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Abstract

Background and Objective—Quantitative computed tomography (QCT) of the lungs plays an 

increasing role in identifying sub-phenotypes of pathologies previously lumped into broad 

categories such as COPD and Asthma. Methods for image matching and linking multiple lung 

volumes have proven useful in linking structure to function and in the identification of regional 

longitudinal changes. Here, we seek to improve the accuracy of image matching via the use of a 

symmetric multi-level non-rigid registration employing an inverse consistent (IC) transformation 

whereby images are registered both in the forward and reverse directions.

Methods—To develop the symmetric method, two similarity measures, the sum of squared 

intensity difference (SSD) and the sum of squared tissue volume difference (SSTVD), were used. 

The method is based on a novel generic mathematical framework to include forward and backward 

transformations, simultaneously, eliminating the need to compute the inverse transformation. Two 

implementations were used to assess the proposed method: A two-dimensional (2-D) 

implementation using synthetic examples with SSD, and a multi-core CPU and Graphics 

Processing Units (GPU) implementation with SSTVD for three-dimensional (3-D) human lung 

datasets (6 normal adults studied at total lung capacity (TLC) and functional residual capacity 

(FRC)). Success was evaluated in terms of the IC transformation consistency serving to link TLC 

to FRC.

Results—2-D registration on synthetic images, using both symmetric and non-symmetric SSD 

methods, and comparison of displacement fields showed that the symmetric method gave a 

symmetrical grid shape and reduced IC errors, with the mean values of IC errors decreased by 

37%. Results for both symmetric and non-symmetric transformations of human datasets showed 
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the symmetric method gave better results for IC errors in all cases, with mean values of IC errors 

for the symmetric method lower than the non-symmetric methods using both SSD and SSTVD. 

The GPU version demonstrated an average of 43 times speedup and ∼5.2 times speedup over the 

single-thread and twelve-threaded CPU versions, respectively. Run times with the GPU were as 

fast as 2 minutes.

Conclusions—The symmetric method improved the inverse consistency, aiding the use of image 

registration in the QCT-based evaluation of the lung.
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1. Introduction

Image registration is a key process in medical image analysis used to determine the optimal 

correspondence between images in a common coordinate system when trying to match 

images collected at different times or using different imaging modalities [1]. The 

correspondence provides a model to predict deformation in various human organs, such as 

the human lung. In the study of the lung, image registration has been applied to both normal 

and diseased lungs [2,3] with the goal of tracking the motion and regional deformation [4–

6], linking dynamic (four dimensional) lung datasets together [7] and differentiating 

emphysema from small airways disease in smoking-associated chronic obstructive 

pulmonary disease (COPD) [8].

The result of image registration yields a transformation mapping between two images, being 

referred to as the fixed and moving images, respectively. Registration involves three 

principal components: a transformation model, a similarity measure and an optimization 

step. The transformation model defines how one image can be transformed or deformed in 

order to match another image. The similarity measure quantifies the degree of matching 

between two images within a common coordinate system. It is desirable that each point in 

the moving image has only one correspondent point as its counterpart in the fixed image. 

This assumption means the forward transformation, which maps the fixed image to the 

moving image, and the backward transformation, mapping the moving image to the fixed 

image, should be inverses of one another, a feature referred to as inverse consistency (IC). IC 
evaluates how well the transformation derived from image registration satisfies inverse 

consistency conditions [9,10]. However, in usual computational usage the inverse 

consistency condition is not satisfied in various image registration techniques and therefore 

registration results are transformation direction-dependent, causing inconsistent forward and 

backward transformations [11].

Several image registration methods have been proposed to address the issue of inverse 

consistency. Christensen and Johnson [12] proposed a non-parametric image registration 

method to overcome the inconsistency issue. Their method is based on jointly estimating the 

transformation in both registration directions, as well as imposing an inverse consistency 

constraint. Another approach was proposed by Ashburner et al. [13], who used Bayesian 

statistics to achieve a maximum a posteriori estimate of the deformation field. Also, Cachier 
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and Rey [14] proposed an approach to reduce the asymmetry of registration by introducing 

inversion-invariant similarity and smoothness energies. Another interesting method was 

proposed by Rogelj and Kovačič [11]. They improved registration's inverse consistency by 

defining a symmetric image interdependence function measuring the image similarity in 

both transformation directions. Papiez et al. [15] used a Newton-Raphson like method to 

symmetrize the cost function to satisfy the IC condition directly, while Aganj et al. [16] 

targeted the non-uniformity of the cost function as the underlying cause of asymmetry by 

adding “an adaptive quasi-volume” constraint, where non-uniformity occurs when a cost 

function is divided into two parts with different weights in a symmetrization process. Also 

Vercauteren et al. [17] proposed non-parametric image registration method that imposes the 

“symmetric forces variant” as a constraint in diffeomorphic demons to achieve IC. 

Reaungamornrat et al. [18] proposed the MIND Demons algorithm for symmetric image 

registration in spinal interventions. They used a constrained symmetric energy function to 

estimate diffeomorphisms between two images.

Due to the ability of symmetric image registration to provide improved registration results in 

terms of inverse consistency and because medical image analysis demands high quality 

registration results, it is desirable to have the feature of symmetry in transformation 

direction. For example, symmetric methods can be used to improve image registration of the 

human lung that is complicated due to its non-rigid motion. Xu and Li [19] proposed a 4D 

image registration algorithm for dynamic volumetric lung images using two 4D B-spline 

functions, indicating a forward and inverse parameterization. Reaungamornrat et al. [18] 

used MR-To-CT symmetric image registration in spinal intervention using a symmetric 

constrain.

In this paper, we propose a novel mathematical framework for symmetric registration based 

on free-form deformation transformation (FFD) models [20]. The aim of this method is to 

eliminate or decrease sensitivity and dependence of the image registration method to 

transformation direction without explicit need for the inverse transformation in such a way 

that final form of similarity measure does not depend on inverse of transformation. We 

implement this framework for a cubic B-spline transformation model with two different 

similarity measures: 1) the sum of squared intensity difference (SSD) for two-dimensional 

(2-D) synthetic images 2) a physiologically meaningful similarity measure, the sum of 

squared tissue volume differences (SSTVD), for pairs of three-dimensional (3-D) computed 

tomography (CT) datasets of the human lung. The datasets were acquired at total lung 

capacity (TLC) and functional residual capacity (FRC). In order to ensure a one-to-one 

mapping for large deformation, the maximum displacement of control nodes was 

constrained [21], thus requiring solving for a sequence of invertible B-splines in a multi-

level and multiresolution framework. The proposed symmetric method was assessed in two 

ways: 1) with 2-D synthetic examples using SSD in order to validate the model, and 2) with 

3-D lung CT datasets using SSTVD because of its volume preserving nature. The time 

required for performing registration is very important in practical medical usages [22]. We 

follow the method proposed recently by Ellingwood et al. [23] for faster GPU and multi-

threaded CPU implementations of multi-level SSTVD method for 3-D cases, and a 

comparison of performance results is included in the result section.

Haghighi et al. Page 3

Med Biol Eng Comput. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Methods

Given two images If and Im, referred to as the fixed and moving images, respectively, where 

If (x): Ω → ℛ, x ∈ Ω ⊂ ℛ3 and Im(y′): Ω′ → ℛ, y′ ∈ Ω′ ⊂ ℛ3 these images can be 

considered as continuous functions of intensity at corresponding voxel coordinates. The aim 

of symmetric registration is to find a transformation function T(x, ϕ) mapping one image to 

another by calculating forward, TF, and backward,TF, transformations simultaneously in 

order to decrease the dependence on registration direction. This can be accomplished by the 

symmetrization of the similarity measure so that information of both forward and backward 

transformations is included in the related cost function [11].

2.1. Transformation model

We adopt cubic B-splines as the transformation model to use in conjuction with the 

symmetric measure presented in the next section. Cubic B-splines are one of the most 

common parametric transformation models for nonrigid image registration [20,24]. A key 

property of cubic B-splines is that they are locally controlled and, thus, computationally 

efficient even for a large number of control nodes. Furthermore, the cubic B-spline can be 

very efficiently implemented on the GPU [25].

Denote as Φ a nx × ny × nz grid of uniformly-spaced FFD control nodes, referred to as the 

control grid, overlaying a discrete and uniformly spaced grid of voxel intensity values, 

denoted as Ω, with a size of Nx × Ny × Nz voxels. The displacement of the ijkth control node 

is denoted by ϕi,j,k, and used to parameterize the transformation. The distances between the 

control nodes in the x, y, and z directions are denoted by δx, δy, and δz, respectively. The 3-

D cubic B-spline transformation T is defined for each voxel coordinate x = (x, y, z) with 

respect to 4d surrounding the displacement vectors of control nodes ϕ (the number of 

dimensions d = 3) as:

(1)

where i = ⌊x/δx⌋ − 1, j = ⌊y/δy⌋ − 1, k = ⌊z/δz⌋ − 1 are the indices of the first of the control 

nodes surrounding the voxel to be used for the FFD transformation. u = x/δx − (i + 1), v = 

y/δy − (j + 1), w = z/δz − (k + 1) denote the local physical coordinates of the voxel, 

normalized between 0 and 1. The uniform cubic B-spline basis functions B0 through B3 are 

defined for the x direction (and similarly for y and z) as:

(2)
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where 0 ≤ u ≤ 1. These basis functions are defined on limited support, allowing for efficient 

computation of the transformation function. In addition they are C2 continuous, allowing 

analytic calculation and continuity of first-order derivatives of the transformation function 

[3]. In order to minimize the symmetric similarity measure function, we need to calculate its 

gradient and the Jacobian matrix of the transformation (the Jacobian matrix is defined as the 

derivative matrix of the transformation). Since the cubic B-spline transform is the tensor 

product of independent one-dimensional functions, the entries of the Jacobian matrix of the 

transformation can be analytically calculated. Computation of these derivatives is very 

similar to computing the transformation itself, applying the product rule from calculus and 

replacing as approprite basis functions B0 to B3 by their respective derivatives as

(3)

2.2. Symmetrization of similarity measure

2.2.1. Sum of squared intensity difference—Given a pair of N-dimensional images If 

and Im, a commonly used similarity measure, the sum of squared intensity difference (SSD), 

is defined as

(4)

where x = (x1 … xN) and y = T[x, ϕ] is the corresponding transformed point from the fixed 

to the moving image. A symmetric version of the SSD similarity measure E(ϕ), can be 

defined as

(5)

Where Ω and Ω′ are the domains in images If and Im, respectively. In order to ensure 

symmetry of the similarity measure, we force the backward transformation as the exact 

inverse of the forward transformation. To calculate Eq. (5), we choose the sample point y′ 
as the forward transformed point of x, i.e., y′ = y = T [x, ϕ] and x = T−1 [y′, ϕ]. Thus, we 

could rewrite Eq. (5) as

(6)
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Where both x and y are elements in the same set of Ω. For optimization, we need to calculate 

the gradient of the cost function, Eq. (6), with respect to the transformation parameter ϕ as

(7)

where (or ∇Im(y) (or ∇If(x)) is the intensity gradient of the moving (or fixed) images. It is 

straightforward to calculate ∂T/∂ϕ with the defined forward transformation. ∂T−1/∂ϕ is 

derived by use of the chain rule for partial derivatives and noting that the fixed image 

coordinates x are independent of the displacement vectors of control nodes ϕ, and that y is 

identified with the forward transformed point of x, y = T [x, ϕ]:

(8)

where [JT−1] is the Jacobian matrix of the transformation T−1 . The Jacobian value JT is 

defined as the determinant of the derivative matrix of the transformation respect to voxel 

coordinate x [3]. The Jacobian matrix of the inverse transformation is the inverse of the 

Jacobian matrix of the transformation. Using the inverse function theorem, we can recast Eq. 

(7) in terms of the forward transformation by making use of the substitution from Eq. (8) as

(9)

So Eq. (7) can be rewritten as

(10)

Eq. (10) does not explicitly require the inverse transformation of T. The framework 

presented above is a generic form for intensity-based symmetric registration and can be 

applied to both non-parametric and parametric transformation models with complicated 

similarity measures, such as mutual information, normalized correlation coefficient and the 

sum of squared local tissue volume difference (SSTVD).

2.2.2. Sum of squared tissue volume difference—The similarity measure SSTVD, 

proposed by Yin et al. [3], has been demonstrated to successfully improve registration of 

lung images, particularly in regions with large deformations. It takes into account changes in 

the reconstructed Hounsfield unit (scaled attenuation coefficient, HU) due to inflation in 
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lung motion. The Hounsfield units can be used to estimate the amount of air or tissue in each 

voxel [26]. SSTVD extends the SSD similarity measure to address intensity changes in 

respiratory motion between intra-subject volumetric lung CT images by including air and 

tissue volume information. This measure is defined as

(11)

where νf and νm are the local volumes of corresponding regions in the fixed and moving 

images, respectively. In addition, Ĩ the tissue fraction estimated from the Hounsfield unit can 

be calculated as

(12)

where the HUs of air and tissue are taken as HUair = −1000 and HUtissue = 55, respectively 

[26,27]. The Jacobian value measures contraction or expansion in lung motion, revealing 

local expansion if JT > 1 and local contraction if 0 < JT > 1. To avoid non-invertible 

transformation, the Jacobian value must be positive, which is enforced by constraints on the 

displacement of B-spline control nodes [21]. Also, vm (T [x, ϕ]) can be calculated from the 

Jacobian value as

(13)

With Eq. (13), Eq. (11) can be rewritten as

(14)

We recast Eq. (14) so that the matching between the reference and moving images is 

symmetric. Eq. (14) can be rewritten to define the symmetric similarity measure E(ϕ) with 

SSTVD as

(15)
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where Ω is the fixed image domain, Ω′ is the moving image domain, Ĩf and Ĩm are the fixed 

and moving tissue fraction estimated from the Hounsfield Unit (HU), T is the forward 

transformation, T−1 is the backward transformation, and JT and JT−1 are the respective 

Jacobian values of the forward and backward transformations. The cost function includes 

information of forward and backward transformations simultaneously to determine 

registration parameters during optimization, defining the symmetric similarity criteria. For 

optimization, the gradient of the similarity function with respect to the transformation 

parameter ϕ is needed, and expressed as:

(16)

where . Based on the constraints [21] that the transformation is 

invertible, we make the assumption that we can choose the sample point y′ as the forward 

transformed point of x, that is y′ = y = T [x, ϕ] and x = T−1 [y′, ϕ]. By making this 

assumption, we can recast both the cost function and cost gradient in terms of the fixed 

image domain, leaving the variable x as the independent variable and removing explicit 

reference to the backward transformation and y variable. Using Eq. (9), Eq. (16) gives

(17)

The constraints mentioned in [21] require that the displacements ϕ in each direction and the 

B-spline grid spacing δ fit the condition ϕ < δ/K where k = 2.479472335. This leads to the 

need for a multi-level registration strategy, consisting of a sequence of B-spline grids 

beginning with a coarse grid of control nodes, and transitioning to finer grids of more 

closely space grids. The coarse grids with farther spacing between control nodes capture 

global deformations, while the finer grids capture local deformations. A composite 

transformation operation links the registration results between levels, see Ellingwood et al. 
[23] for more details.

2.3. Optimization

Image registration is an optimization problem and needs an efficient optimization algorithm 

to minimize the cost function with coresponding transformation parameters. But in all cases, 
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due to the ill-posed nature of registration, the optimization process should be constrained to 

avoid folding in the moving image. This may result in inconsistent deformation and a less 

physiologically meaningful deformed image [28]. Therefore, adding a penalizing term to the 

similarity measure is important due to its ability to enforce topology preservation in 

registration process. This can be accomplished by adding regularization terms to the related 

similarity measure. In other words, the optimization process defines the similarity energy 

S(ϕ) to be optimized as a linear combination of a similarity measure E(ϕ) and a 

regularization term F(ϕ) as

(18)

where λ > 0 is a weighting parameter. The weight λ = 0.5 was used in this work. Possible 

regularization models such as linear elasticity [29], viscous fluid [30], and analytic 

regularization for landmark-based registration [31] have been developed to regularize the 

transformation. In this work, we used an unbiased registration constraint [32] as

(19)

which is based on a log-normal distribution of the Jacobian determinants. The inverse 

consistency property of this method was shown in the study of unbiased fluid registration 

methods [33]. A limited-memory quasi-Newton minimization method with bounds on the 

variables, L-BFGS-B [34] is used along with the multiresolution strategy to improve the 

computational efficiency and avoid local minima [3,23]. With the SSTVD measure and 

using Eq. (17), Eq. (18) and Eq. (19), we have the gradient of S(ϕ) as

(20)

2.4. Inverse consistency error

The symmetric method can be evaluated via inverse consistency error (ICE). ICE is defined 

as an average distance between the original point and its mapped point in the reference 

image after two subsequent forward and backward transformations (TF ∘ TR or TR ∘ TF) to 

the moving image. Therefore ICE can give an evaluation criteria for a consistent pointwise 

correspondence mapping between the reference and moving images [15,35]. It is defined as
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(21)

where TF and TR are the forward and backward transformations, respectively. The maximum 

of ICE is also defined as

(22)

The averaged ICE for forward and backward transformations between the fixed and moving 

images provides a criterion to assess the symmetry condition of a similarity measure.

2.5. GPU and Multi-threaded CPU Implementation

The implementation of GPU and multi-threaded CPU versions was developed extending the 

procedure reported in Ellingwood et al. [23] (Fig. (1)). The procedure involved two key steps 

in designing an effective GPU implementation. First, the uniformly spaced grid of control 

nodes for parameterizing the cubic B-spline transformation was aligned with the uniformly 

spaced voxel grid (partitioning it into tiles of equal numbers of voxels). Due to the uniform 

spacing of the voxels, corresponding voxels within tiles share the same local coordinates 

(normalized between 0 and 1). B-spline product weights could then be precomputed for a 

single tile, with computation required only one time during initialization, and stored in a 

lookup table (LUT) for reuse, creating tremendous computational and memory efficiencies. 

Second, in order to maintain the uniform spacing of the voxel grid necessary to utilize the B-

spline LUTs for subsequent resolution levels of registration within the multi-level 

framework, a diffeomorphic multi-level transform composite (DMTC) method was utilized 

(see Ellingwood et al. [23] for details). Implementation of the GPU version of the symmetric 

SSTVD method required additional memory storage and computation for the gradient of the 

moving image. A pseudo-code is included in the supplementary section 5.1 for clarity; see 

Ellingwood et al. [23] for a detailed description. Registration accuracy results for DMTC 

based on annotated landmarks also are included in section 3.4.

3. Results

Two sets of experiments were performed to evaluate the symmetric registration method. 

First, registration of synthetic data sets consisting of two 2-D images (so-called Circle to C-
shape test) was assessed based on the symmetric SSD method. Second, lung CT datasets 

from six normal human subjects (previously described by Yin et al. [3]) were used to assess 

the proposed SSTVD symmetric similarity method. For these subjects, two volumetric scans 

were acquired with a Siemens Sensation 64 multi-detector row CT scanner (Forchheim, 

Germany) during breath-holds near FRC and TLC in the same scanning session for each 

subject. The University Institutional Review Board approved the scanning protocol. Each 

volumetric dataset contains 550-760 image sections with a section spacing from 0.5 to 0.7 

mm and a reconstruction matrix of 512 × 512 pixels. In-plane pixel spatial resolution is 
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approximately 0.6 × 0.6 mm2. The software Apollo (VIDA Diagnostics, Coralville, Iowa) 

was used to segment the lungs and lobes of CT images.

3.1. Assessment based on 2-D synthetic objects

Fig. 2(a) shows the synthetic data of 2-D Circle and C-shape images from the classical 

registration example, each of size 256 × 256 pixels with pixel size of 1.0mm × 1.0mm. A 

composite transform consisting of eight levels of B-splines was used to describe the 

deformation. Also the displacement field and transformed shape of the deformed grid space 

were compared for non-symmetric and symmetric SSD similarity measures and depicted in 

Fig. 2(b) and Fig. 2(c). The symmetries of these methods were quantified by inverse 

consistency error. Results for forward and backward deformations and their related ICE 
values are tabulated in Table 1 for two different ICE ranges.

Clearly, from Table 1 the mean values of ICE are lower in the symmetric method than the 

non-symmetric method. In addition, the symmetric method yields a more symmetrical grid 

shape as seen in Fig. 2(b) and Fig. 2(c). The distributions and histograms of ICE for non-

symmetric and symmetric methods are shown in Fig. 3(b).

3.2. Validation for 3-D lung CT datasets

Mean of ICE values in different ranges (ICE < 15 mm and ICE > 30 mm) for forward and 

backward (non-symmetric) and symmetric methods for both SSD and SSTVD are tabulated 

in Table 2. Fig. 4 shows an example of histograms for ICE values with SSD and SSTVD 

similarity measures for both non-symmetric and symmetric methods to illustrate the 

distribution of different ICE values. The ICE contours for non-symmetric and symmetric 

methods for both SSD and SSTVD within the sagittal planes of the lung are displayed in 

Fig. 5.

3.3. GPU performance results of symmetric method

During code testing, we determined the cost and cost-gradient computations for the 

similarity measure were responsible for over 60% of the total computational time for the 

symmetric image registration code (optimization taking most of the remaining 40%, pseudo-

code for implementation of the symmetric method is presented in the section 5.1). The vast 

amount of data-parallelism present within this component of the code indicated it was well-

suited for GPU implementation. The procedure developed in Ellingwood et al. [23] was 

followed and is discussed in section 2.5.

The GPU version of symmetric registration method was run on a Nvidia Tesla K40 GPU on 

the XSEDE supercomputing resource Maverick, a supercomputer dedicated to high-

performance GPGPU computing and data visualization at the Texas Advanced Computing 

Center (TACC) at the University of Texas. The Tesla K40 consists of 15 streaming 

multiprocessors of 192 Cuda cores each, for a total 2880 Cuda cores, and total memory 

(DRAM) of 12GB with bandwidth 288 GB/sec. The results for the GPU implementation 

were verified against those of the single-threaded CPU implementation, with the CPU 

implementation serving as the reference.
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The performance results for the GPU implementation (using a Nvidia Tesla K40) are 

compared to single and twelve-threaded CPU results (run an Intel Xeon E5-2620 6-core 

CPU clocked at 2.1 GHz) and reported in two ways – total times and speedup per resolution 

level. The results in Fig. 6 show the speedup factors per level of registration, where speedup 

factor is defined as the timeserial CPU/timeGPU. At every level, the GPU performs better than 

each of the multithreaded CPU versions. Greatest speedup occurs for GPU over CPU at the 

highest resolution level, where the GPU version demonstrated an average of 43 times 

speedup and nearly 5.1 times speedup over the single-thread and twelve-threaded CPU 

versions, respectively.

For total times, registration time (cost, cost gradient, and optimization) and isolated cost and 

cost gradient computations, totaled over all resolution levels, are compared. As shown in 

Table 3, total time decreased substantially with use of GPU as compared to twelve-threaded 

CPU results. The Tesla K40 substantially improved the runtime performance over the single-

threaded version for total registration time (13.7 times faster) and the isolated cost plus cost 

gradient total time targeted for GPU acceleration (38 times faster). The GPU performance is 

also better than the 12-threaded version, performing 1.8 times faster in total registration time 

and 5 times faster in total cost plus cost gradient time. Scalability of the multi-threaded CPU 

version flattens after 12 threads, yielding performance only slightly better for 24 threads 

compared to 12 threads.

3.4. Landmark validation

Landmarks located at vessel bifurcation of TLC and FRC of six normal human subjects [3] 

are used to assess registration accuracy. These landmarks are picked up based on a semi-

automatic landmark annotation system [36] and each pair included 120-210 landmarks. A 

comparison of landmark errors between SSTVD and SSD methods, averaged over six 

subjects is shown in Table 4. The landmark error shows the distance between corresponding 

landmarks in the TLC to FRC before registration and after registration. The landmark 

distances are averaged together based on initial distance (s) of 20, 40, 60 mm.

A comparison of landmark errors showed that both symmetric and non-symmetric SSTVD 

methods decreased the landmarks error to less than 3 mm for all initial distance, where for s 
< 20 mm, 20 ≤ s < 40 mm, 40 ≤ s < 60 and s ≥ 60, both non-symmetric and symmetric SSD 

yielded the landmark errors about 7 mm, 10 mm, 17 mm and 25 mm, respectively. This 

means that both non-symmetric and symmetric SSTVD methods showed very good accuracy 

for image registration. Although the accuracy of symmetric SSTVD method appears to be 

slightly better than that of non-symmetric one, their difference is statistically insignificant (p 

value > 0.05).

4. Discussion

We have presented a novel generic framework for an intensity-based symmetric registration 

method that can be applied to parametric transformation models and can be extended to 

more complicated similarity measures. This method was implemented by using a cubic B-

spline transformation and then solved by minimizing the symmetric form of the similarity 

measures (SSD and SSTVD) along with the regularization term included for topology 
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preservation. Invertibility of each B-spline was achieved by imposing displacement 

constraint of the control nodes.

To evaluate the proposed methods, we first performed registration on a classical Circle to C-
shape experiment (Fig. 2(a)) by using both symmetric and non-symmetric SSD methods. 

Comparison of displacement vector fields and transformation grid shape in Fig. 2(b) and 

Fig. 2(c) shows that both symmetric and non-symmetric methods gave almost the same 

displacement fields where the symmetric SSD demonstrated a regular invertible 

transformation with more symmetrical grid shape than the non-symmetric. Furthermore, the 

results of ICE (Table 1) show that the symmetric method improved the consistency issue, 

demonstrated by decreasing the mean values of ICE errors by 37%. This improvement is 

more evident from the histograms in Fig. 3(b), where the symmetric method shifted higher 

ICE values to the lower ranges so that percentage of voxels with ICE < 40 mm is 

approximately 98% of the total voxels number, compared to just 68% for the non-symmetric 

method. However, there are some high ICE values (less than 2.5% of total voxels number) 

which occurred at the object boundaries as seen in Fig. 3(a). One possible reason is that the 

balancing of the similarity measure and the regularization terms in the optimization process 

can cause these errors at the object edges. This happened for both symmetric and non-

symmetric methods because the penalizing (regularization) term prevents the fixed image to 

completely transform into the moving image trying to preserve the image registration 

topology.

Results for 3-D cases for both symmetric and non-symmetric (forward and backward) 

transformations are tabulated in Table 2. Values are based on the mean value of ICE and also 

error range, which is defined as the percentage of the voxel numbers with ICE less than or 

greater than a specific value (ICE < 15 mm and ICE > 30 mm ranges were chosen for both 

symmetric and non-symmetric cases so that a common measure can be used in comparison 

of the results for all the subjects). The symmetric method gave better results in terms of ICE 
improvement so that in all cases, the mean values of ICE for the symmetric method were 

lower than their counterparts, forward and backward transformations (non-symmetric 

methods) for both SSD and SSTVD. Also, mean values of ICE with SSTVD were 

significantly lower than those of SSD. This is consistent with the fact that the SSTVD 

method accounts for the change of intensity and therefore gives a more precise similarity 

measure criterion and consequently lower ICE (Yin et al. [3]). Also for both SSD and 

SSTVD, ICE values for backward transformation were higher than forward transformation 

because in the case of backward transformation, mean values of ICE were calculated within 

the FRC domain as the fixed image having lower resolution than TLC. Impact of the 

symmetric method on decreasing error ranges for both SSD and SSTVD can be seen from 

the histograms in Fig. 4. It should be noted that, even though the inverse consistency 

constraint was not imposed directly in the related cost function, the symmetric method 

showed a significant improvement for ICE by decreasing the number of voxels with high 

ICE values for both SSD and SSTVD. As expected, SSTVD was more effective at 

decreasing error ranges than SSD. For instance, for all cases, the symmetric SSTVD method 

decreased the percentage of voxels with ICE > 30 mm to less than maximum 2.5% of the 

total number of voxels, and simultaneously increased the percentage of voxels with ICE < 15 

mm to more than minimum 91% of the total voxels number, while these values for SSD 
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were 12.5% and 70.6%, respectively for the same error range criterion. Histograms in Fig. 4 

show that the symmetric method not only decreased ICE for both SSD and SSTVD, but also 

decreased the range of higher ICE values significantly so that ICE values shifted toward the 

lower values. Fig. 5 shows an example of a distribution of ICE values in the sagittal plane of 

the lung with both SSD and SSTVD methods for forward, backward and symmetric 

transformations. The region with higher ICE values lies near the diaphragm. This happens 

due to larger displacement errors in regions near the diaphragm which is consistent with the 

fact that registration errors in the regions near the diaphragm are greater than other regions 

as reported by Yin et al. [3]. As seen from Fig. 5, both symmetric SSD and SSTVD methods 

decreased ICE, especially in the basal part of lung (near the diaphragm) where the SSTVD 

method was more effective in decreasing ICE in regions with large deformation. However, 

similar to the 2-D cases, there are some high ICE values (less than 1% for all subjects) at the 

edge of the lung as a result of a trade-off between the regularization part and the similarity 

measure.

5. Conclusion

We symmetrized the cost function into forward and backward transformations and recast the 

gradient of the cost function in such a way that it only depends on forward transformation. 

Therefore the cost function does not explicitly require the inverse transformation of T which 

results in a simpler form of the gradient of the cost function. We have demonstrated, in both 

2-D synthetic images and 3-D lung data sets, that the symmetric method greatly improves 

the inverse consistency and also its GPU version can be used as a powerful technique with 

significant increase in speedup factor for lung volume registration. While we have focused 

upon lung imaging, the generic nature of the proposed approach can be potentially applied to 

other organs.
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6. Appendix: Supplementary Material

6.1. Symmetric registration Pseudo-code

A pseudo code of the symmetric implementation in the image registration code is presented 

for clarification of the main kernel structure. Calculations of the transformation, the cost and 

cost-gradient computations for the SSTVD similarity measure are included in the pseudo 

code of the symmetric function. The pseudo code focuses on the symmetric implementation 

and the details of GPU implementation are excluded. For more details on GPU 

implementation and its Pseudo-code, please see Ellingwood et al. [23]. For parallelization 

process, tiles are assigned to blocks and the main kernel partitions the tile into sub-tiles of 64 

voxels in 3D, and then each voxel is assigned a thread.

Pseudo code: Main kernel for symmetric SSTVD function

1. // Get block index B and thread index T
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2. // Allocate shared memory for Cost

3. // Allocate shared memory for temp Cost gradient values

4. // Allocate shared memory for temp Cost gradient bins

5. // Partition tile into subsets of 64 voxels, begin loop over these subsets with index 

pTile For pTile = 0 to TileSize/64

6. // B maps corresponds to voxel tile

7. // T maps to voxel within subset pTile with coordinate x = (x,y,z)

8. // Compute local voxel coordinates and local indices within tile B

9. u = x/δx − ⌊x/δx⌋, v = y/δy − ⌊y/δy⌋, w = z/δz − ⌊z/δz⌋

10. i = ⌊x/δx⌋ − 1, j = ⌊y/δy⌋ − 1, k = ⌊z/δz⌋ − 1

11. // Compute transformation function

12. Compute transformation Ti [x, ϕ] for x = (x,y,z) where Ti is the current 

transformation from DMTC [23]

13. Compute DT (D is defined as the determinant of derivative matrix of 

deformation)

14. // Compute Jacobian value JT

15. JT [x, ϕ] = det(DT)

16. // For multilevel B-spline technique for compute current level transformation and 

warping image at the previous level i.

17. Tc [x, ϕ] = Warping (Ti [x, ϕ])

18. Jω [x, ϕ] = Interpolate(Ti [x, ϕ], Image Jω)

19. JTC [x, ϕ] = Jω [x, ϕ]JTi [x, ϕ]

20. // Calculation of symmetric similarity measure

21.

22. // Compute SSTVD similarity measure

23. // The process repeats for each sub-tile within the tile, accumulating the cost 

gradient partial sums in shared memory.

24. // CSSTVD(ϕ)+ = Σx∈Ω [vf(x)Ĩf(x) − vm(T [x, ϕ])Ĩm(T [x, ϕ])]2

25. // Compute and summation of symmetric SSTVD similarity measure.

26.

27. // Compute the derivative of symmetric similarity measure

28. // Setting y′ = y = T [x, ϕ] and x = T−1 [y′, ϕ] yields the following:
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29.

30. // Final form of symmetric similarity measure after adding regularization term

31.

6.2. Inverse consistency error (ICE) for two patient from SPIROMICS study

To examine the robustness of our symmetric method, we applied our method to assess ICE 
for a smoker patient from Subpopulations and intermediate outcome measures in COPD 

study (SPIROMICS) [37]. SPIROMICS study uses residual volume (RV) instead on FRC 

which makes calculation of ICE even more changing due to smaller size of RV. The 

symmetric method successfully decrease the ICE for both SSD and SSTVD methods. The 

histograms of ICE and their contours were shown in Fig. 7 and Fig. 8.
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Fig. 1. 
Division of work between CPU and GPU during the SSTVD computations [23].
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Fig. 2. 
Classical Circle to C-shape experiment (a) and Registration displacement field and 

transformation grid shape for non-symmetric and symmetric for C-shape as the fixed image: 

(b) Displacement vector field non-symmetric (left) vs. symmetric (right) (c) Transformation 

shape in deformed grid space for non-symmetric (left) vs. symmetric (right).
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Fig. 3. 
(a) distribution of inverse consistency error for non-symmetric (left) vs. symmetric (right) 

method for SSD registration of Circle and C-shape (C-shape as the fixed image) (b) 

histogram of inverse consistency error for non-symmetric (left) vs. symmetric method (right) 

for SSD.
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Fig. 4. 
Distribution of inverse consistency error for non-symmetric (backward and forward) vs. 

symmetric (TLC as the fixed image) for SSD (left) vs. SSTVD (right) for (a) forward (b) 

backward (c) symmetric transformations.
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Fig. 5. 
Inverse consistency error [mm] for non-symmetric vs. symmetric method (TLC as the fixed 

image) for sagittal plane. SSD (left) vs. SSTVD (right) for (a) forward (b) backward (c) 

symmetric transformations.
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Fig. 6. 
Speedup factors for the accelerated symmetric cost and cost-gradient component of code, 

comparing the GPU implementation to single- and twelve-threaded (1T, 12T) CPU versions. 

Values shown are averaged for subjects at each of the 8 levels of the image pyramid. Image 

results for B-Spline grid spacing so that the number of voxels in a tile are multiples of 4 per 

direction.
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Fig. 7. 
Distribution of inverse consistency error for non-symmetric (backward and forward) vs. 

symmetric (TLC as the fixed image) of a smoker patient for SSD (left) vs. SSTVD (right) 

for (a) forward (b) backward (c) symmetric transformations.
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Fig. 8. 
Inverse consistency error [mm] for non-symmetric vs. symmetric method (TLC as the fixed 

image) for sagittal plane. SSD (left) vs. SSTVD (right) for (a) forward (b) backward (c) 

symmetric transformations.
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Table 1

Comparison results for mean of ICE values for 2-D non-symmetric vs. symmetric SSD method (C-shape as 

the fixed image) and their error ranges (percentage of the voxel numbers with ICE less than 40 and greater 

than 40 mm divided by the total pixel number).

Method-SSD ICE range Error range [%]

Non-Symmetric Mean [mm] 36.32 ICE < 40 67.9

ICE > 40 32.1

Symmetric

Mean [mm] 22.87 ICE < 40 97.5

ICE > 40 2.4
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Table 3

Total registration time and total cost and gradient computational time for GPU and CPU implementations of 

symmetric SSTVD. Note: Time is totaled over all 8 levels of registration and averaged for subjects.

Version Total Registration Time [min] Total Cost and Cost Gradient Time [min]

K40* GPU 9.0 2.0

12T CPU 16.1 9.8

1T CPU 123.5 75.3

*
K40 GPU information: Total memory: 12GB, Memory bandwidth: 288 GB/se with 15 streaming multiprocessors (SMX) consisting of 192 Cuda 

cores.
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