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Abstract

Background—Tongue tracking, which helps researchers gain valuable insights into speech 

mechanism, has many applications in speech therapy and language learning. The wireless 

localization technique, which involves tracking a small magnetic tracer within the 3-D oral space, 

provides a low cost and convenient approach to capture tongue kinematics. In practice, this 

technique requires accurate calibration of 3-axial magnetic sensors used in the tracking system. 

The data-driven calibration depends on the trajectories of magnetic tracer and the ambient noise, 

which may change across time and space.

Methods—In this paper, we model the kinematics of tracer movement and the noisy magnetic 

measurements in a Bayesian framework, then present a joint calibration and localization (JCL) 

algorithm based on expectation maximization (EM), where the unscented Rauch-Tung-Striebel 

smoother (URTSS) is employed for tracer localization and the curvilinear search algorithm is 

applied for sensor calibration.

Results—Based on measurements conducted on our tongue tracking system with a small 

magnetic tracer (diameter: 6.05 mm, thickness: 1.25 mm, residual induction: 14800 G), the JCL 

algorithm achieves averaged root mean square error of 0.45 mm for tracer position estimation and 

2.33° for tracer orientation estimation, which are significantly lower than those of the separate 

calibration and localization algorithms.
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Conclusion—These results show JCL can help improve the localization accuracy of this system.

Significance—A potentially high precision tongue tracking method is demonstrated.

Index Terms

tongue tracking; magnetic dipole; calibration; localization; speech and language pathology

I. Introduction

Tongue motion plays an important role in speech production and contains valuable 

information to aid aphasia therapy [1], [2] and language learning [3], [4]. Yet most tongue 

movements during speech are invisible. Over the past decades, the researchers have used 

various measures to visulize tongue kinematics, including X-ray cinefluorography [5], 

ultrasound imaging [6], magnetic resonance imaging [7], wired electromagnetic 

articulography (EMA) [8] and wireless magnetic localization [9] etc. Among them, wireless 

magnetic localization is safe, low cost and convenient even though it can only track one 

point at a time [10]. In [9]–[11], we proposed a tongue tracking system (TTS) based on 

wireless magnetic localization. The main idea is to temporarily attach a small permanent-

type magnetic tracer on the tongue and track tracer trajectory inside the oral cavity by 

measuring the changes in the magnetic field resulted from the tongue movements, with an 

array of magnetic sensors. Since the size of the magnetic tracer is much smaller than the 

distance between sensors and the oral space, it can be considered as a magnetic dipole, with 

magnetic field described by Euler’s equation [12].

Different methods that have been proposed for magnetic dipole localization can be generally 

divided into linear, nonlinear, and hybrid approaches. Linear methods provide closed-form 

solutions of Eulers equation with lower computational cost, while being more sensitive to 

measurement noise. For example, Hu et al. linearly localized magnetic dipoles using the fact 

that magnetic moment is orthogonal to the cross multiplication of the magnetic flux density 

(MFD) vector and the dipole-sensor direction vector [13]. Nara et al. expressed dipole 

position linearly in terms of the MFD and its spatial gradients based on deconvolution [14]. 

To avoid the approximation error in measuring gradients, Nara et al. further derived a linear 

formula relating the dipole position to surface integrals of the MFDs [15]. Nonlinear 

approaches using Levenberg-Marquardt (LM) algorithm [16], particle swarm optimization 

(PSO) [17], Nelder-Mead (NM) algorithm [10], and Powells method [10], perform iterative 

optimization with higher computational cost, resulting smaller localization error, provided 

that a good initial estimate is chosen. Hybrid approaches first use linear algorithms to 

quickly seek a good initial estimate, then employ nonlinear algorithms to refine it, thus 

improve the precision of linear algorithms, reduce the risk of being trapped in local optima, 

and alleviate computation burden of nonlinear algorithms. For example, Hu et al. 

successfully combined their linear method, proposed in [13], and LM optimization for 

tracking a pill in the gastrointestinal tract [18]. For a similar application, Song et al. 

proposed a closed-form analytical model of annular magnet, then combined it with LM and 

PSO algorithms to perform efficient magnetic tracking [19].
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Most methods mentioned above focus on solving the inverse problem of Euler’s dipole 

equation or its variants. For the application of tongue tracking, the following practical 

problems have not been well addressed: (a) The sensors need to be calibrated, because each 

manufactured sensor has slightly different gain and offset from others, thus measures 

differently in response to an identical magnetic field. In [18], the authors separately 

determined the parameters of sensors, such as sensitivity, position, and orientation. In [9], 

the authors consider the interactions between these parameters and propose a comprehensive 

calibration method based on a nonlinear least square model, employing the NM algorithm to 

minimize fitting error between the modeled and measured magnetic fields. In [20], the 

authors proposed closed-form models for orientation-invariant magnetic localization and 

sensor calibration. In order to ensure the calibration accuracy, usually a great number of 

calibration samples are required to cover the span of dipole variables (i.e., 3-D position and 

2-D orientation). However, the calibration could still be biased, because: (1) unless the 

magnetic tracer is quite far from the sensors, the approximation error of point-source dipole 

model affects the positions and orientations estimation of the tracer [21], which can be 

different in calibration set and evaluation set; (2) a few of the factors that contribute to the 

noise of magnetic measurement are time-varying, such as the temperature [22] and the 

interferences of electric or magnetic components near the sensors [23]. (b) The prior 

information that tongue movements are continuous is not fully exploited. It has been 

reported that the average speeds of tongue movements during speech are about 100~200 

mm/s [24]–[26]. Thus, at 100 Hz sampling rate, the positions of the tracer at adjacent time 

points should be close, usually about 1~2 mm. In [10], this prior information was implicitly 

used to enhance the initial estimation of nonlinear localization methods, i.e., the initial value 

of a new sample was the estimated value of the previous one. However, the probabilistic 

relationship between tongue motion and magnetic field is not explicitly modelled or utilized.

To address these problems, we have investigated an adaptive magnetic calibration and 

localization method in a Bayesian framework, which explicitly models the kinematics of 

tracer movement and the probabilistic relationship between tracer movements and noisy 

magnetic measurements. Different from [9] which assumes the probability distributions of 

noises or interferences are constant, and separates sensor calibration and tracer localization, 

in this framework, the latent variables (tracer trajectories) as well as the parameters of 

sensors and noises are alternatively estimated based on the expectation maximization (EM) 

algorithm during evaluation [27]. Specifically, given the parameters of sensors and noises, 

the tracer trajectories are localized by the unscented Rauch-Tung-Striebel smoother 

(URTSS) [28], since the Euler’s equation is −3 degree nonlinear. URTSS is a Gaussian 

approximation based smoother using unscented transform to estimate the mean and 

covariance of distribution propagated through nonlinear functions. Given the smoothing 

distrbutions of tracer trajectories, the covriances of additive noises are analytically computed 

by setting the partial derivatives of the log-likelihood function equal to zero. Since the three 

axes of each magnetic sensor are orthogonal to each other and have different gains, the 

parameters of sensors are numerically estimated by solving weighted orthogonal Procrustes 

problem with curvilinear search algorithm [29].

Our contributions to the TTS are two-fold. First, dynamics of the magnetic tracer are 

explicitly modelled and estimated to enhance the localization through a Bayesian approach. 

Lu et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, the unified calibration and localization framework based on EM helps to alleviate 

the bias of the estimations on sensor parameters and the noises. This is very useful in 

practice, especially when the instrument, such as a robotic arm shown in Fig.1, used to 

position the magnetic tracer along a defined trajectory cannot change the orientation of the 

tracer during calibration, while tongue movements during evaluation include more diverse 

orientations of the tracer.

The rest of the paper is organized as follows. Section II introduces the architecture of TTS. 

Section III first describes the probabilistic model for magnetic measurement and tracer state, 

then provides the joint calibration and localization (JCL) algorithm based on EM. Section IV 

presents the experimental results and discussion followed by conclusions in section V. The 

notations used in this paper are list as follows: Upper (lower) bold face letters are used for 

matrices (column vectors). (·)T denotes transposition. E(·) refers the expectation. In is an 

identity matrix of size n. cov(·) denotes the covariance function. |A| denotes the determinant 

of matrix A. tr(A) denotes the trace of matrix A. δ(·,·) refers to the Kronecker Delta 

function. ⊙ denotes dot product.

II. Tongue tracking system overview

The experimental setup for magnetic calibration and localization is shown in Fig. 1, 

including a magnetic tracer, a robotic arm with non-magnetic Plexiglas pole, an array of 24 

magnetic sensor modules, a field programmable gate array (FPGA) board housed in the 

white 3-D printed enclosure, and a USB hub. The tracer, i.e., a small disc-shaped permanent 

magnet (diameter: 6.05 mm, thickness: 1.25 mm, weight: 0.09 g, residual induction: 14800 

G) (KJ Magnetics, Jamison, PA), was mounted on the end of the Plexiglas pole (25 cm) and 

positioned by the 3-D robotic arm (VELMEX, Bloomfield, NY) with a 3.75 μm spatial 

resolution. The 3-axial magnetic sensors (LSM303, STMicroelectronics, Perinton, NY) were 

grouped in six modules of 4 sensors each, and delivered the digitized measured magnetic 

field to a PC via USB port for tracer localization. The positioning of the sensor modules is 

aimed at capturing the changes in magnetic field due to tongue motion, by surrounding the 

cheek and jaw when patients use this system for tongue tracking. Each sensor module 

accommodated four sensor chips, which included an amplifier, a 12-bit ADC, and an I2C 

serial interface. The data from all sensors were collected at 100 Hz sampling rate by the 

FPGA (Mojo Board V3, Embedded Micro, Mountain View, CA), which includes a Spartan 6 

XC6SLX9 FPGA via SPI communication interface, where the data were packetized and sent 

to a Windows PC, which was connected to the Mojo board by a USB cable. A custom 

graphical user interface (GUI) was developed in Windows environment to collect and store 

data from USB port, and to visualize the magnetic sensors signals in real time. In addition, a 

software developed by TinyG was implemented to control the robotic arm. To calibrate the 

gain and offset of each sensor, and indicate its 3-D position and orientation, with respect to 

the system origin and coordinates, a 3-D trajectory was programmed in the TinyG software. 

The robotic arm with the magnetic tracer mounted on the Plexiglas pole was moved 

according to the trajectory presented in the software. After calibration, the evaluation dataset 

for localization was collected in a similar way but with a different trajectory, to evaluate the 

tracking accuracy.
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III. Methods

A. Model of Magnetic Measurements and Tracer Motions

Fig. 2 shows a cylindrical magnetic tracer with thickness l and diameter d, at location p = 

[px, py, pz]T. The orientation of the dipole moment, m, is determined by θ and ϕ. The static 

magnetic flux density, f, generated by this magnet, measured at the sensor location s = [sx, 

sy, sz]T, at a distance much greater than l and d, fits the magnetic dipole model, described by 

the Euler’s equation as follows [12]:

(1)

where m = [m sin θ cos ϕ, m sin θ sin ϕ, m cos θ]T, with magnitude m = π frd2l/4μ0, and fr 

is the residual magnetic strength [10]. Given magnetic field data, f, and sensor position, s, 

the purpose of magnetic localization is to solve the unknown dipole variables including the 

position p and orientation, θ and ϕ. This is also known as solving the inverse problem [30]. 

(1) is valid only under ideal conditions, however, in practice, the measured magnetic field 

also depends on the the parameters of sensors (e.g., the gains, positions, orientations and 

offsets), and the ambient interferences (e.g., the EMF, residual magnetization in the nearby 

ferromagnetic objects, and induced field from electric current around the sensor). Therefore, 

we modify model (1) to express the magnetic field measured by a sensor, y, as follows:

where h(·) is the modified function of dipole magnetic field, fe denotes the earth’s magnetic 

field (EMF), v is the additive noise, dipole variable x = [px, py, pz, θ, ϕ]T, measurement 

parameters ψ = {G, H, s, o, fe}, diagonal matrix G∈R3×3 and vector o∈R3 are the gain and 

offset of the sensor, respectively; H represents the 3-D rotation matrix to correct the 

misalignment errors of individual sensor orientations, HTH = I3 and |H| = 1. In [9], we 

moved the tracer along a precise trajectory using a robotic arm, while simultaneously 

recording magnetic field data (i.e., given a group of x and y), then calibrated sensor 

parameters ψ, by resolving a nonlinear least square problem towards minimizing the 

variance of noise v. This calibration is data driven, i.e., with different sets of x and y, the 

optimized ψ may be different. Even if we collect plenty of x and y data to cover the spans of 

dipole variables and the corresponding magnetic field, the distributions of trajectories in 

calibration and evaluation are likely to be different, and the calibrated parameters are going 

to be biased as a result. This bias degrades the localization accuracy. Moreover, the 

measurement model expressed by (2) is static, and ignores the state transition of tracer, 

which reflects the tongue motion information. Therefore, we build a dynamic tracking model 

based on a stochastic system as follows:
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where the state vector xt∈R5 represents the position and angles of the magnetic dipole at 

time t, t = 1, 2, 3, …, T, with an initial distribution , process noise 

. Considering the close relationship between adjacent states during 

continuous movements, we assume x follows a first-order Markov process. The observation 

vector  represents the magnetic field data measured by sensor j, j = 1, 2, 3, …, C, 

where C is the total number of sensors, observation noise . Here we assume 

Q is diagonal, i.e., the components of tongue movements are unrelated with each other; 

assume Rj is diagonal and cov(vj, vi) = Rj ⊙ δ(i, j), i.e., the noise components of different 

sensors and axes are unrelated to each other. By combining all the sensors, (3b) can be 

written as

(4)

where , ħ(xt) = [h(xt, ψ1); …; h(xt, ψC)], , R consists of Rj. In 

this dynamic tracking model, the distributions of state sequence {mt, Pt}t=0:T, the noise 

covariances {Q, R} and the sensor parameters {Gj, Hj, sj, bj}j=1:C are estimated based on 

the measurements {y}t=1:T, where  is the general offset. The EMF, fe, is assumed 

to be constant during the experiment, since the current TTS prototype, shown in Fig. 1, is 

stationary.

B. Joint Calibration and Localization based on EM

For nonlinear dynamic systems, three kinds of approaches are usually used to estimate the 

states and parameters. First, the states are augmented with the parameters and recursively 

estimated by filtering methods [31]. However, this approach will result in large parameter 

covariance [32], and may cause the filter to diverge since the Gaussian approximation tends 

to become singular [33]. Second, the marginal likelihood of the parameters is directly 

approximated by filtering methods, then parameters are sought by numerical optimization 

[34]. This approach needs more complex derivations and cannot easily address the 

orthogonal constraints on sensor rotation matrix for our application. The third is EM 

algorithm [27] which iteratively optimizes the parameters to maximize the lower bound of 

log-likelihood of measurements. EM works efficiently when the parameter optimization is 

performed in closed-form. In the proposed tracking model, the sensor positions, s, are 

involved in the nonlinear dipole equation, have no closed-form solution. Considering the 

inaccuracies involved in the 3-D printing and installation of TTS components and sensors 

during system assembly, s was known with a range of uncertainty within ±3mm. Here s was 

identified only once with a known trajectory and was not included in the subsequent 

alternative calibration and localization steps. The sensor rotation matrix H with orthogonal 

constraints has no closed-form solution either. Here, we present two strategies: first, 
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calibrating H once with a known trajectory, only adjusting G, b, Q, and R analytically in 

EM; second, optimizing H with these parameters by embedding a curvilinear search 

algorithm [29] in EM. The performances of these two strategies are compared in section IV. 

Here we describe EM algorithm for the tongue tracking application as follows.

EM is an iterative algorithm for seeking maximum likelihood parameter estimates when the 

model depends on latent variables. For our case, we estimate sensor parameters and noise 

variances, based on the observed magnetic field y1:T. The latent variables are the sequence 

of dipole positions and orientations, x1:T. EM algorithm iteratively performs expectation (E) 

step and maximum (M) step until it convergences. E step uses y1:T and current parameter 

estimates Θ(k) to infer the latent variables x1:T, then computes the conditional expectation of 

likelihood; The M step updates the parameter estimates by maximizing the expectation. The 

above processing steps can be formulated as

(5)

where L = p(y1:T, x1:T|Θ) is the likelihood function with respect to Θ. Based on the first-

order Markov process, L can be expressed as

(6)

a) E Step—The computation of E[log(L)|y1:T, Θ(k)] requires the knowledge of smoothing 

distributions p(xt|y1:T Θ(k)) and p(xt, xt−1|y1:T, Θ(k)) [33]. For nonlinear models, they are 

estimated by Gaussian smoother approximation methods, such as extended Rauch-Tung-

Striebel smoother (ERTSS) with Taylor series approximations [35] and URTSS [28] with 

unscented transform. The unscented transform deterministically chooses sigma points to 

capture the mean and covariance of a random variable undergoing a nonlinear 

transformation, does not need to compute the Jacobians, and is more accurate than Taylor 

series approximations [36]. Therefore, we employ URTSS to estimate the smoothing 

distributions as follows [33]:

where  are the means and covariances estimated by URTSS, Kt−1 is the 

smoother gain. Then the conditional expectation of likelihood is computed as follows [34]:
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(8)

(9)

(10)

where χt,i, i = 0, 1, 2, …, 2n are the sigma points sampled from smoothing distribution 

,  and  are the associated weights for the mean estimates and covariance 

estimates propagated through nonlinear function ħ(·), respectively. They are computed as 

follows [36]:

where  is the ith column of the matrix square root. Here we use a common 

setting α = 1, β = 0, κ = 0 [34], then , and (9) can be simplified as

(12)
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b) M Step—Setting the partial derivatives with respect to Q, R, P0 and m0 equal to zeros, it 

is easy to compute the optimal parameters , ,  and  for maximizing E[log(L)|y1:T, 

Θ(k)] at the kth iteration as follows [34]:

Based on (8) and (12), the optimization of G, H, and b can be approximated by resolving a 

least square problem as

(14)

Denoting  and , according to the magnetic 

measurement equations (2b) and (4), the closed-form solutions of G and b for each sensor 

are given as follows:

(15)

where j is the sensor number,  is the kth row of Hj, and k = 1, 2, 3 are responding to the 

three axes. Denoting  and Bj = (Rj)−1/2Gj, then the optimization of 

Hj can be expressed by resolving a weighted orthogonal Procrustes problem as follows:

Denoting ,  and 

, then (16) can be rewritten in matrix form as follows:
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This problem does not have a closed-form solution, but can be solved by iterative methods, 

which generate a sequence of feasible points converging to a local minima. These iterative 

methods are often computationally expensive in order to preserve the orthogonal constraint, 

such as using singular value decomposition [37], or searching along geodesic by solving 

partial differential equations [38]. To reduce the computation time, a curvilinear search 

algorithm based on the Cayley transform has been developed recently [29], which is briefly 

described as below. Given feasible point H and gradient , then a skew-symmetric 

matrix W is defined as W : UHT − HUT. According to the Cayley transform [39], 

 is a rotation matrix. Then the new trial point is computed by

(18)

where the step size τ can be estimated by Barzilai-Borwein method [40]. And the non-

monotone strategy [41] is used to guarantee global convergence. To apply the curvilinear 

search in our case, we compute the gradient U according to (17a) as follows (the superscript 

j is not shown for simplicity):

(19)

(20)

The procedure of joint magnetic calibration and localization is summarized in Algorithm 1. 

Hf controls the optimization of sensor rotation matrix H. At step 14, setting break means 

running JCL without updating H (JCLNSR); instead, setting Hf = 1 means further running 

JCL with the update of H after JCLNSR convergences. The initial sensor parameters 

were estimated by our previous method [9] using a calibration data set with known trajectory 

and recorded magnetic field data. The sensor positions s were not updated during the EM 

optimization. In calibration data set we estimated the sensor offsets o0, while for evaluation 

we remeasured the EMF, and generate initial general offset b0 = o0 + fe. The mean of prior 

distribution  was estimated by computing the first point of trajectory with the method 

proposed in [18]. The initial covariances  and  were set empirically.
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Algorithm 1

Joint magnetic calibration and localization

Input: The number of iterations L, the stop threshold δ of EM algorithm, the recorded magnetic field data Y = {y}t=1:T, 

initial sensor parameters , initial prior distribution  and initial noise 

covariances . Hf = 0.

  1: for n = 1 : L do

  2:

 Run URTSS with Y and  to estimate 

;

  3:

  Update  to  with respect to , Y and Xn−1 according 
to (9)–(13);

  4:  if Hf = 0 then

  5:

  Update  to  by computing {Gn, bn} with respect to Rn, Hn−1, Y and Xn−1 

according to (15);

  6:  else

  7:

  Update  to  by alternately optimizing {G, b} and H based on curvilinear 
search according to (15), (17), (18) and (20).

  8:  end if

  9:

 Compute the J(n) = [E(log(L)]n with respect to , Y and Xn−1 according to 
(8);

10:

 if n > 1, Hf = 1 and  then

11:   break, end;

12:  end if

13:

 if n > 1, Hf = 0 and  then

14:   break or Hf = 1 (optional), end;

15:  end if

16: end for

Output: The optimized {Ωs, Ωp, Ωc} and X.

IV. Evaluation

In this section, we present experimental data to show the bias of separate calibration across 

different datasets, and assess the performance of the proposed JCL algorithm in reducing 

calibration bias and improving localization accuracy.
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A. Data Sets

We placed the magnetic tracer on the tip of the robotic arm in different orientations, and 

controlled the robotic arm to move along different trajectories, as shown in Fig. 3. At the 

same time, the magnetic field data were recorded by the 24 three-axial sensors. Based on 

different combinations of orientations and trajectories, fifteen datasets were generated, as 

listed in Table I. The average speed of the robotic arm movement has a mean of 8.29 mm/s 

and standard deviation of 0.26 mm/s. In order to emulate various tongue movement speeds, 

we have down-sampled the trajectories and looked at the effect on the localization. After 

down-sampling, the speed of movement reach mean of 131 mm/s and standard deviation of 

130 mm/s, which are closer to the maximum speed of the tongue motion. The experiments 

were performed at the same location in different days within a month.

B. Diversity of Calibration Result on Different Data Sets

We calibrated the sensor parameters based on the nonlinear least square method in [9] using 

data sets D1–D15. The 24 three-axial sensors are considered as 72 individual channels. The 

gains of sensors G are arranged as a vector, {[gx(1), gy(1), gz(1)], [gx(2), gy(2), gz(2)]}, ⋯, 

[gx(24), gy(24), gz(24)]} ∈ R72. The sensor Euler angles for misalignment error are 

transformed from the three-dimensional rotation matrix H using the method in [42] and 

arranged as a vector {[ex(1), ey(1), ez(1)], [ex(2), ey(2), ez(2)], ⋯, [ex(24), ey(24), ez(24)]} ∈ 
R72. The positions and offsets of sensors are represented in a similar way. Figs. 4a–4d use 

box plots to show the distributions of the estimated sensor parameters across datasets for 

each of the 72 channels. The spacing between the top and bottom of each box indicates the 

degree of dispersions in the estimated parameters. Figs. 4a and 4b show that the dispersions 

in sensor gains and offsets for most channels are clear, which reveal the biases of calibration 

across different datasets; while Figs. 4c and 4d show that the dispersions in sensor angles 

and positions are small, which means they are not sensitive to different datasets. Therefore, 

considering the trade-off between calibration accuracy and computation efficiency, as 

mentioned in Section II.B, the proposed JCL algorithm iteratively updates the estimation of 

sensor gains and offsets, sets the update of sensor rotation matrix H as an option, but does 

not update the estimation for sensor positions.

C. Convergence of the JCL algorithm

Using D1 (cube trajectory, θ = 0°) as the calibration data set, and D2–D15 as the evaluation 

data sets, we tested the JCL algorithm with and without the update of sensor rotation matrix, 

denoted by JCL and JCLNSR, respectively. We observed the numbers of iterations they took 

before the stop criterion were met, i.e. |[J(n)− J(n−1)]/J(n−1)| < 10−3, where J is the 

conditional expectation of log-likelihood (CEL) estimated by (8), and n is the iteration 

number. Based on (6), we know that the likelihood function L ≤ 1, and then CEL J ≤ 0. Fig. 

5a shows the CELs calculated by JCLNSR over iterations for all the evaluation data sets, 

which increased markedly in the early iterations and rapidly converged to a stable negative 

value. This result demonstrates the climbing hill optimization of JCLNSR and coincides 

with the derivation of (6) that CEL J ≤ 0. Across all 14 evaluation datasets, the JCLNSR 

algorithm took 4 – 17 iterations to meet the stop criterion, with a mean of 9.71 and a 

standard deviation of 4.10 iterations. Fig. 5b shows the CELs calculated by JCL. It is clear 
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that after JCLNSR converged, the sensor rotation matrix H was involved in the alternative 

update of JCL, then the CELs further increased a few steps and converged again. That 

suggests the updates of H improve the fitting of measured magnetic field with our 

probability model. The proposed algorithms were implemented in Matlab and C mixed 

programming. The computations were run on Windows 7 Professional SP1 64 bit with Intel 

Core CPU i7-6700K @ 4.00 GHz. The time for JCLNSR for each dataset ranged between 

0.58 and 1.96 minutes. The time for JCL for each dataset ranged between 2.02 and 4.91 

minutes. However, once the sensors and noise parameters are calibrated, the localization 

time of unscented Kalman filtering for each data point is within 10 ms. That indicates we 

can run JCLNSR/JCL in the background or at the rest intervals between sessions to update 

the parameters in batch mode, and perform tongue tracking during sessions.

D. Comparison of Calibration Performance

The calibration biases of the JCL algorithm and the nonlinear least square method in [9] are 

listed in Table II. The sensor parameters directly computed on each evaluation data set with 

known trajectories and magnetic tracer orientations are considered as the target values x∗ ∈ 
R72 (for 72 channels). The normalized calibration bias is computed as ‖x−x∗‖/‖x∗‖, where x 
is the estimated value without known trajectories and magnetic tracer orientations in 

evaluation datasets. On average, the estimation biases of JCL are smaller than those of our 

previous algorithm for all the sensor parameters. The superiority of JCL on the estimation of 

sensor offsets is significant (paired t-test, p = 2.55 × 10−4). This is because JCL takes 

advantage of sensor measurements in evaluation datasets and uses the knowledge of 

continuous movements of magnetic tracer, to adaptively adjust the estimation of parameters, 

while our previous algorithm only depends on the information from calibration data set D1.

E. Comparison of Localization Accuracy

Table III shows the RMSE obtained for each evaluation data set with different localization 

algorithms. LIN, LIN+LM and NM denotes linear algorithm, hybrid algorithm and nonlinear 

algorithm proposed in [13], [18] and [10], respectively. All of these three algorithms used 

the sensor parameters estimated from dataset D1, based on the nonlinear least square 

calibration method in [9]. On average, JCL achieved the best performance both in position 

(0.45 mm) and in orientation (2.33°). A one-way ANOVA with repeated measures indicated 

that the five algorithms differed significantly in both position and orientation (d.f. = 4, F = 

32.81, p = 5.76 × 10−15 and d.f. = 4, F = 28.08, p = 1.48 × 10−13, respectively). Additional 

paired t-test showed that the JCL and JCLNSR were significantly better than each of the 

other algorithms in position (p ≤ 1.97 × 10−5). Furthermore, JCL significantly outperformed 

LIN, LIN+LM and NM in orientation (p ≤ 0.04).

The relative poor performances of the LIN, LIN+LM and NM algorithms probably resulted 

from inter-dataset differences in observation noises and trajectories of the magnetic tracer, 

which caused error in calculating the magnetic field in ideal dipole model, expressed in (1), 

with the biased estimations of sensor parameters. Especially, LIN algorithm, which 

computes the inverse of matrix of magnetic field data [13], was very sensitive to this error, 

LIN+LM algorithm uses LIN for initial estimation of each sample, then performs fine 

gradient search, improves the localization performances, but still partially suffers from the 
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drawback of LIN. The NM algorithm, which only employs LIN for the initialization of the 

first sample, then implicitly uses the state transition relationship of continuous magnet 

movements for localization of the following samples, was less influenced by the inter-

dataset differences. The JCL algorithm employs a Bayesian framework and EM algorithm to 

correct the estimation of system parameters based on the magnetic sensor measurement in 

evaluation datasets and adapts to the inter-dataset differences. Fig. 6 shows the examples of 

localization results for different evaluation data sets. The trajectories reconstructed by JCL 

are clearly closer to the ground truth. The great average errors in orientation of all the 

methods (> 2°) are partly due to the manual setting errors of the angles θ and ϕ.

F. Data Requirement of JCL

In the tracking model of JCL (see (3)), we use the magnetic field data from evaluation sets to 

adjust the gain, offset, angles (i.e., rotation matrix H), and the covariance matrices of 

measurement noises of sensors. Since the TTS system is equipped with 24 three-axial 

sensors, we need to optimize 12 × 24 = 288 sensor parameters. Note that, since the 

recordings of sensors are assumed to be uncorrelated, at the M step of EM algorithm, the 

parameter optimizations for these sensors are independent (see (13)–(17)), the dimension of 

each is 12. Additionally, we optimize the covariance matrices of the tracer state noise which 

contains 5 parameters. In order to investigate the data requirement of JCL algorithm, we 

evenly down-sample the evaluation sets to different sizes and assess the localization 

accuracies. The averaged results with standard deviations across data sets (D2–D15) are 

listed in Table IV. Generally, the averaged RMSEs in position and in orientation decrease 

with increasing data points. The high dimensional parameter optimization of JCL may over 

fit the small number of data points (i.e., 100); in this case, the averaged RMSE of JCL is 

large (> 1 mm), even greater than that of LIN+LM method (shown in Table III). When using 

≥ 300 data points, JCL can work on the experiment datasets; in this case, the averaged 

RMSEs of JCL are below 0.5 mm in position and below 2.5◦ in orientation. Therefore, to 

obtain the advantage of JCL in localization accuracy, we need to record more than 300 data 

points in the evaluation set. If the available data points are less than 200, it is better to use 

separate calibration methods. Alternatively, we can embed the likelihood function of the 

calibration set into (6) as a regularization item to reduce the risk of overfitting as follows:

(21)

where L is computed on evaluation data set based on (6),  are calibration data, 0 

≤ λ ≤ 1 is the tradeoff coefficient, λ = 0 corresponds to JCL algorithm, λ = 1 corresponds to 

the separate calibration. We will study this regularization approach in future.

G. Robustness to various speed levels

Due to the rotation and movement limitation of the robotic arm, we used synthetic data to 

test the robustness of JCL across various speed levels. The tracer trajectories for evaluation 

were randomly generated by,
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where t = 1, 2, …, 400, considering the 100 Hz sampling rate, the duration of each trajectory 

was 4 s. The given constrains kept x within the range of our tongue tracking system. The 

initial point x0 was randomly selected with uniform distribution in the workspace. The 

random coefficient r ∈ R5, . η = {1.0, 1.5, 2.0, 2.5, 3.0} controlled different 

speed levels. The displacement speeds and orientation speeds of the generated trajectories 

are listed in Table V, which cover the range of tongue movement speeds during speech. The 

initial sensor parameters were calibrated from data set D1. To simulate the evaluation sets, 

we added random biases to the initial sensor parameters, which were estimated by the data 

sets D2–D15. The random biases of sensor orientations were ; The random 

biases of sensor gains were −20 dB; The random biases of sensor offsets were −14 dB; The 

random ambient noises were −30 dB. With these biased sensor parameters and the random 

tracer trajectories generated by (22), the magnetic field data sets were synthesized based on 

model (2), repeated 100 times for each speed level. The average tracking errors of different 

localization methods on the synthesized data sets for various speed levels are presented in 

Fig. 7. Figs. 7a and 7b show that (i) the tracking errors of JCL in position and orientation are 

both lower than those of other methods when η ≤ 2.5. At η = 2.0, the tracer speeds reach 

311.74±132.29 mm/s in position, 159.27±120.28 deg./s in θ, 79.47±60.27 deg./s in ϕ, which 

are higher than normal tongue movement speeds during speech; (ii) the tracking errors in 

position and orientation of JCL gradually enlarge with the increasing of tracer movement 

speeds, since the tracer dynamic information contribute less to the computation of JCL, and 

the estimation errors of unscented transform in UKF smoothing increase with greater state 

variances; (iii) the tracking errors of NM change little across different tracer movement 

speeds, because NM only uses tracer dynamic information to set the initial points, does not 

require any derivative information, and is not sensitive to the initial points in the small 

workspace; (iv) interestingly, the tracking errors of LIN and LM enlarge with the increasing 

of tracer movement speeds. LIN does not use the dynamic information and should not be 

sensitive to the tracer movement speeds. However, LIN is sensitive to noise. With great 

speeds, the tracer has more chance to reach the boundary area of the workspace, which is 

relative far from the sensors. And then the corresponding sensor measurements are smaller, 

the ambient noises are more likely to degrade the localization accuracy of LIN. LM uses 

LIN to estimate the initial point and depends on the derivative information and would be 

influenced by the bad initial point provided by LIN.

H. Pilot Human Subject Trial

This study was conducted in accordance with the Dept. of Health and Human Services 

regulations for protection of human subjects. The protocol for this research was approved by 

the Institutional Review Board of the Georgia Institute of Technology. A healthy male 

subject, 35 years old, participated in this study. A magnet (diameter: 6.05 mm, thickness: 

1.25 mm, weight: 0.09 g, residual induction: 14800 G) was temporarily attached to the upper 
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surface of the subject’s tongue, about 1 cm from the tongue apex, using tissue adhesives. 

The subject was asked to hold his head stationary against the support as portrayed in Fig. 8a 

that was captured during the experiment, such that the tracer movements could only be 

attributed to the tongue motion as opposed to the head motion artifacts. The subject was 

asked to speak single words “lips [lips]” and “sights [saits]”, which consist of vowels and 

consonants and take 1.13 s and 1.20 s, respectively. When we performed JCL, we also used 

the magnetic field data that were recorded before and after the speaking of each word to 

avoid overfitting. The total data length we used for each word is 300, i.e., 3 s. Figs. 8b and 

8c show the results of tongue movement trajectories reconstructed by the JCL algorithm for 

these two words. It can be seen that in /li/, the tongue tip is placed against the middle of the 

alveolar ridge; for /s/, the tongue tip touches behind the upper teeth; for /p/, the tongue tip 

slightly drops down with natural open of the mouth; for /ai/, the tongue begins back and low 

in the mouth, and then moves to a mid-high front; in /ts/, the sibilant affricate, tongue lifts up 

to stop the air flow entirely, then moves in the direction of the sharp edge of the teeth. The 

red vectors denote estimated y and z-components of the normalized magnetic moments, i.e., 

[sinϕsinφ, cosθ], see (1). While speaking the words, the red vectors varied, but generally 

pointed upwards, since we placed the tracer on the tongue upper surface with north pole 

faced up.

V. Conclusion

In this paper, a joint magnetic calibration and localization algorithm has been proposed to 

address the bias estimation problem in a tongue tracking system (TTS). The probabilistic 

relationship between the dynamics of dipole motion and the noise measurements was 

explicitly modelled. Based on EM criterion, the estimations of magnetic dipole location 

states and the measurement parameters were alternatively adjusted. By employing 

curvilinear search, we overcame the problem of orthogonal constraints in updating the 

sensor rotation matrix. Comprehensive experimental results on 15 datasets demonstrated 

variations of the calibrated sensor parameters, and showed the proposed method has lower 

calibration error and higher localization accuracy than the existing approaches. In the pilot 

human subject trial, the tracer trajectories reconstructed by the proposed method reflected 

the tongue kinematics during speech. We intend to study sensor selection algorithms to 

optimize the configuration of TTS and accelerate the computation of the proposed method. 

We will also conduct additional experiments on both healthy subjects and those with speech 

impairments.
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Fig. 1. 
Experimental setup for magnetic calibration and localization.
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Fig. 2. 
Vector representation of the magnetic dipole model [10].

Lu et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Different target trajectories in the 3 × 3 × 3 cm3 experimental space. (a) cube: 537 sample 

points; (b) Helix: 455 sample points; (c) Fermats spiral: 553 sample points.
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Fig. 4. 
Distributions of the estimated sensor parameters: (a) gains, (b) offsets, (c) Euler angles, (d) 

positions, across 15 data sets for each of the 72 channels. The middle line, the bottom, and 

the top of the box represent the median, the 25th, and the 75th percentiles, respectively. The 

whiskers represent the furthermost value in the 1.5 interquartile ranges. Outliers are not 

represented in this figure.
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Fig. 5. 
Conditional expectations of likelihood calculated by (a) JCLNSR and (b) JCL, over the 

number of iterations.
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Fig. 6. 
Examples of localization results obtained by different algorithms on: (a) data set D2, (b) data 

set D6, and (c) data set D12. The reconstructed trajectories are marked by blue dashed lines, 

and the ground truth trajectories are marked by red lines.
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Fig. 7. 
The average tracking accuracies with different speed levels for different methods: (a) RMSE 

in position vs. speed; (b) RMSE in position vs. speed. The error bars represent standard 

errors of the means.
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Fig. 8. 
(a) experimental setup for the pilot human subject trial, as well as tracking examples of (b) 

word “lips” and (c) word “sights” in sagittal plane, the blue lines represent the reconstructed 

trajectories, the red vectors indicate estimated orientations of the magnetic tracer, the green 

squares and white circles denote the beginning and end points of tongue trajectories, 

respectively.
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Table IV

Localization Performance of JCL in Terms of RMSE in Tracer Position (P) and Orientation (O), on Down-

Sampled Evaluation Sets with Different Sizes (S).

S 100 200 300 400

P(mm) 1.56 ± 1.52 0.57 ± 1.16 0.45 ± 0.15 0.43 ± 0.12

O(deg.) 2.80 ± 0.87 2.61 ± 1.01 2.46 ± 1.10 2.36 ± 1.05

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 33

Table V

The Movement Speeds (AVG.+STD.) of The Generalized Trajectories.

Speed level Displacement speed(mm/s) Orientation speed in ϕ (deg./s) Orientation speedin φ (deg./s)

η = 1.0 157.40 ± 66.44 80.05 ± 60.06 39.76 30.23

η = 1.5 235.90 ± 100.68 119.38 ± 90.28 59.96 ± 45.30

η = 2.0 311.74 ± 132.29 159.27 ± 120.28 79.47 ± 60.27

η = 2.5 388.18 ± 165.79 199.40 ± 150.73 99.27 ± 75.26

η = 3.0 461.95 ± 196.74 238.24 ± 181.41 119.30± 90.37
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