in response to injury or

infection may be an attempt to maintain homeostatic function; that is, that endogenously pro-

duced SAA may exert a protective or pro-resolving effect in the immune response.

SAA3 is required for immunometabolic homeostasis
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Fig 4. SAA3-/- mice display altered myeloid cell responses. Bone marrow derived dendritic cells generated from WT and SAA3-/- mice were challenged with

increasing doses of LPS for 4 and 24 hours. IL-1β, IL-6, IL-23, and TNFα were measured from cell supernatants by ELISA (A). BMDC were challenged for 24 hours

with increasing doses of LPS (24h). These cells were then restimulated with the same dose of LPS for a further 24 hours (Tolerized) and supernatants were analyzed

for IL-1β, IL-10, and TNFα by ELISA (B). n = 3-7/group. � = p<0.05, �� = p<0.01, ��� = p<0.005, ���� = p<0.001.

https://doi.org/10.1371/journal.pone.0192352.g004
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Consistent with this notion, our results indicate that mice lacking SAA3 develop increased

adipose deposition, metabolic dysfunction, and exacerbated pro-inflammatory responses from

innate immune cells. While conducting our studies, another group generated SAA3-/- mice in

the same manner as we did and reported that the SAA3-/- mice fed a high-fat, high-sucrose,

high-cholesterol diet gained less weight and had less adipose infiltration with macrophages

[35]. This group also reported decreases in the expression of Saa1 and Saa2 in the livers of

SAA3-/- mice, similar to what we observed after one week of HFD, which they speculated may

link SAA3 functionally to the acute phase response and to integrated immune response

changes in general. Reasons for the differences in weight gain by SAA3-/- mice between this

study and our own are unclear, although the dissimilarities of dietary sucrose and cholesterol

content in the high-fat diets could be part of the explanation. SAA1 and SAA2 are found in the

circulation bound to HDL, and a link between these forms of SAA and metabolic diseases has

been speculated upon [36, 37]. However, SAA3 does not bind HDL to the same extent as

SAA1 [38, 39], and is found at far lower concentrations in the serum, indicating that acute pro-

duction of SAA3 is more critical in localized tissue responses. How SAA3 specifically affects

Fig 5. Lack of SAA3 inhibits dendritic cell responses to retinoic acid. Bone marrow derived cells were isolated from WT and SAA3-/- mice and

differentiated into dendritic cells for 7 days in the presence of 5% GM-CSF or 5% GM-CSF + 0.1 μM all-trans-retinoic acid (ATRA). At day 7, cells were

analyzed for Saa3, Rara, and Rarb gene expression by Q-PCR (A). At day 7, cells were also challenged with 100 ng/ml LPS for 24 hours, and IL-10, IL-1β, and

TNFα were measured from cell supernatants by ELISA (B). n = 3-7/group. � = p<0.05, �� = p<0.01, ��� = p<0.005, ���� = p<0.001.

https://doi.org/10.1371/journal.pone.0192352.g005
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metabolic homeostasis and regulates adipokine and insulin-sensitive gene expression is less

clear. It has recently been reported that SAA acts as a chaperone for retinoic acid (RA), a

metabolite that is critical to metabolic homeostasis [40]. Although we found no difference

between WT and SAA3-/- mice in the basal level of retinoic acid receptor-alpha gene expres-

sion in VAT or liver tissue homogenates, we did observe that dendritic cells from mice lacking

SAA3 failed to upregulate the expression of this receptor directly in response to retinoic acid

treatment. It is tempting to speculate that SAA3 may chaperone RA or other critical metabo-

lites, leading to metabolic dysfunction in mice that lack this specific isoform of SAA. This may

also account for the altered innate immune cell profiles in the SAA3-/- mice.

Questions remain regarding the intersection between the metabolic dysfunction observed

in mice lacking SAA3 and the alterations displayed by their immune cells. Recent reviews have

highlighted the connection between metabolism and immunity [41, 42], and call for a more

integrative view of the two fields. Our data demonstrating a failure to acquire endotoxin toler-

ance in BMDCs that lack SAA3 is intriguing in light of the finding that feeding a high fat diet

leads to systemic metabolic endotoxemia that worsens obesity and exacerbates inflammatory

responses in mice [43]. Metabolic endotoxemia has also been observed in obese human

patients, in which it correlates to a severe decrease in endotoxin-specific IgM, indicating a loss

of endotoxin neutralization and tolerance due to chronic LPS exposure from altered obese gut

microbial species [44]. These studies indicate that increased levels of endotoxin exposure,

from Western diet-induced microbiota outgrowth, may alter the tolerance threshold, leading

to systemic inflammation, decreased glucose tolerance, and poor responses to infection.

Expression of SAA3 in the gut is regulated by the microbiome [45], and SAA3 can bind

directly to bacteria, leading to the possibility that SAA3 functions to regulate homeostatic, tol-

erogenic signaling of endotoxin produced by commensal microbiota. Further investigation is

also required to determine whether the generation of immunometabolic imbalance observed

in the adipose-resident leukocytes in SAA3-/- mice is due to the absence of SAA3 in the bone

marrow during hematopoiesis, or an effect exerted systemically by the secretion of pro-inflam-

matory mediators from the adipocytes themselves.

The results presented herein demonstrate that mice lacking SAA3 have a predisposition for

obesity and metabolic syndrome, and exhibit altered immune cell development. Inflammatory

responses are worsened in SAA3-/- cells in response to LPS, and endotoxin tolerance is defec-

tive. Ultimately, these data highlight the critical role of metabolic dysfunction in impaired

immune responses, and implicates SAA as a key mediator at the crossroads of metabolism and

immunity.
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