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Abstract

The ability to accurately predict violence and other forms of serious antisocial behavior would 

provide important societal benefits, and there is substantial enthusiasm for the potential predictive 

accuracy of neuroimaging techniques. We review the current status of violence prediction using 

actuarial and clinical methods, and assess the current state of neuroprediction. We then outline a 

number of questions that need to be addressed by future studies of neuroprediction if 

neuroimaging and other neuroscientific markers are to be successfully translated into public policy
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The utility of violence prediction

Each year, the United States loses nearly 3.2 trillion dollars to crime [1], with violent crime 

responsible for the majority of these costs [2]. This figure includes victim-specific losses 

such as opportunity costs and lost productivity, but the costs of treatment and incarceration 

for offenders–which are borne by all citizens - are no less staggering. Violence (and other 

forms of serious antisocial behavior) is not a normally distributed “trait;” rather, a relatively 

small subset of individuals is responsible for the vast majority of violent crime. The ability 

to prospectively identify those predisposed to commit violent criminal behavior would be of 

great benefit in guiding decisions regarding bail, sentencing, probation/parole, court-ordered 
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treatment, and civil commitment. At the level of policy, valid measures of individualized risk 

for future violence would be immensely useful for targeting prevention and treatment-related 

spending to maximize its benefit [3].

While behavioral prediction has a long - and somewhat fraught - history in the realm of law 

and policy, recent advances in brain imaging have renewed interest in the potential to 

accurately predict violent behavior. In particular, new insights into the neurobiological 

architecture of violence and antisocial behavior [4–6] have generated substantial excitement 

about the potential utility of neuroscientific methods for predicting future violent behavior 

(what some have termed “neuroprediction”) [7,8]. The purpose of this paper is to critically 

analyze the current state of neuroprediction in law, in order to guide future research and aid 

policy-makers as they consider whether and how to apply such research. To that end, we will 

first briefly summarize the history of behavioral and genetic prediction in law, and then 

review the current state of neuroprediction efforts. We then review the challenges inherent in 

any attempt to predict future behavior. We discuss several statistical and methodological 

hurdles to valid predictive inference, which are general to any domain of prediction, and 

outline best practices for future studies of neuroprediction.

Note that predictive models for binary outcomes (such as criminal recidivism) assess risks -- 

i.e. probabilities within groups -- rather than forecasting individual outcomes. Nonetheless, 

it is useful to administratively classify persons based on whether their group’s risk exceeds a 

threshold. Policies based on such classification, even using mediocre models, can often 

virtually guarantee aggregate gains, and thus that a plurality of those affected will benefit 

from the policy.

Behavioral prediction of future violent behavior

Courts are tasked with both retrospective and prospective functions. Decisions about bail, 

probation, and sentence length all reflect the fact that courts have a duty to prevent future 

criminal acts in addition to determining guilt and assigning punishment for crimes that have 

already been committed. Using behavioral risk factors to predict who will commit crime has 

been an important component of American criminal law since the rise of probation and 

parole in the late 19th-century, and a major concern of the mental health system since the 

shift from “need for treatment” to “dangerousness” as the legal standard for civil 

commitment in the 1970s [9]. A milestone in the scientific literature was the distinction 

made by Meehl [10] between “clinical” prediction (in which predictions are based on a 

clinician’s subjective judgments about a particular case) and “actuarial” (or statistical) 

approaches to behavioral prediction (which rely upon statistical models to predict relevant 

outcomes; see Box 1 for a detailed discussion of the general concept of “prediction”). 

Across nearly every domain tested, actuarial approaches have been shown to outperform 

clinical prediction, to such an extent that Meehl [11]stated that “There is no controversy in 

social science which shows such a large body of qualitatively diverse studies coming out so 

uniformly in the same direction as this one.” In the context of violent behavior, a 

representative review of behavioral prediction [12] concluded that “one area in which the 

statistical method is most clearly superior to the clinical approach is the prediction of 

violence.” That is, in head-to-head contests between predictions that reflect the subjective 
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judgments of human experts and predictions based on validated statistical models, the 

statistical models have nearly always won.

Box 1

What does “prediction” mean?

The concept of “prediction” is fraught with misconception, in part due to the multiple 

overlapping ways the term is used in scientific discourse. In common language, 

prediction generally implies the anticipation of a future outcome based on information 

available in the present. This is our primary meaning of the term in the present context, as 

it would be in most legal contexts. Such predictions are made without knowledge of the 

outcome, using information that temporally precedes that outcome. This usage is, 

however, different from that often used in the context of statistical modeling, where the 

term “predicted value” may be used to describe the output of a fitted regression model 

obtained for some specific values of the model’s input variables. This latter usage is 

indifferent to the relative timing of the input and outcome variables, and also to whether 

the specific data point being used to generate the “prediction” was also used in fitting the 

statistical model.

The fields of statistics and machine learning have developed sophisticated frameworks for 

fitting models in ways that that allow quantification and optimization of the ability to 

accurately predict outcomes for new samples, which we take to be the sine qua non of 

“prediction”[73–76]. A fundamental motivation for more recent developments is an 

appreciation of the pervasiveness of “overfitting”. Whenever a model is fit to a specific 

dataset, the fitted parameters reflect both the signal in the data as well as the noise in that 

dataset; this occurs even for simple models such as strictly linear regression on a single 

predictor, but becomes increasingly problematic as the model becomes more complex. 

An implication of this is that models will nearly always fit the dataset used to develop 

them better than any other dataset [77], and thus that assessment of model goodness of fit 

using the same data that were used to estimate the model parameters will almost 

necessarily understate the model error when applied to new data. This phenomenon is 

known as “shrinkage”[77].; Although there are methods for estimating and correcting for 

shrinkage using standard parametric statistics, a more common approach arising from the 

field of machine learning is to perform “cross-validation”, in which the model is 

iteratively fit using subsets of a dataset (known as “training sets”) and then used to 

predict the values of the held-out observations ( “test sets” or “validation sets”). These 

approaches allow one to estimate the model’s performance on data that played no role in 

the fitting of the model, which reduces the optimistic bias in predictive accuracy that 

arises from overfitting when the same data are used to train and test the model. Although 

cross-validation can provide valid estimates of out-of-sample generalization, it is not a 

panacea, and can be easily misused in ways that can still inflate one’s estimates of 

predictive accuracy [78].

In recent years, many behavioral instruments aimed at predicting crime have been published 

that are not adequately characterized by a simple clinical-actuarial dichotomy. Rather, the 
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behavioral risk assessment process now exists on a continuum of rule-based structure, with 

completely unstructured (“clinical”) assessment occupying one pole of the continuum, 

completely structured (“actuarial”) assessment occupying the other pole, and several forms 

of partially-structured assessment lying in between [13]. While there is general agreement 

that structured behavioral approaches are more predictively valid than unstructured ones, 

how completely structured behavioral approaches compare with partially-structured 

behavioral approaches (often termed “structured professional judgment”) is unresolved. One 

meta-analysis of 28 studies found that the predictive validities of nine completely or 

partially-structured prediction instruments were essentially “interchangeable” [14]. One 

explanation for why different violence prediction instruments yield comparable accuracy is 

that they measure shared risk dimensions. In a memorable demonstration of this point[15], 

the items from several instruments were printed on paper strips, placed in a coffee can, 

shaken, and randomly redistributed to create new prediction instruments. The “coffee can 

instruments” predicted violent offenses as well as the originals from which the items came.

On the whole, this body of work shows that specific behavioral and trait dimensions can be 

used to predict future violence with some degree of accuracy. However, even the best 

predictive models are far from perfect [14]. Indeed, more recent meta-analytic work has 

quantified the positive and negative predictive value of a range of risk assessment devices 

[16], showing that these measures have a positive likelihood ratio (pLR: the ratio of the 

likelihood of a positive prediction for those who do to those who don’t subsequently offend) 

ranging from about 3.5 to 8. For comparison to medical diagnosis, the pLR for right lower 

abdominal pain in appendicitis is 8.4 [17]. Moreover, despite its clear superiority to clinical 

prediction, actuarial prediction has encountered significant pushback, with objections to so-

called “moneyball sentencing” based on behavioral risk factors (e.g., employment, 

education) made on constitutional, ethical, and theoretical grounds [9,18,19]. These 

challenges, in concert with the explosion of interest in cognitive neuroscience over the last 

decade, have led some to focus on the use of biologically-based variables as predictive 

markers. A substantial body of previous work has examined the use of genetic prediction 

(see Box 2), but here we focus on the use of direct measurements of brain activity through 

neuroimaging. For a more general discussion of the use of neuroscientific and genetic 

evidence in the courtroom, see [20]

Box 2

Lessons from the Genetics of Antisocial Behavior and Violence

Data from twin and family studies show that antisocial behavioral generally, and violence 

specifically, is moderately heritable. Genetic factors appear to account for 40–60% of the 

population-level variance in broad-band antisocial phenotypes[79], and heritability is 

considerably higher (>80%) for subtypes encompassing both antisocial behavior and 

callous-unemotional traits[80,81]. A number of risk-associated genetic variants have been 

identified[82], but considerable attention has been focused on one specific polymorphism 

in the MAOA gene (encoding the enzyme monoamine oxidase A). MAOA first came to 

prominence in series of family-based studies of severely violent men, who were found to 

possess a mutation that blocked production of this enzyme[83,84]. Complimentary work 
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subsequently demonstrated that genetic deletion or hypoexpression of maoa markedly 

increased impulsive and aggressive behavior in mice[85–87].

While mutations with effects as large as those described above are rare, a common 

functional polymorphism exists in the MAOA gene that modulates expression of the 

MAOA enzyme in the brain [88]. Significant associations with the low-expressing allele 

(MAOA-L) of this variant have been reported in adult substance abusers[89–93], 

adolescents with behavioral problems[83,84,94], and high levels of antisocial 

traits[95,96][97]. These findings are largely consistent with a large body of work in 

across species that links dysregulation in serotonin function during ontogeny to 

impulsive-aggressive behavior[98].

The research cited above has led to the introduction of genetic testing for MAOA variants 

in several recent murder cases in the U.S. and Europe, in which putative positive results 

were introduced as mitigating evidence at sentencing, sometimes successfully. This is 

concerning because numerous studies have failed to replicate the association between 

MAOA variants and antisocial/violent behavior [99–105], in line with field-wide 

concerns about the replicability of candidate gene approaches[106]. Moreover, even in 

studies reporting significant associations the effect sizes tend to be small. A recent 

paper[107] is notable for being an exception to this general rule, concluding that 5–10% 

of all severe crime in Finland could be attributable to genetic variants in MAOA and 

another gene (CDH13). However, their use of an extreme groups approach in a very small 

sample suggests an overestimation of the true amount of variance explained by these two 

common variants.

Given that effect sizes for individual genetic variants are so low, possessing a “risk” allele 

provides little predictive information about whether a given individual is more or less 

likely to commit violence. Roughly 40% of the population carries the low-expressing 

MAOA allele (in individuals of European descent; allele frequencies vary by ancestry), 

yet it is estimated that <0.01% of the U.S. population are arrested each year for violent 

crime1. In other words, most people who possess the MAOA risk allele never go on to 

commit acts of violence, suggesting that predictions of violence based on MAOA variant 

status would likely lead to a very high rate of false positives. Similar conclusions can be 

made for other previously proposed candidate genetic markers for criminal activity, such 

as the 5-HTTLPR variant[98].

Enter: Neuroprediction

The advent of neuroimaging has marked a paradigm shift in understanding the biological 

basis of human behavior. In the last quarter century, neuroscientists have witnessed the 

explosive development of new tools for measuring brain function, structure, chemistry, and 

connectivity. The promise of opening the black box of the human mind and wresting that 

which is most personal - beliefs, motivations, intentions, and capacities- from our brains has 

also generated substantial excitement amongst the general public. Each new neuroscientific 

1https://ucr.fbi.gov/crime-in-the-u.s/2013/crime-in-the-u.s.-2013/tables/table-43
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advance is greeted with a chorus of speculation about its application to the real world, and 

nowhere is the level of anticipation higher than in the courts, because law - more than almost 

any other profession - faces daily the challenge of rendering judgements based on the 

contents of that black box. Given lingering skepticism about actuarial prediction, the rapid 

pace of discovery in neuroscience - coupled with the assumption among non-specialists that 

biological variables are somehow more “real” than demographic or psychological ones - has 

generated a great deal of enthusiasm for the use of brain imaging measures to predict 

violence. Enthusiasm for neuroprediction is due, in part, to the presumed closer biological 

proximity of brain-based measures to the causal processes that produce violent behavior, 

which makes it reasonable to assume that measures of brain activity might support better 

predictions. Indeed, neuroimaging techniques have great potential, but there are a number of 

concerns about their application to complex real-world behaviors such as violence, which we 

outline in the following sections.

Whether courts will be receptive to such biological risk factors is uncertain [21]; see Box 3 

for a further discussion of the use of scientific data in legal decision making about individual 

cases, known as the G2i (group to individual) problem. The United States Supreme Court 

recently overturned a death penalty because an expert witness had testified that race was 

“know[n] to predict future dangerousness.” The Court stated that the case “is a disturbing 

departure from a basic premise of our criminal justice system: Our law punishes people for 

what they do, not who they are” (Buck v. Davis, 137 S. Ct. 759, 2017). Whether 

neuroscience markers will be considered attributes of “who a person is” in this sense is 

unclear.

Box 3

Making individual predictions from group data: The G2I problem

The application of scientific research to legal settings raises a problem known as the 

“group to individual” (G2i) problem [108–111], which has its roots in a key difference 

between the goals of science and the legal system. Science is focused on characterizing 

generalizable phenomena to establish mechanistic explanations that apply within 

definable population groups and hence are generalizable to other members of those 

populations (who may not yet have been observed). As a means to this end, most 

scientific work aims to describe observations about groups of individuals and/or 

collections of circumstances. By contrast, law is concerned with making concrete and 

definitive determinations about particular individuals and circumstances [112]. Thus, in 

science, individuals are generally incidental to the general insights they support, while in 

law the individual is paramount: group or population-level scientific data are only 

relevant to the extent that the data bolster or weaken the evidence provided in an 

individual case. Unfortunately, however, observations about groups only rarely apply 

universally to their individual members, such that group-level findings may provide only 

very weak support for individual determinations. The G2i problem is relevant for any 

scientific domain in which there is variability across individuals, including but not limited 

to neuroscientific measures.
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Consider the following example. A neuroscientist uses fMRI to scan 100 participants 

who are instructed to either lie or tell the truth about a set of facts. Contrasting brain 

activity during lying with truth-telling reveals statistically significant activation in 

dorsolateral prefrontal cortex (DLPFC). This permits the valid group-level inference that 

lying is associated with DLPFC engagement. However, examination of each individual’s 

data reveals that while most subjects exhibited higher DLPFC activity during lying, some 

participants showed no difference and still others demonstrated lower DLPFC activity 

during lying compared to truth-telling. In other words, “heightened DLPFC activity 

accompanies lying” may be a valid group-level inference, but the application of this 

inference to any one individual invites serious and profoundly consequential risk of both 

false positives and false negatives [113]. Legal testimony in a hearing regarding 

admissibility of fMRI lie detection in a federal Medicare fraud case provides an example 

of the type of quandary that can arise. The scientist who was hired to administer fMRI lie 

detection in support of the defendant’s innocence testified that the test was valid evidence 

of the defendant’s general veracity, but refused to testify that the test confirmed the 

truthfulness of his answer to any specific question at issue in the case. For this and other 

reasons, the testimony was not admitted in evidence (US vs. Semrau, 07-10074 Ml/P). In 

this case, the “individual” was a specific item rather than an individual person, 

demonstrating the broad reach of the G2i problem.

The complex causal structure of real-world behavior

Whereas cognitive neuroscience has taught us a great deal about the neural bases of basic 

cognitive, emotional, and social functions, we still know almost nothing about how trait-like 

aspects of brain function, structure, chemistry or connectivity interact with social context 

and other dynamic environmental factors to determine real-world behaviors such as 

violence. What we can safely infer from recent work in other domains is that the causal 

structure of these behaviors will be highly complex and multiply determined. With regard to 

genetics, the last two decades of genome-wide association studies (GWAS) have shown that 

any particular common genetic variant (e.g. those appearing in at least 1% of the population) 

is unlikely to account for large effects on common phenotypes. For example, GWAS have 

been used to identify replicable associations between common genetic variants and 

behavioral phenotypes (such as educational attainment [22]) and mental illness (e.g. 

schizophrenia [23]). However, each of these individual associations accounts for a 

vanishingly small amount of variance in the phenotype (usually less than 1%); it is only 

through the aggregation of large numbers of variants that one can start to account for the 

heritability of these behaviors. The large effects estimated in earlier candidate-gene studies 

were likely due to the combination of small samples (which are only powered to find large 

effects) and publication bias[24].

On analogy to genetic data, it seems likely that any one measure of brain function, structure, 

chemistry and connectivity will account for only a small amount of variance in violent 

behavior. Further, while the neurobiological basis of inter-individual variability is coming 

into increasing focus, we still know relatively little about how individual brains change over 

time (intra-individual variability) [25]. Likewise, the relevance of lab-based measures of 
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self-control (to take one relevant example) for predicting individual variability in real-world 

behavior remains largely unclear. These latter two issues are especially germane to the 

problem of violence prediction because violent behavior typically results from the 

interaction of trait-like vulnerabilities in capacities related to self-control and emotion 

regulation[6] with time-varying state factors (e.g. stress level and sleep deprivation) and 

punctate eliciting events (e.g. provocation). It is difficult to reconcile the static nature of lab-

based assessments that might be used for prediction with the dynamic nature of real-world 

violence. In addition, violence is a multidimensional construct, encompassing both reactive 

subtypes (reflecting poor inhibitory control and emotion regulation) and goal-directed 

subtypes (reflecting maladaptive action valuation)[26,27]. As these two facets of violence 

likely reflect distinct neural mechanisms[27], it would seem unlikely that a single measure 

(such as the commonly used go/no-go task) could assess risk for both. On balance, it would 

seem safe to conjecture that accurate neuroprediction, if possible, will require aggregation of 

neuroscientific data across multiple cognitive tasks and multiple measurement techniques.

Neuroprediction: Where do we stand?

Insights into the neurobiology of violence can be gleaned from an emerging body of brain 

imaging work in clinical populations characterized by high levels of violent behavior, 

especially people with psychopathy. Psychopathy is a particularly useful model for 

understanding the neurobiology of violence because it encompasses both affective-

interpersonal symptoms thought to underlie goal-directed violence and impulsive-antisocial 

symptoms linked to reactive violence. In addition, it appears to be the psychological trait 

most predictive of violent behavior[28]. It may thus serve as an effective intermediate 

phenotype (or “endophenotype”[29]) for the study of violent behavior.

Structural and functional fMRI results converge to suggest that maladaptive behavior in 

psychopathy - including violence - may arise from dysfunction within cortico-limbic and 

cortico-striatal circuitry involved in affective arousal, emotion regulation, and value-based 

decision-making. For instance, psychopathic individuals exhibit decreased amygdala and 

vmPFC gray matter volume, as well as lower vmPFC cortical thickness [30,31]. Likewise, 

psychopaths show reduced recruitment of amygdala and vmPFC during fear conditioning 

and moral decision making [32–35], blunted amygdala responsiveness during affective 

perspective-taking [36,37], and weaker vmPFC engagement in response to empathogenic 

[38] and facial emotion stimuli [39]. Reduced functional and structural connectivity between 

amygdala and vmPFC has also been reported in psychopathy [36]. There is some evidence 

that the observed relationships between psychopathy, task-related brain activity and 

ventromedial prefrontal cortex--amygdala connectivity are driven by the affective-

interpersonal features of the disorder [35,39–42]. On the whole, this work is consistent with 

the notion that the socio-emotional deficits of psychopaths may arise from cortico-limbic 

circuit dysfunction [43,44].

While cortico-limbic dysfunction appears to play an especially prominent role in the 

affective-interpersonal dimension of psychopathy, recent work highlights the importance of 

cortico-striatal dysfunction for impulsive-antisocial symptoms in the disorder. 

Amphetamine-induced dopamine release and reward anticipation-related activity within the 
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nucleus accumbens (NAcc) have been shown to be elevated in individuals with high levels of 

impulsive-antisocial traits[41,45–47]. Likewise, several groups have found evidence for 

increased striatal gray matter volume in psychopathic offenders, particularly those with a 

history of impulsive violence[48,49]. Notably, impulsive-antisocial behavior has also been 

linked to prefrontal dysfunction during tasks of inhibitory control[27]. The combination of 

diminished prefrontal activity and heightened striatal responsiveness has led some to suggest 

that social norm transgressions, such as violence, could arise from impaired prefrontal 

modulation of striatal value representations[6]. The studies above comprise a potentially 

important empirical foundation for considering the neuroprediction of violence (but see [50] 

for an important discussion of the differences between causation and prediction). It should 

however be noted that most of these studies have not yet been replicated and, due to the 

difficulties associated with enrolling criminal offenders, involved relatively small sample 

sizes. Recent work by Kiehl and colleagues using mobile fMRI in comparatively large 

samples of currently incarcerated offenders [51] represents a notable exception, and offers a 

useful example of how present limitations in this area might be overcome (see Box 4 for 

further discussion of this work).

Box 4

Neuroprediction of future criminal behavior

One study [51] has directly examined the predictive utility of neuroimaging data for 

future criminal acts. Ninety-six adult offenders (incarcerated for either violent or 

nonviolent crimes) were tested prior to release on a go/no-go task using fMRI, and the 

relation between task-related activity in the anterior cingulate cortex (ACC) and felony 

rearrests over up to four years (median 34.5 months) of follow-up was examined. The 

estimated probabilities of rearrest for those with ACC responses below and above the 

sample median were 60% and 46%, respectively. Rearrests for violent crimes were too 

rare in the sample to support a separate analysis, so the study’s results have only limited 

direct bearing on violence prediction, but the report raises questions that will similarly 

apply to future studies of neuroprediction.

The study is an impressive logistic accomplishment. A mobile MRI scanning facility was 

used on site at multiple correctional facilities, with well-established psychological testing 

and fMRI image-acquisition protocols. Target and control ROIs were prespecified, with 

seed coordinates chosen on the basis of peak BOLD activity in a comparably-sized non-

offender sample. While rearrest outcomes did not evidently influence data extraction or 

statistical modeling choices, this paper and all others of similar nature would benefit from 

inclusion of explicit statements that the analyses were blinded to outcomes of interest, 

and formal pre-registration of the analysis plans.

A further analysis reported a survival model, but did not directly quantify prediction 

accuracy. This was addressed in a follow-up paper [114] using a receiver operating 

characteristic (ROC) analysis [115]. This paper also used bootstrap resampling to 

estimate and correct for shrinkage (overoptimism bias), which reduced estimated ROC 

areas from 68% and 76% (for all arrests and nonviolent arrests respectively) to the more 

conservative values of 63% and 69%, values described as “modest.” There are, however, 
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two limitations. The bootstrap correction of overoptimism bias relies primarily on in-

sample prediction, and thus on average tends to somewhat undercorrect for bias 

(compared to crossvalidation methods). More importantly, the approach was applied only 

to the full model, and thus does not provide overoptimism-corrected estimates relevant to 

the primary question of interest, which is the incremental contributions of ACC to 

predictive accuracy.. Repeated crossvalidation of the incremental ACC contributions to 

predictive accuracy would thus have increased the utility of this report. More generally, 

inclusion of overoptimism bias-corrected estimates of the incremental contributions of 

neuroimaging or other neuroscience-based markers would be similarly important in 

future reports of this nature.

Finally, wide scientific acceptance of any neuroimaging predictor of violence will require 

true validation by a combination of replications across a set of separate cohorts varying 

widely in sociodemographic, psychopathological, and criminological characteristics.

Finally, the body of work highlighted above does not speak to underlying brain circuit 

dysfunction underlying violence per se. Rather, these studies focus largely on psychopathy, 

which is certainly associated with violence but not to the degree that it could be considered a 

proxy. As one example, while amygdala dysfunction in psychopathy has been replicated by 

multiple groups, we know of no work to date that examines the specificity of amygdala 

dysfunction for violent behavior. Without such work, it is impossible to know whether 

amygdala dysfunction in psychopathy is responsible for the higher rates of violence in 

psychopathic individuals, versus - as one example - their need for stimulation or boredom 

proneness. Research in this area would be considerably advanced by a stronger focus 

symptom specificity, with the goal of mapping brain circuit dysfunction to specific sets of 

behaviors (e.g. violence and aggression) rather than categorical disorders[52].

The well-established association between psychopathy and violent behavior, in concert with 

our advancing understanding of the neurobiology of psychopathy, hint that it might be 

possible to predict future criminal behavior from neuroimaging data. However well 

motivated such an endeavor may be, we note that any particular neuroimaging signature of 

psychopathy need not, in principle, predict violence any better – or even as well as – related 

clinical or behavioral measures. Thus, studies must address several open questions before 

such candidate neuroimaging signatures for violent behavior can be seriously entertained 

(see Outstanding Questions). There have been remarkably few studies that have directly 

examined the relationship between neuroscientific variables and violence. One remarkable 

example is discussed in detail in Box 4, where we examine the application of the foregoing 

principles to the landmark study by Aharoni and colleagues [51].

Outstanding Questions Box

• Is the protocol for eliciting the signature from a future individual explicit 

enough and robust enough for effective replication in a range of other 

settings?

• Were the components of the protocol for each subject (regions of interest, 

masks, normalizations, measures of hemodynamic response and BOLD 
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contrast) completely uninfluenced by, and preferably blinded to, that subject’s 

criminal behavior outcomes?

• Are the statistical measures used to report prediction benefit supported by 

methodological studies in the prediction analysis literature, and are these 

measures reported with error ranges accounting for measurement and 

sampling variability?

• Do reported measures of predictive benefit include measures of incremental 

predictive value, relative to prediction from other non-neuroimaging measures 

(which are likely to be less onerous and/or expensive to ascertain)?

• Were these measures and their error ranges obtained from a) direct estimation 

from the entire derivation sample, b) bootstrap validation or c) cross-

validation from the derivation sample, d) from a test sample withheld from the 

model-fitting process, and/or e) from one or more entirely external validation 

samples?

• Does the sample have appropriate demographic representation and does it 

access the full distribution of relevant behaviors? For example, if an 

incarcerated population is used, does it sample the full distribution of criminal 

phenotypes (e.g. never violent, occasionally violent, frequently violent?). If 

stratified sampling is used, is the variable employed for stratifying 

psychometrically valid and amenable to independent corroboration (e.g. by 

department of correction records, charging documents, etc.)? If a non-

incarcerated comparison group is used for inference, is this group matched 

along relevant demographics (e.g. substance use, SES, race, education, 

reading ability)?

Neuroprediction in other domains

Beyond the realm of violence, there are several examples of studies that have effectively 

used neuroimaging for prediction of behavioral outcomes, an area reviewed recently [53]. 

One particular domain that has seen recent success is the prediction of treatment outcomes 

in psychiatric disorders. While many studies have examined associations between 

neuroimaging signals and treatment outcomes, only recently have appropriate predictive 

modeling tools been applied to properly assess predictive validity. One study [54] examined 

the relation between brain responses to angry versus neutral faces and response to cognitive-

behavioral therapy in individuals with social anxiety disorder. A model including both brain 

responses as well as variables reflecting drug treatment group and disease severity was able 

to account for 41% of the variance in symptom change, versus 12% for a model that only 

included the severity and drug variables. In another example, [55] investigators examined 

whether the interaction between early life stress and amygdala response to fearful or happy 

faces could be used to predict the response to antidepressant medications in depressed 

individuals. Using cross validation, they showed that the prediction model using these 

variables was substantially better than one that did not include fMRI variables; the cross-

validated sensitivity of the best model was 0.84, and the specificity was 0.69, suggesting that 
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the technique could potentially provide useful information to physicians. Each of these 

studies was relatively small and will thus require further replication and validation, but they 

suggest that there is potential for neuroimaging in the prediction of behavioral outcomes and 

treatment response. We would also propose that the principles and best practices raised in 

the present paper would be useful as guideposts for neuroprediction regardless of the 

specific domain of prediction, and thus could be useful in assessing these studies of 

psychiatric neuroprediction as well.

Challenges for neuroprediction

There are a number of potential challenges that will make the practical application of 

neuroprediction difficult, particularly with regard to the prediction of future violent acts.

Foremost are the selection effects that are likely to occur due to the specific requirements of 

the imaging process. Participation in an fMRI study requires a relatively compliant 

individual who is willing to enter the scanner and behave as instructed. Thus, oppositional or 

defiant individuals are unlikely to be successfully imaged, and individuals with a chaotic 

lifestyle are likely to have trouble keeping their appointment for imaging. Even for 

compliant individuals, there are selection effects that may occur in relation to impulsivity. 

Highly impulsive individuals are less able to remain still in an MRI scanner for long periods 

of time [56], such that even if they are successfully imaged, their data may be corrupted or 

have lower signal-to-noise in comparison to non-impulsive individuals. In practice, it may be 

very difficult to disentangle reduced task activation from increased noise due to head 

motion.

A second challenge comes from the potential for intentional countermeasures. Once 

predictive models are developed, it is likely that strategies could be developed to help 

individuals appear less dangerous. Some obvious strategies include intentional head 

movement or breath holding, both of which would induce signal changes substantially larger 

than the small (1–5%) changes induced by task activation. More subtle evasive strategies 

could rely upon cognitive subversion. For example, a subject in the go/no-go task might be 

coached to try to withhold his or her responses on go trials; such subterfuge could 

potentially be detected (e.g. through analysis of the behavioral data) but nonetheless would 

leave neuroprediction methods open to questions of reliability and sensitivity, and detecting 

these countermeasures is likely to be more difficult than detecting countermeasures on 

psychological tests. Recent work in lie detection [57] and memory detection [58] has shown 

that such cognitive countermeasures can substantially reduce the accuracy of fMRI 

classification of mental states.

A third challenge relates to the degree to which observed neuroscientific predictors may be 

confounded with other variables that are actually supporting predictive validity. An 

outstanding example of this was seen in the ADHD-200 competition to generate diagnostic 

classifiers for attention deficit/hyperactivity disorder based on neuroimaging data[59]. An 

initial neuroimaging dataset with 776 individuals (491 healthy controls and 285 individuals 

diagnosed with ADHD) was released for use in model development; later, an unlabeled test 

dataset comprising 197 individuals was released, and competitors were asked to submit their 
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predictions for each individual (ADHD vs. control, and further diagnosis of ADHD 

subtypes). Many of the competitors were able to generate predictive models with above-

chance accuracy on the basis of the neuroimaging data, but the best performing model did 

not actually use the imaging data at all --- it simply used the demographic data (age, sex, 

handedness, and IQ), which allowed accurate prediction of ADHD status because of sex and 

IQ differences between the subject groups[60]. Without large enough samples to pull out 

such potential confounds, the interpretation of neuroimaging results in terms of mechanism 

will be very challenging.

A final challenge comes in assessing the generalizability of reported predictive accuracy to 

new samples. There is increasing concern about the degree to which results reported in the 

literature may overestimate the true sizes of reported effects [24]. In comparison to 

behavioral models, neuroimaging data have much higher dimensionality and much greater 

analytic flexibility [cf. 61], and it is known that this flexibility can grossly inflate Type I 

error rates [62,63]. There is also growing concern that the use of machine learning methods 

with small samples can result in highly inflated predictive accuracies[64]). Without an 

explicit a priori analysis plan, it is not possible to assess the degree to which any particular 

result may reflect data-driven analysis choices (either intentional or unintentional). One 

solution to this problem is to encourage replication of any particular result, as is common in 

genetic association studies [65] and is an emerging practice in psychology. However, for 

very precious samples such as the one collected by Aharoni et al. [51], this may not be 

practical. A useful alternative in such a situation would be pre-study registration for any 

research study that is meant to influence public policy, similar to the approach currently used 

for clinical trials. While not a cure-all, a greater emphasis on external validity and reporting 

of out-of-sample prediction measures would help to improve robustness of published study 

results.

Best practices for neuroprediction

It is certain that future research will continue to assess the ability of neuroscience methods to 

predict violent behavior, and we hope that such research will ultimately prove to be 

effective, given the pressing need for more effective prediction of future violence. Here we 

outline a set of principles that will help maximize the effectiveness and robustness of future 

studies. We would also note that most of these principles are not unique to neuroprediction, 

but, in principle, should apply to any new predictive method.

Pre-registration

The credibility of clinical trials in medicine has been greatly enhanced by the requirement 

for registration of study designs, hypotheses, and outcome measures prior to undertaking a 

study. In particular, the natural experiment occasioned by increased requirements for clinical 

trial registration in 2000 has shown that positive outcomes are more likely and estimated 

treatment effects are significantly larger for unregistered than for registered studies [66,67]. 

This is particularly important for fMRI given the immense degree of analytic flexibility in 

fMRI analysis [68]. There is a growing consensus (shared by most of the present authors) 

that pre-study registration of designs, hypotheses, analysis plans, and outcome measures 
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could greatly increase both the reliability and acceptance of results from neuroimaging 

studies.

Validation

It is essential that all predictive outcomes be validated using an independent sample. The 

incorporation of repeated cross-validation and/or bootstrap validation in the process of 

model selection, and in reporting of model performance using a discovery cohort, can 

certainly reduce overoptimism bias and naïve applications based on early results (see Box 

1). But while these methods can be useful for assessing the best model for a particular 

dataset, they also can be biased by preprocessing and multiple, iterative model 

reassessments. The gold standard should be a completely separate validation dataset that is 

kept aside until final testing of the hypotheses, using the models developed from the training 

dataset. Another alternative is for different research groups to separately test a specific 

hypothesis in independent studies, which are then reported in a single manuscript. This 

proposal is inspired by the now-standard requirement for replication in genetic association 

studies[69], which has motivated consortia to collaborate on papers that include replication 

across multiple samples. Yet another provocative alternative is the use of “blind analysis”

[70], in which the researcher analyzing the data is blinded to some aspect of the data (e.g. 

through shuffling of variable labels).

It is also essential that neuropredictive methods are compared against the state of the art in 

behavioral prediction methods. It is common in neuroimaging studies to find that the 

predictive accuracy of imaging data is well above chance, but that the marginal improvement 

of prediction for neuroimaging compared to behavioral prediction is miniscule. Given the 

substantial added expense of neuroimaging compared to actuarial prediction, it is important 

to establish that neuropredictive methods improve prediction sufficiently to overcome the 

relative cost. This is, of course, the same issue as commonly occurs in medical science, 

where disease biomarkers considered promising when studied in isolation are then found to 

be redundant with less expensive predictors in routine workups. One counterpoint to this 

maxim is when neuroimaging provides greater mechanistic insights into the nature of 

prediction; for example, it could be the case that neuroimaging and behavioral measures are 

equally predictive of behavior, but the neuroimaging data provide additional guidance 

regarding the most effective therapeutic means for preventing further violence in each 

individual.

Appropriate norms

The development of norms for actuarial methods of violence prediction has required very 

large sample sizes in order to ensure that the predictions are accurate across a wide range of 

demographics. For example, recent studies that have validated the Oxford Risk of 

Recidivism tool (OxRec) [71] and the Oxford Mental Illness and Violence tool (OxMIV)

[72] had samples sizes of 47,326 and 75,158 respectively. For neuroimaging prediction to be 

equally reliable, we will need norming datasets large enough to provide accurate predictions 

for individuals who vary in many different ways. Without such norms, the criteria for 

prediction will vary due to differences in the sociodemographic and clinical compositions of 
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the samples from which they are derived, potentially increasing controversy in the 

interpretation and acceptance of individual risk assessments.

Concluding Remarks

The development of accurate methods to predict future violent behavior using behavioral, 

genetic, and/or neuroscientific data could have a significant impact on the legal system, 

especially on sentencing as well as prevention and treatment. Deeper and more mechanistic 

understanding of violent behavior—with objective techniques—has the potential to reduce 

suffering of victims, decrease the enormous economic burdens of crime, and minimize 

foregone futures of young people whose life trajectories could have been altered but for their 

involvement in impulsive crimes. Neuroprediction offers the potential to identify causal 

mechanisms that distinguish the callous psychopath from the neurologically immature or 

dysfunctional individual who might benefit from treatment or preventive measures. Despite 

the potential, however, current techniques fall far short of this ideal of objective mechanistic 

prediction. As we have discussed, the limited studies that have been published do not seem 

to approach what would be required to make definitive judgments in a legal context, or even 

to meet the legal standards for admissibility of expert testimony (see Outstanding 

Questions). As research accumulates, the uncertainty regarding accuracy of individual 

predictions may diminish, but the societal impact of research on neuroprediction will depend 

on future commitments to the application of rigorous methodology. Whether neuroprediction 

will ever reach its hypothetical potential, transcending the role of circumstances in human 

behavior to warrant serious impact in legal settings, remains an open question.

Acknowledgments

Preparation of this article was supported in part by the National Institutes of Health (National Institute of Nursing 
Research) under award number RO1NR014368-01 and in part by a grant from the John D. and Catherine T. 
MacArthur Foundation to Vanderbilt University. Its contents reflect the views of the authors, and do not necessarily 
represent the official views of either the John D. and Catherine T. MacArthur Foundation or the MacArthur 
Foundation Research Network on Law and Neuroscience (www.lawneuro.org). Thanks to Sadev Parikh for helpful 
comments on an earlier draft.

References

1. Anderson DA. The cost of crime. Foundations and Trends® in Microeconomics. 2012; 7:209–265.

2. McCollister KE, et al. The cost of crime to society: new crime-specific estimates for policy and 
program evaluation. Drug Alcohol Depend. 2010; 108:98–109. [PubMed: 20071107] 

3. Brooks-Crozier J. Nature and Nurture of Violence: Early Intervention Services for the Families of 
MAOA-Low Children as a Means to Reduce Violent Crime and the Costs of Violent Crime, The. 
Conn Law Rev. 2011; 44:531.

4. Blair RJR. The neurobiology of psychopathic traits in youths. Nat Rev Neurosci. 2013; 14:786–799. 
[PubMed: 24105343] 

5. Viding E, et al. Psychopathy. Curr Biol. 2014; 24:R871–4. [PubMed: 25247365] 

6. Buckholtz JW. Social norms, self-control, and the value of antisocial behavior. Current Opinion in 
Behavioral Sciences. 2015; 3:122–129.

7. Nadelhoffer T, et al. Neuroprediction, Violence, and the Law: Setting the Stage. Neuroethics. 2012; 
5:67–99. [PubMed: 25083168] 

8. Nadelhoffer T, Sinnott-Armstrong W. Neurolaw and neuroprediction: Potential promises and perils. 
Philosophy Compass. 2012; 7:631–642.

Poldrack et al. Page 15

Trends Cogn Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Monahan J, Skeem JL. Risk Assessment in Criminal Sentencing. Annu Rev Clin Psychol. 2016; 
12:489–513. [PubMed: 26666966] 

10. Meehl, PE. Clinical vs. statistical prediction. Minneapolis: University of Minnesota Press; 1954. 

11. Meehl PE. Causes and effects of my disturbing little book. J Pers Assess. 1986; 50:370–375. 
[PubMed: 3806342] 

12. Aegisdottir S. Should I Pack My Umbrella? Clinical Versus Statistical Prediction of Mental Health 
Decisions. Couns Psychol. 2006; 34:410–419.

13. Skeem JL, Monahan J. Current directions in violence risk assessment. Curr Dir Psychol Sci. 2011; 
20:38–42.

14. Yang M, et al. The efficacy of violence prediction: a meta-analytic comparison of nine risk 
assessment tools. Psychol Bull. 2010; 136:740–767. [PubMed: 20804235] 

15. Kroner DG, et al. A coffee can, factor analysis, and prediction of antisocial behavior: the structure 
of criminal risk. Int J Law Psychiatry. 2005; 28:360–374. [PubMed: 15936077] 

16. Singh JP, et al. A comparative study of violence risk assessment tools: a systematic review and 
metaregression analysis of 68 studies involving 25,980 participants. Clin Psychol Rev. 2011; 
31:499–513. [PubMed: 21255891] 

17. Petroianu A. Diagnosis of acute appendicitis. Int J Surg. 2012; 10:115–119. [PubMed: 22349155] 

18. Hamilton, M. Risk-Needs Assessment: Constitutional and Ethical Challenges. 2015. 

19. Starr SB. Evidence-based sentencing and the scientific rationalization of discrimination. Stanford 
Law Rev. 2014; 66:803.

20. Farahany NA. Neuroscience and behavioral genetics in US criminal law: an empirical analysis. J 
Law Biosci. 2015; 2:485–509. [PubMed: 27774210] 

21. Monahan, J. Bioprediction, Biomarkers, and Bad Behavior. Oxford University Press; 2013. The 
Inclusion of Biological Risk Factors in Violence Risk Assessments. 

22. Rietveld CA, et al. GWAS of 126,559 individuals identifies genetic variants associated with 
educational attainment. Science. 2013; 340:1467–1471. [PubMed: 23722424] 

23. Ripke S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat 
Genet. 2013; 45:1150–1159. [PubMed: 23974872] 

24. Ioannidis JPA. Why most discovered true associations are inflated. Epidemiology. 2008; 19:640–
648. [PubMed: 18633328] 

25. Poldrack RA, et al. Long-term neural and physiological phenotyping of a single human. Nat 
Commun. 2015; 6:8885. [PubMed: 26648521] 

26. Baskin-Sommers A, et al. Psychopathic individuals exhibit but do not avoid regret during 
counterfactual decision making. Proc Natl Acad Sci U S A. 2016; 113:14438–14443. [PubMed: 
27911790] 

27. Rodman AM, et al. Selective Mapping of Psychopathy and Externalizing to Dissociable Circuits 
for Inhibitory Self-Control. Clin Psychol Sci. 2016; 4:559–571. [PubMed: 27453803] 

28. Monahan, J., et al. Rethinking Risk Assessment: The MacArthur Study of Mental Disorder and 
Violence. Oxford University Press; 2001. 

29. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic 
intentions. Am J Psychiatry. 2003; 160:636–645. [PubMed: 12668349] 

30. Ermer E, et al. Aberrant paralimbic gray matter in criminal psychopathy. J Abnorm Psychol. 2012; 
121:649–658. [PubMed: 22149911] 

31. Yang Y, et al. Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful 
psychopaths. J Abnorm Psychol. 2010; 119:546–554. [PubMed: 20677843] 

32. Veit R, et al. Brain circuits involved in emotional learning in antisocial behavior and social phobia 
in humans. Neurosci Lett. 2002; 328:233–236. [PubMed: 12147314] 

33. Birbaumer N, et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance 
imaging study. Arch Gen Psychiatry. 2005; 62:799–805. [PubMed: 15997022] 

34. Harenski CL, et al. Aberrant neural processing of moral violations in criminal psychopaths. J 
Abnorm Psychol. 2010; 119:863–874. [PubMed: 21090881] 

35. Glenn AL, et al. The neural correlates of moral decision-making in psychopathy. Mol Psychiatry. 
2009; 14:5–6. [PubMed: 19096450] 

Poldrack et al. Page 16

Trends Cogn Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Decety J, et al. An fMRI study of affective perspective taking in individuals with psychopathy: 
imagining another in pain does not evoke empathy. Front Hum Neurosci. 2013; 7:489. [PubMed: 
24093010] 

37. Motzkin JC, et al. Reduced prefrontal connectivity in psychopathy. J Neurosci. 2011; 31:17348–
17357. [PubMed: 22131397] 

38. Decety J, et al. Brain response to empathy-eliciting scenarios involving pain in incarcerated 
individuals with psychopathy. JAMA Psychiatry. 2013; 70(6):638–645. [PubMed: 23615636] 

39. Decety J, et al. Neural processing of dynamic emotional facial expressions in psychopaths. Soc 
Neurosci. 2014; 9:36–49. [PubMed: 24359488] 

40. Hyde LW, et al. Amygdala reactivity and negative emotionality: divergent correlates of antisocial 
personality and psychopathy traits in a community sample. J Abnorm Psychol. 2014; 123:214–
224. [PubMed: 24661171] 

41. Carré JM, et al. The neural signatures of distinct psychopathic traits. Soc Neurosci. 2013; 8:122–
135. [PubMed: 22775289] 

42. Craig MC, et al. Altered connections on the road to psychopathy. Mol Psychiatry. 2009; 14:946–
53. 907. [PubMed: 19506560] 

43. Blair RJR. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends 
Cogn Sci. 2007; 11:387–392. [PubMed: 17707682] 

44. Viding, E., et al. Antisocial and Callous Behaviour in Children. In: Miczek, KA., Meyer-
Lindenberg, A., editors. Neuroscience of Aggression. Springer; Berlin Heidelberg: 2013. p. 
395-419.

45. Buckholtz JW, et al. Mesolimbic dopamine reward system hypersensitivity in individuals with 
psychopathic traits. Nat Neurosci. 2010; 13:419–421. [PubMed: 20228805] 

46. Bjork JM, et al. Incentive-elicited mesolimbic activation and externalizing symptomatology in 
adolescents. J Child Psychol Psychiatry. 2010; 51:827–837. [PubMed: 20025620] 

47. Bjork JM, et al. Psychopathic tendencies and mesolimbic recruitment by cues for instrumental and 
passively obtained rewards. Biol Psychol. 2012; 89:408–415. [PubMed: 22178441] 

48. Glenn AL, et al. Increased volume of the striatum in psychopathic individuals. Biol Psychiatry. 
2010; 67:52–58. [PubMed: 19683706] 

49. Schiffer B, et al. Disentangling structural brain alterations associated with violent behavior from 
those associated with substance use disorders. Arch Gen Psychiatry. 2011; 68:1039–1049. 
[PubMed: 21646569] 

50. Shmueli G. To Explain or to Predict? Stat Sci. 2010; 25:289–310.

51. Aharoni E, et al. Neuroprediction of future rearrest. Proc Natl Acad Sci U S A. 2013; 110:6223–
6228. [PubMed: 23536303] 

52. Shannon BJ, et al. Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc 
Natl Acad Sci U S A. 2011; 108:11241–11245. [PubMed: 21709236] 

53. Gabrieli JDE, et al. Prediction as a humanitarian and pragmatic contribution from human cognitive 
neuroscience. Neuron. 2015; 85:11–26. [PubMed: 25569345] 

54. Doehrmann O, et al. Predicting treatment response in social anxiety disorder from functional 
magnetic resonance imaging. JAMA Psychiatry. 2013; 70:87–97. [PubMed: 22945462] 

55. Goldstein-Piekarski AN, et al. Human amygdala engagement moderated by early life stress 
exposure is a biobehavioral target for predicting recovery on antidepressants. Proc Natl Acad Sci U 
S A. 2016; 113:11955–11960. [PubMed: 27791054] 

56. Kong XZ, et al. Individual differences in impulsivity predict head motion during magnetic 
resonance imaging. PLoS One. 2014; 9:e104989. [PubMed: 25148416] 

57. Ganis G, et al. Lying in the scanner: covert countermeasures disrupt deception detection by 
functional magnetic resonance imaging. Neuroimage. 2011; 55:312–319. [PubMed: 21111834] 

58. Uncapher MR, et al. Goal-Directed Modulation of Neural Memory Patterns: Implications for 
fMRI-Based Memory Detection. Journal of Neuroscience. 2015; 35:8531–8545. [PubMed: 
26041920] 

Poldrack et al. Page 17

Trends Cogn Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



59. HD-200 Consortium. The ADHD-200 Consortium: A Model to Advance the Translational 
Potential of Neuroimaging in Clinical Neuroscience. Front Syst Neurosci. 2012; 6:62. [PubMed: 
22973200] 

60. Brown MRG, et al. ADHD-200 Global Competition: diagnosing ADHD using personal 
characteristic data can outperform resting state fMRI measurements. Front Syst Neurosci. 2012; 
6:69. [PubMed: 23060754] 

61. Carp J. On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI 
experiments. Front Neurosci. 2012; 6:149. [PubMed: 23087605] 

62. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005; 2:e124. 
[PubMed: 16060722] 

63. Simmons JP, et al. False-positive psychology: undisclosed flexibility in data collection and analysis 
allows presenting anything as significant. Psychol Sci. 2011; 22:1359–1366. [PubMed: 22006061] 

64. Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage. 
2017; doi: 10.1016/j.neuroimage.2017.06.061

65. NCI-NHGRI Working Group on Replication in Association Studies et al. Replicating genotype-
phenotype associations. Nature. 2007; 447:655–660. [PubMed: 17554299] 

66. Emdin C, et al. Association of cardiovascular trial registration with positive study findings: 
Epidemiological Study of Randomized Trials (ESORT). JAMA Intern Med. 2015; 175:304–307. 
[PubMed: 25545611] 

67. Dechartres A, et al. Association between trial registration and treatment effect estimates: a meta-
epidemiological study. BMC Med. 2016; 14:100. [PubMed: 27377062] 

68. Poldrack RA, et al. Scanning the horizon: towards transparent and reproducible neuroimaging 
research. Nat Rev Neurosci. 2017; 18:115–126. [PubMed: 28053326] 

69. NCI-NHGRI Working Group on Replication in Association Studies et al. Replicating genotype-
phenotype associations. Nature. 2007; 447:655–660. [PubMed: 17554299] 

70. MacCoun R, Perlmutter S. Blind analysis: Hide results to seek the truth. Nature. 2015; 526:187–
189. [PubMed: 26450040] 

71. Fazel S, et al. Prediction of violent reoffending on release from prison: derivation and external 
validation of a scalable tool. Lancet Psychiatry. 2016; 3:535–543. [PubMed: 27086134] 

72. Fazel S, et al. Identification of low risk of violent crime in severe mental illness with a clinical 
prediction tool (Oxford Mental Illness and Violence tool [OxMIV]): a derivation and validation 
study. Lancet Psychiatry. 2017; 4:461–468. [PubMed: 28479143] 

73. Steyerberg, E. Clinical Prediction Models: A Practical Approach to Development, Validation, and 
Updating. Springer Science & Business Media; 2008. 

74. Hastie, T., et al. The elements of statistical learning. NY: Springer; 2001. 

75. Kuhn, M., Johnson, K. Applied Predictive Modeling. Springer; New York: 2013. 

76. Harrell, F. Regression Modeling Strategies: With Applications to Linear Models, Logistic and 
Ordinal Regression, and Survival Analysis. Springer; 2015. 

77. Copas, JB. J R Stat Soc Series B Stat Methodol. 1983. Regression, prediction and shrinkage. 

78. Skocik M, et al. I TRIED A BUNCH OF THINGS: THE DANGERS OF UNEXPECTED 
OVERFITTING IN CLASSIFICATION. bioRxiv. Jan 01.2016 :078816.

79. Moffitt TE. Genetic and environmental influences on antisocial behaviors: evidence from 
behavioral-genetic research. Adv Genet. 2005; 55:41–104. [PubMed: 16291212] 

80. Viding E, et al. Evidence for substantial genetic risk for psychopathy in 7-year-olds. J Child 
Psychol Psychiatry. 2005; 46:592–597. [PubMed: 15877765] 

81. Viding E, et al. Heritability of antisocial behaviour at 9: do callous-unemotional traits matter? Dev 
Sci. 2008; 11:17–22. [PubMed: 18171362] 

82. Buckholtz JW, Meyer-Lindenberg A. Psychopathology and the human connectome: toward a 
transdiagnostic model of risk for mental illness. Neuron. 2012; 74:990–1004. [PubMed: 
22726830] 

83. Brunner HG, et al. Abnormal behavior associated with a point mutation in the structural gene for 
monoamine oxidase A. Science. 1993; 262:578–580. [PubMed: 8211186] 

Poldrack et al. Page 18

Trends Cogn Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



84. Brunner HG, et al. X-linked borderline mental retardation with prominent behavioral disturbance: 
phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum 
Genet. 1993; 52:1032–1039. [PubMed: 8503438] 

85. Cases O, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in 
mice lacking MAOA. Science. 1995; 268:1763–1766. [PubMed: 7792602] 

86. Shih JC, et al. Monoamine oxidase: from genes to behavior. Annu Rev Neurosci. 1999; 22:197–
217. [PubMed: 10202537] 

87. Dorfman HM, et al. Neurobiological mechanisms for impulsive-aggression: the role of MAOA. 
Curr Top Behav Neurosci. 2014; 17:297–313. [PubMed: 24470068] 

88. Sabol SZ, et al. A functional polymorphism in the monoamine oxidase A gene promoter. Hum 
Genet. 1998; 103:273–279. [PubMed: 9799080] 

89. Parsian A, et al. Functional variation in promoter region of monoamine oxidase A and subtypes of 
alcoholism: haplotype analysis. Am J Med Genet B Neuropsychiatr Genet. 2003; 117B:46–50. 
[PubMed: 12555234] 

90. Guindalini C, et al. Association of MAO A polymorphism and alcoholism in Brazilian females. 
Psychiatr Genet. 2005; 15:141–144. [PubMed: 15900229] 

91. Moffitt TE. The new look of behavioral genetics in developmental psychopathology: gene-
environment interplay in antisocial behaviors. Psychol Bull. 2005; 131:533–554. [PubMed: 
16060801] 

92. Contini V, et al. MAOA-uVNTR polymorphism in a Brazilian sample: further support for the 
association with impulsive behaviors and alcohol dependence. Am J Med Genet B Neuropsychiatr 
Genet. 2006; 141B:305–308. [PubMed: 16526025] 

93. Saito T, et al. Analysis of monoamine oxidase A (MAOA) promoter polymorphism in Finnish male 
alcoholics. Psychiatry Res. 2002; 109:113–119. [PubMed: 11927135] 

94. Lee SS. Deviant peer affiliation and antisocial behavior: interaction with Monoamine Oxidase A 
(MAOA) genotype. J Abnorm Child Psychol. 2011; 39:321–332. [PubMed: 21152968] 

95. Williams LM, et al. A polymorphism of the MAOA gene is associated with emotional brain 
markers and personality traits on an antisocial index. Neuropsychopharmacology. 2009; 34:1797–
1809. [PubMed: 19194374] 

96. Reti IM, et al. Monoamine oxidase A regulates antisocial personality in whites with no history of 
physical abuse. Compr Psychiatry. 2011; 52:188–194. [PubMed: 21295226] 

97. Beaver KM, et al. Monoamine oxidase A genotype is associated with gang membership and 
weapon use. Compr Psychiatry. 2010; 51:130–134. [PubMed: 20152292] 

98. Buckholtz, JW., Meyer-Lindenberg, A. Genetic Perspectives on the Neurochemistry of Human 
Aggression and Violence. 2014. 

99. Syagailo YV, et al. Association analysis of the functional monoamine oxidase A gene promoter 
polymorphism in psychiatric disorders. Am J Med Genet. 2001; 105:168–171. [PubMed: 
11304831] 

100. Garpenstrand H, et al. A regulatory monoamine oxidase a promoter polymorphism and 
personality traits. Neuropsychobiology. 2002; 46:190–193. [PubMed: 12566936] 

101. Koller G, et al. No association between a polymorphism in the promoter region of the MAOA 
gene with antisocial personality traits in alcoholics. Alcohol Alcohol. 2003; 38:31–34. [PubMed: 
12554604] 

102. Zalsman G, et al. Relationship of MAO-A promoter (u-VNTR) and COMT (V158M) gene 
polymorphisms to CSF monoamine metabolites levels in a psychiatric sample of caucasians: A 
preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005; 132B:100–103. [PubMed: 
15457497] 

103. Tochigi M, et al. Combined analysis of association between personality traits and three functional 
polymorphisms in the tyrosine hydroxylase, monoamine oxidase A, and catechol-O-
methyltransferase genes. Neurosci Res. 2006; 54:180–185. [PubMed: 16360899] 

104. Vanyukov MM, et al. The MAOA promoter polymorphism, disruptive behavior disorders, and 
early onset substance use disorder: gene-environment interaction. Psychiatr Genet. 2007; 17:323–
332. [PubMed: 18075472] 

Poldrack et al. Page 19

Trends Cogn Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



105. Barnett JH, et al. Cognitive effects of genetic variation in monoamine neurotransmitter systems: a 
population-based study of COMT, MAOA, and 5HTTLPR. Am J Med Genet B Neuropsychiatr 
Genet. 2011; 156:158–167. [PubMed: 21302344] 

106. Flint J, Munafò MR. Candidate and non-candidate genes in behavior genetics. Curr Opin 
Neurobiol. 2013; 23:57–61. [PubMed: 22878161] 

107. Tiihonen J, et al. Genetic background of extreme violent behavior. Mol Psychiatry. 2015; 20:786–
792. [PubMed: 25349169] 

108. Faigman, DL., et al. Univ Chic Law Rev. 2014. Group to individual (G2i) inference in scientific 
expert testimony. 

109. Imrey PB, Philip Dawid A. A Commentary on Statistical Assessment of Violence Recidivism 
Risk. Statistics and Public Policy. 2015; 2:1–18.

110. Dawid, P. Synthese. 2015. On individual risk. 

111. Faigman DL, et al. Gatekeeping Science: Using the Structure of Scientific Research to 
Distinguish Between Admissibility and Weight in Expert Testimony. Nw U L Rev. 2016; 
110:859–904.

112. Treadway MT, Buckholtz JW. On the use and misuse of genomic and neuroimaging science in 
forensic psychiatry: current roles and future directions. Child Adolesc Psychiatr Clin N Am. 
2011; 20:533–546. [PubMed: 21683918] 

113. Buckholtz JW, Faigman DL. Promises, promises for neuroscience and law. Curr Biol. 2014; 
24:R861–7. [PubMed: 25247363] 

114. Aharoni E, et al. Predictive accuracy in the neuroprediction of rearrest. Soc Neurosci. 2014; 
9:332–336. [PubMed: 24720689] 

115. Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics. 2005; 
61:92–105. [PubMed: 15737082] 

Poldrack et al. Page 20

Trends Cogn Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Trends Box

• Violent behavior is a costly large-scale societal problem

• There is growing interest in using neuroscience data to assess risk for future 

violent behavior, but the utility of neuroscience for violence risk assessment 

remains to be established

• We review what is currently known about the underlying neurobiological 

mechanisms of violence, and evaluate recent neuroprediction efforts.

• Finally, we outline a set of practices for enhancing the validity and reliability 

of future risk assessment based on neuroscientific measures.
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