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Abstract

Diabetic kidney disease is the leading cause of kidney failure. However, studies of molecular 

mechanisms of early kidney damage are lacking. Here we examined for possible linkage between 

transcriptional regulation and quantitative structural damage in early diabetic kidney disease in 
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Pima Indians with type 2 diabetes. Tissue obtained from protocol kidney biopsies underwent 

genome-wide compartment-specific gene expression profiling and quantitative morphometric 

analysis. The ultrastructural lesion most strongly associated with transcriptional regulation was 

cortical interstitial fractional volume (VvInt), an index of tubule-interstitial damage. 

Transcriptional co-expression network analysis identified 1843 transcripts that correlated 

significantly with VvInt. These transcripts were enriched for pathways associated with 

mitochondrial dysfunction, inflammation, migratory mechanisms, and tubular metabolic functions. 

Pathway network analysis identified IL-1β as a key upstream regulator of the inflammatory 

response and five transcription factors cooperating with p53 to regulate metabolic functions. 

VvInt-associated transcripts showed significant correlation with the urine albumin to creatinine 

ratio and measured glomerular filtration rate 10 years after biopsy, establishing a link between the 

early molecular events and long-term disease progression. Thus, molecular mechanisms active 

early in diabetic kidney disease were revealed by correlating intrarenal transcripts with 

quantitative morphometry and long-term outcomes. This provides a starting point for identification 

of urgently needed therapeutic targets and non-invasive biomarkers of early diabetic kidney 

disease.
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INTRODUCTION

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and 

end-stage renal disease (ESRD) globally, contributing to spiraling healthcare costs and 

straining health care resources1–3. The current diagnostic approach to DKD using estimated 

glomerular filtration rate (eGFR) and urinary albumin:creatinine ratio (ACR) identifies 

individuals susceptible to progressive kidney disease and cardiovascular morbidity and 

mortality4–8. The trajectory of DKD, however, is often variable at the early stages9, and 

exposes the significant limitations of our current approach to identifying the at-risk 

population in early clinical disease10. Moreover, progression to ESRD in the absence of 

albuminuria11 and the frequent regression of microalbuminuria further aggravate the 

diagnostic and therapeutic challenges in early DKD12–15. The advent of high-throughput 

molecular profiling approaches provides a unique opportunity to advance our understanding 

of diabetic complications. The most commonly used methodology, genome-wide 

transcriptomic profiling, has been applied successfully in various kidney diseases in humans 

and model organisms, highlighting its potential for detecting and exploring relevant 

pathways in DKD16–19. A complementary approach to understanding pathophysiologic 

mechanisms leading to DKD is through quantitative morphometric studies of tissue from 

kidney biopsies. Combining these two approaches allows exploration of the molecular 

pathways associated with structural damage in DKD.

An overarching goal of our studies is to define the molecular correlates of early structural 

damage in DKD and their association with long-term outcomes. As tubulointerstitial 
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changes are major determinants of progressive kidney damage20, the present study identified 

the transcriptional profiles associated with the degree of tubulointerstitial ultrastructural 

damage in protocol kidney biopsies from 49 Pima Indians with early DKD. The resulting 

morphogenomic signatures were then compared to transcriptional profiles active in 

established DKD, thereby linking early alterations to the long-term course of DKD.

RESULTS

An overview of the analytical strategy is shown in Figure 1. Baseline clinical, demographic, 

and morphometric characteristics at time of kidney biopsy are presented in Table 1. Mean 

measured glomerular filtration rate (iGFR; iothalamate) was 147 ml/min and median urine 

ACR was 35 mg/g. Of the 49 participants included in this study, 23 had normal ACR (<30 

mg/g) at the time of biopsy, while 19 had microalbuminuria (30–299 mg/g) and 7 had 

macroalbuminuria (>300 mg/g). Cortical interstitial fractional volume (VvInt), expressed as 

a percentage of renal cortex, was 29.5±9.6% compared with 11.9±2.8% in non-diabetic 

living kidney donor biopsies (p <0.0001). Time course of iGFR and ACR over a median of 

10 years of post-biopsy follow-up (median of 15.9 years of observation from enrollment) are 

provided in Supplementary Figure S1 (A and B).

Gene expression signatures associated with VvInt

Protocol kidney biopsy specimens were used for Affymetrix-based gene expression profiling 

of the tubulointerstitial compartment. Weighted Gene Co-expression Network Analysis 

(WGCNA)21 was used to define co-expressed gene sets (modules) and their relationships 

with VvInt, iGFR, and ACR (Figure 1). The protocol first identifies modules or groups of 

genes that preserve their correlation structure within each module, and then merges these 

modules based on their module eigengene (ME) profile (Step1). This approach reduces the 

dimension of the dataset and helps to define relevant functional associations. Using this 

method, we identified 11 functional modules in the tubulointerstitial expression data set. The 

module sizes ranged from 129 to 2378 transcripts. The MEs were then tested for their 

association with clinical and morphometric traits measured at the time of biopsy, (Step2), 

minimizing multiple testing penalties (Figure 2). MEs significantly associated with the 

structural parameter VvInt (p ≤0.05) are highlighted in Figure 2. Some MEs that showed 

significant correlation with VvInt were also associated with iGFR and ACR at the time of 

biopsy, though to a lesser extent.

Four modules in Figure 2 (Black, Blue, Brown and Green) showed the strongest eigenvector 

associations with VvInt (P value ≤ 0.05). These modules contained 484, 1664, 1617, and 

1118 co-expressed genes respectively. Of the 1843 genes significantly correlated with VvInt 

(q-value ≤ 0.05) in these four modules, 913 co-expressed transcripts in the brown and black 

modules correlated negatively with VvInt and 930 transcripts found in the blue and green 

modules correlated positively with VvInt (Supplementary Table S1). Twenty-one genes from 

the black module that correlated negatively with VvInt showed positive correlation with 

iGFR at the time of biopsy; 123 genes from the green module that correlated positively with 

VvInt showed positive correlations with ACR (Supplementary Table S2).
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Transcriptional interaction network and functional context of VvInt associated transcripts

VvInt associated transcripts from the 4 modules were then tested for known interactions 

using a co-citation network approach as implemented in Genomatix Pathway System 

(https://www.genomatix.de). Genes were scanned on PubMed indexed publications for 

association with each other on a sentence level through a functional attribute (e.g., “A 

induces B”). The 100 transcripts with the highest co-citation connectivity were displayed 

separately for positive and negative correlation with VvInt in co-citation networks (Figure 3 

A and B). Major network subdomains included inflammatory signaling mediators (e.g., 

CCL2, and ICAM1), cell cycle control and proliferation mediators (e.g., TP53), and growth 

factor related signaling mechanisms (e.g., EGF and VEGF), suggesting activation of these 

transcriptional programs in the early stages of DKD. The VvInt associated gene sets were 

then analyzed for the gene ontology (GO) traits “cellular compartment” and “biological 

processes”. Transcripts correlated positively with VvInt were enriched with immune 

regulatory functions, cell activation, as well as cellular compartments including focal 

adhesion, extracellular matrix and space, and plasma membrane. Transcripts correlated 

negatively with VvInt were enriched with cellular pathways localized within specialized 

cellular organelles such as mitochondria and peroxisomes.

Pathway analysis was performed to define the functional context of the VvInt-associated 

transcripts. Significant enrichment with migratory, inflammatory and cell-cell/cell-matrix 

interaction pathways was found in the transcripts that correlated positively with VvInt. In 

contrast, transcripts that correlated negatively with VvInt showed significant enrichment for 

PXR/RXR Activation, FXR/RXR Activation pathways and metabolic pathways, turnover of 

amino acids, sugars, and lipids.

Pathway network associated with VvInt

The complex interaction structure among disease-associated pathways was visualized by 

constructing a VvInt-associated pathway network from the 53 significantly enriched 

pathways using the 1843 VvInt-related transcripts as the analysis input (Figure 4). In this 

representation, highly interconnected pathways (i.e. multiple shared genes) were aggregated 

into subclusters/domains. A clear bowtie structure of the VvInt-associated pathways 

emerged. Enzymatic and metabolic pathways co-aggregated, implying that their expression 

changes are associated with greater tubulointerstitial damage in early DKD. Additionally, 

amino acid and lipid metabolism pathways intersected with detoxification pathways. In the 

second subdomain, signaling mechanisms including extracellular matrix and growth factor 

signaling such as “Inhibition of Angiogenesis by TSP1” co-aggregated, also implicating the 

interaction of these pathways in early disease manifestation. In the VvInt pathway network, 

a number of pathways were densely interconnected throughout the entire network (Figure 4). 

This trend was also reflected in the hierarchy of genes shared across multiple pathways. 

Most of the genes were private or shared between only 2 or 3 pathways. A small subgroup, 

however, showed high connectivity among the VvInt-associated pathways, including 

PRKCQ, NFKB1, MAPK8, ALDH2, and RAC1. The capacity of these genes to connect 

multiple processes and signaling mechanisms suggests a more central role in coordinating 

phenotypic features and clinical traits of potential interest.
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Identification of upstream regulators

The presence of a complex interconnected network suggests the possibility of a potential 

causal upstream mechanism activated in this dense network that affects the observed 

expression patterns in these downstream functions. We extracted 229 genes that were shared 

between more than one pathway (Supplementary Table S3). Using a causal network 

inference approach22 IL1β was identified as the master regulator of inflammation in our data 

set, affecting the expression of more than 50% of these shared gene sets via intermediate 

regulators. A separate set of five transcriptional regulators (PHF1, SOX2, NFAT5, TRIM29, 

HEY1), linked with the common intermediate transcriptional regulator TP53, can modulate 

downstream targets associated with differentiated tubule function and oxidative stress.

VvInt-correlated transcripts associated with long-term clinical disease course

To further elucidate the relationships between early structural damage, associated gene 

expression, and disease progression, VvInt expression modules were tested for their 

association with iGFR and ACR over time. The median [IQR] observation period for study 

participants was 15.9 [2.5] years, with a median follow up of 10.1 [2.0] years after kidney 

biopsy (Figure 5). From the 1843 VvInt-related transcripts within the four identified 

modules described above, 787 and 466 genes correlated with at least three iGFR and ACR 

measurements, respectively, over a median 10 year follow up after biopsy (P-value ≤ 0.05). 

We also evaluated the association of the VvInt modules with DKD progression defined by 

the slopes of iGFR and ACR. 33% of the VvInt associated genes in the black and brown 

module were associated significantly with iGFR slope (Supplementary Table S1). None of 

the four modules showed significant association with ACRslope.

To test the ability of this approach to identify non-invasive surrogates of VvInt linked to 

long-term clinical outcomes, a pilot study measured urinary EGF (uEGF) as a candidate 

non-invasive biomarker of renal function in the subset of patients with urine samples 

available from time of biopsy (n=46 out of 49 samples). Intra-renal EGF mRNA correlated 

positively (r=0.43, p-value <0.0001) with the urinary protein levels suggesting that intra-

renal level of EGF is captured by the urinary protein. uEGF levels were strongly correlated 

with baseline kidney function, iGFR (r =0.47, p-value <0.0001) and with iGFR slope (r= 

0.25, p-value =0.01), indicating its potential utility as a non-invasive biomarker capturing the 

disease progression.

Relationship of VvInt-associated transcripts in early DKD with differential expression in 
advanced DKD

To determine how gene expression patterns observed in the Pima early DKD biopsies 

compared with those of more advanced DKD, differential gene expression patterns of VvInt-

associated transcripts from the Pima protocol biopsies were compared with tubulo-interstitial 

expression patterns in advanced clinically indicated biopsies (n=17) from a European 

(ERCB) DKD cohort. 1302 of the 1843 (71%) VvInt-related transcripts were significantly 

differentially expressed (q-value ≤ 0.05) in advanced DKD when compared with the living 

kidney donors (N=31). Strikingly, 1287 of the 1302 differentially-expressed transcripts in 

advanced DKD showed concordant changes with disease. Figure 6 highlights the preserved 

regulatory nodes from the VvInt-transcriptional network in advanced DKD.
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DISCUSSION

In this study, we developed a strategy combining genome-wide intra-renal gene expression 

profiling, quantitative morphometric analysis, and clinical outcome data to explore pathways 

underlying early “morphogenomic” changes in DKD. The protocol biopsies obtained from a 

relatively homogenous Pima Indian population permitted detection of signaling and 

metabolic interactions activated in early DKD. These interactions were then linked with both 

structural lesions in the cortical interstitium and long-term disease outcomes. Transcripts 

positively correlated with VvInt showed enrichment for inflammatory mechanisms, while 

those negatively correlated with VvInt showed enrichment for metabolic processes.

Our study links structure and function by combining molecular and morphometric data in 

early DKD with a goal of identifying potential targets for therapeutic intervention before 

irreversible loss of kidney function has occurred. The resulting gene expression sets were 

further assessed for disease relevance by testing the VvInt-linked transcripts for their 

associations with long-term functional outcomes (iGFR/ACR trajectories) over the next 

decade of follow-up post biopsy. The extended follow-up of the Pima protocol biopsy cohort 

made a direct replication of the findings in a study with parallel design difficult. However, a 

significant proportion of the implicated transcripts were also differentially expressed in a 

European cohort with more advanced DKD. The concordant regulation of a significant 

segment of the VvInt associated transcripts in a different ethnic and environmental 

background supports the relevance of the identified molecular mechanism beyond the Pima 

Indian cohort. This is particularly relevant as Pima Indians develop diabetes at an earlier age 

range from the typical Type 2 DM Caucasian patient with DKD and lack many of the co-

morbidities seen in other populations. In addition, the Pima study cohort had a significant 

exposure to RAS blockade. These findings suggest that molecular-morphometric approaches 

can capture relevant regulatory events at an early stage of disease when intervention may be 

more effective than at later stages of disease progression.

Combining differentially expressed genes into functional categories of coordinated 

regulation, referred to as pathway analysis, facilitates the discovery of individual system 

components in a given tissue. This approach has been applied in previous gene expression 

studies in human and murine DKD, which focused primarily on differentially expression 

between DKD from indication biopsies and normal kidneys16,17,19,23. These prior studies 

elucidated the role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

and Jak/STAT signaling which was established as a pathogenetic contributor to DKD 

progression16,17,23–25. Generating DKD pathway maps from gene expression studies 

provided part of the rationale for testing the JAK1 and JAK2 inhibitor, Baricitinib, as a 

potential therapy in advanced DKD (ClinicalTrials.gov number NCT01683409). Baricitinib 

significantly reduced the level of urine albumin excretion in a dose dependent manner 

compared with placebo after six months of treatment, with a sustained benefit noted four 

weeks after discontinuing Baricitinib26. In addition, reduction in blood and urinary markers 

of JAK-STAT activation predicted from the gene expression profiling studies preceded the 

albuminuria reduction, demonstrating the power of this approach to identify targets together 

with their engagement biomarkers.
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A single process or pathway is rarely the sole determinant of disease progression. Through 

the simultaneous assessment and integration of information across multiple pathways, it is 

possible to describe relevant pathway interactions in complex disease processes. This 

approach facilitates the identification of regulatory bottlenecks that could be evaluated as 

potential drug targets or as markers of integrated disease activity. In our study, the individual 

structure-function pathways were mapped to each other using a matrix of shared genes 

among the pathways, establishing a pathway network of early DKD. This network illustrated 

in Figure 4 shows a bowtie-shaped structure tying together two distinct clusters of gene 

activity, linking tubular dedifferentiation and inflammation processes with two pathways, 

‘mitochondrial dysfunction’ and ‘LPS/IL-1 mediated inhibition of RXR function’.

In the inflammation cluster, IL1β was identified as the dominant upstream regulator 

affecting multiple pathways. IL1β-dependent mechanisms are well characterized in DKD 

model systems of advanced tubular cell dysfunction27,28, where they link apoptosis and 

innate immune activation. IL1β-dependent transcripts are well established downstream 

signaling elements of the inflammasome, which is activated in progressive loss of tubule 

function29.

In the dedifferentiation cluster, a set of five transcription factors was identified as potential 

upstream regulators of the tubular differentiation pathways. The interplay between the 5 

master regulators (PHF1, SOX2, NFAT5, TRIM29, and HEY1) and TP53 could affect 

downstream targets involved in oxidative phosphorylation, mitochondrial dysfunction, and 

production of nitric oxide and reactive oxygen species in macrophages. Indeed, proximal 

tubule cell-specific TP53 deletion resulted in decreased oxidative stress, reduced 

macrophage infiltration and tubule structural damage30. An additional speculative 

association involves NFAT5, a transcription factor which has both tonicity-dependent and 

independent functions31. NFAT5 might play an important role in linking diabetic 

hyperosmotic stress to disease progression by instigating the release of pro-inflammatory 

cytokines from tissue resident immune and epithelial cells.

Gene expression studies capture the transcriptional response of the tissue to the local and 

systemic effects of the disease processes currently active in DKD. ‘Causal inference’ 

network approaches can be used to infer the functional state of the transcriptional regulatory 

mechanism, linking gene expression changes with activation of upstream regulators22. Using 

these approaches, we were able to link kidney mRNA with urinary protein profiles in 

cohorts with established CKD, including DKD, and identify and cross-validate novel disease 

progression predictors32. Thus, by using this strategy, the transcriptional profile of early 

DKD reported in this study for the first time can be used as a framework to guide future 

experimental efforts. The preliminary data presented above linking tissue EGF mRNA with 

urinary EGF levels, cross-sectional iGFR and prospective loss of renal function support this 

strategy.

By anchoring our gene signatures on a single morphometric feature (VvInt-cortical 

interstitial fractional volume) in patients with early DKD and key outcome-related clinical 

variables (e.g. ACR, iGFR) over an extended observation period, we provided a functional 

context for the expression changes. The significant association of VvInt–linked genes with 
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the future changes of ACR and iGFR may enable identification of urinary markers reflecting 

the intra–renal disease processes active in patients with disease activity undetectable by 

conventional clinical means.

In summary, we applied an integrated strategy that combines genome-wide intra-renal gene 

expression profiling, quantitative morphometric analysis, and clinical outcomes data, to 

explore potential novel pathways underlying early structural changes in DKD. VvInt-related 

transcripts showed significant enrichment for inflammatory mechanisms and for substrate 

metabolic processes in the renal tubule. The association of VvInt–linked genes with long-

term clinical outcomes (ACR and iGFR) validated the relevance of the early processes to 

DKD progression. Critically, this approach may enhance our ability to identify urinary 

markers of intra–renal disease processes active in patients with minimal or clinically 

undetectedDKD.

MATERIALS AND METHODS

From 1965–2007, Pima Indians from the Gila River Indian Community participated in a 

longitudinal study of diabetes and its complications. 169 adults with type 2 diabetes from 

this population participated in a prospective randomized, double-blinded, placebo-controlled 

interventional clinical trial (ClinicalTrials.gov number, NCT00340678). The purpose of the 

trial was to evaluate the renoprotective efficacy of the angiotensin receptor blocker losartan 

in type 2 diabetes. The clinical trial included annual measurements of GFR by the urinary 

clearance of iothalamate9,33. iGFR was expressed in ml/min and was not adjusted for body 

surface area (BSA) to avoid underestimating GFR due to significant obesity, as reported 

elsewhere34–37. A kidney biopsy was performed at the end of the 6-year treatment period38. 

Upon completion of the clinical trial, participants were returned to the care of their primary 

physicians and annual research examinations that included measurement of iGFR were 

continued.

Of the 111 participants who underwent ultrasound guided protocol kidney biopsy at the end 

of the treatment period, 49 provided sufficient tissue for tubule-interstitial gene expression 

analysis used in this study. For morphometric assessments, unbiased random sampling 

methods were used to measure structural parameters. Measurements were performed by an 

investigator (EJW) who was masked to the clinical data. Tissue was processed and 

embedded in epoxy resin (Epon 812). Digital light and electron micrographs were used to 

make measurements using formal stereologic methods to account for two-dimensional 

sampling of three-dimensional objects39

Twelve predefined renal parameters were assessed including cortical interstitial fractional 

volume (VvInt). VvInt was measured using light microscopy by intercept counting and 

expressed as percentage of the total cortical area. Fifteen photomicrographs were selected 

randomly from the renal cortex using a 15-μm counting grid containing 225 cells. A total of 

3375 intercepts were counted per subject38,40. Morphometric variables for each individual 

were calculated as the mean of all measurements for that individual.
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Demographics, anthropomorphic measurements, and kidney function data were assessed at 

enrollment and on an annual basis thereafter. Urine albumin excretion was expressed as the 

ACR in mg/g creatinine. This study was approved by the Institutional Review Board of the 

National Institute of Diabetes and Digestive and Kidney Diseases. Each participant signed 

an informed consent document.

Microarray target preparation, quality assessment and data preprocessing

Kidney biopsy tissue procurement and gene expression profiling was performed as described 

previously17,41 on Affymetrix GeneChip Array Human Genome series U133A and Plus 2.0 

(Affymetrix, Inc., Santa Clara, CA). Affymetrix image files were obtained, processed, 

normalized and batch corrected as described previously42. Owing to ethical considerations, 

privacy protection, and to avoid identifying individual study participants in this vulnerable 

population, the Institutional Review Board of the National Institute of Diabetes and 

Digestive and Kidney Diseases has stipulated that individual-level gene expression and 

genotype data from this study cannot be made publicly available.

Construction of Gene Co-expression modules

WGCNA implemented in R to construct gene co-expression modules21. This method 

employs a systematic sequential approach starting with pairwise Pearson correlations among 

all the genes in the expression matrix. Modules (i.e. clusters) of highly interconnected genes 

are constructed from a Topological Overlap Matrix (TOM) and subsequent hierarchical 

clustering. The pairs that share higher topological overlap are combined into 11 co-

expression modules and one module containing all remaining genes. The next step 

constructs a hypothetical module eigengene ME, a summarized vector for each module to 

represent the gene expression profiles within each module. Finally, we correlated the MEs to 

clinical traits and focused further analysis on those modules with MEs significantly 

correlated with the trait (P-value ≤ 0.05). Transcripts contained in these significant modules 

with significant trait associations are used for downstream functional analysis.

In our compartment-specific analysis, the tubulointerstitial ultrastructural lesion most 

strongly associated with transcriptional regulation was cortical interstitial fractional volume 

(VvInt), an index of interstitial fibrosis and the focus of this study. Ultrastructural 

glomerular alterations are considered to be early hallmark changes of DKD, but interstitial 

fibrosis and associated tubular damage are also well-established parameters linked with 

long-term disease progression, especially in type 2 patients43–45.

Pathway analysis and upstream regulator analysis approach

Ingenuity Pathway System software tool (Ingenuity Systems, Redwood City, CA) was used 

to define functional concepts and pathways enriched in the retrieved gene sets, Causal 

Network Analysis (CNA) implemented in Ingenuity Pathway Analysis was used to derive 

the upstream regulators affecting the observed expression changes in the shared genes. The 

shared genes were extracted from the pathway network, where at least two pathways were 

involved. The CNA method screens for possible upstream regulators that explain the 

expression changes in the downstream targets through more than one intermediate regulator. 
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Transcriptional networks integrating literature-derived knowledge were established using 

GePS from the Genomatix software suite (https://www.genomatix.de).

Differential Analysis

We used the Significance Analysis of Microarrays (SAM) implemented in MeV 

(mev.tm4.org) suite to identify differentially expressed gene sets with an FDR of ≤0.05 as 

the significance threshold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of the study design to identify VvInt associated co-expressed 

modules and long-term clinical outcome. In Step 1, modules or groups of genes with similar 

expression profiles are constructed from the transcriptome profile using a Weighted Gene 

Coexpression Analysis strategy. In Step 2, module eigengene (ME) is derived from each 

module and associated to clinical and structural parameters. The heatmap table illustrates the 

correlation coefficients of the module eigengene to the tested parameters. The significant 

modules (represented with asterisks) are then further investigated for functional enrichments.
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Figure 2. 
Association of module eigengene (ME) to VvInt and ACR/iGFR at the time of biopsy. 11 

co-expressed modules were identified from tubulointerstitial gene expression profiles (n=49) 

in kidney tissue from Pima Indians. VvInt associated modules with a q-value ≤0.05 are 

considered significant (MEbrown, MEblack, MEblue and MEgreen). Green color indicates a 

negative correlation and red color indicates a positive correlation. The number inside each 

box is the correlation coefficient (Pearson correlation). Significance is denoted as *. The 

grey module collects the genes that do not share similar expression pattern.
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Figure 3. 
Transcriptional networks generated from the top 100 highly connected VvInt correlated 

transcripts. The connections or edges between the transcripts are established by a function 

word (inhibition, activation, regulation) derived from the known literature via Natural 

Language Processing. A) Positively-correlated VvInt network and B) Negatively-correlated 

VvInt network.
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Figure 4. 
Ingenuity Pathway network showing significant pathways (P-value ≤0.05) enriched by VvInt 

correlated transcripts. Pathways are connected by 1 or more shared genes. The network 

displays two principal domains driven by negatively correlated (left) and positively 

correlated (right) transcripts. The nodes (pathways) are connected by (edges) genes shared 

between them
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Figure 5. 
Association of four VvInt correlated modules and long-term clinical outcomes (ACR/iGFR). 

r ≥0.3 and P-value ≤0.05 are considered significant. Green color indicates a negative and red 

color indicates a positive correlation of modules to outcomes. The number inside each box is 

the correlation coefficient (Pearson correlation). Significance is denoted as *
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Figure 6. 
Transcriptional network generated from differentially expressed transcripts comparing 

ERCB DKD with healthy controls. The network represents the top 100 highly connected 

transcripts. The main nodes seen in the morphogenomic study in early DKD in Pima Indians 

are maintained and directionality of expression changes is conserved in 98.85% of nodes. 

The node color represents the direction of expression in DKD. Green = Decreased, Red = 

Increased levels compared to controls.
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TABLE 1

Demographic, clinical, and morphometric characteristics at the time of kidney biopsy in 49 Pima Indians with 

type 2 diabetes.

M/F (% Males) 15/34 (30.6)

Age (years) 46 ± 9.8

Diabetes duration (yrs) 15.7 ± 6.8

BMI (kg/m2) 35.2 ± 8.2

HbA1c (%) 9.20 ± 2

Systolic Blood Pressure (mm/Hg) 125 ± 14

Diastolic blood Pressure (mm/Hg) 78± 8

ACR (mg/g) 35.46 [90.21]

iGFR (ml/min) 147 ± 45

Serum creatinine (mg/dl) 0.7 ± 0.2

Cortical interstitial fractional volume (%) 29.5±9.6

Follow-up length post-biopsy (years) 10.1[2.0]

Data are presented as mean (±SD) or median [IQR] or proportions (%). M/F: Males/Females, BMI: body mass index, HbA1c: glycated hemoglobin 
A1c, ACR: urinary albumin-to-creatinine ratio, iGFR: iothalamate glomerular filtration rate, VvInt: cortical interstitial fractional volume.
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