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Abstract The complex bidirectional communication be-
tween the gut and the brain is finely orchestrated by
different systems, including the endocrine, immune, au-
tonomic, and enteric nervous systems. Moreover, in-
creasing evidence supports the role of the microbiome
and microbiota-derived molecules in regulating such in-
teractions; however, the mechanisms underpinning such
effects are only beginning to be resolved. Microbiota—
gut peptide interactions are poised to be of great signif-
icance in the regulation of gut-brain signaling. Given
the emerging role of the gut-brain axis in a variety of
brain disorders, such as anxiety and depression, it is
important to understand the contribution of bidirectional
interactions between peptide hormones released from the
gut and intestinal bacteria in the context of this axis.
Indeed, the gastrointestinal tract is the largest endocrine
organ in mammals, secreting dozens of different signal-
ing molecules, including peptides. Gut peptides in the
systemic circulation can bind cognate receptors on im-
mune cells and vagus nerve terminals thereby enabling
indirect gut-brain communication. Gut peptide concen-
trations are not only modulated by enteric microbiota
signals, but also vary according to the composition of
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the intestinal microbiota. In this review, we will discuss
the gut microbiota as a regulator of anxiety and depres-
sion, and explore the role of gut-derived peptides as
signaling molecules in microbiome—gut—brain communi-
cation. Here, we summarize the potential interactions of
the microbiota with gut hormones and endocrine pep-
tides, including neuropeptide Y, peptide YY, pancreatic
polypeptide, cholecystokinin, glucagon-like peptide,
corticotropin-releasing factor, oxytocin, and ghrelin in
microbiome-to-brain signaling. Together, gut peptides
are important regulators of microbiota—gut-brain signal-
ing in health and stress-related psychiatric illnesses.
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Anxiety - Depression

Introduction

In the last decade, the physiological significance of gut pep-
tides has been expanded beyond gastrointestinal (GI) diges-
tion and absorption of nutrients. The more than 20 signaling
molecules released from specialized enteroendocrine cells
(EECs) in the GI tract have significant endocrine and meta-
bolic functions and are able to communicate with the brain [1].
It is now also becoming clear that the activity of EECs, which
represent no more than 1% of the total gut epithelium cell
population, is modulated by the gut microbiota [2—4].
Enteric bacterial diversity and composition uniquely influence
the release of gut peptides, including glucagon-like peptide
(GLP-1), peptide YY (PYY), cholecystokinin (CCK),
corticotropin-releasing factor (CRF), oxytocin, and ghrelin
[1, 5-7]. However, the mechanisms underlying EEC—micro-
biota interactions have yet to be fully resolved.
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Relatedly, increased emphasis has been given to the role of
the microbiota and its metabolites in health and disease.
Alterations in the gut microbiota may influence conditions
such as obesity, allergies, autoimmune disorders, irritable
bowel syndrome (IBS), inflammatory bowel disease (IBD),
and psychiatric disorders [8—13]. Although, several animal
studies have demonstrated that the gut microbiota modulates
behaviors relevant to psychiatric disorders such as anxiety-
like [14—19] and depressive-like behaviors [20—22], the mech-
anisms underpinning such microbe-host communication has
not yet been figured out. Of note, several of the same peptides
and their receptors that are released into the gut are also widely
expressed in the brain or signal to the brain, where these pep-
tides play well-established roles in the neurobiology of anxi-
ety and depression (for review, see [23, 24]).

Since the expression of these gut-derived peptides is likely
to be modulated by changes in the gut microbiota, it has been
proposed that these peptide hormones may have an important
role in gut-brain communication [21, 25-27].

The majority of the gut-derived peptides also play a role in
the central regulation of appetite and food intake, in particular
via hypothalamus nuclei [28-32]. Interestingly, obesity and
psychiatric disorders are commonly associated [33—37], and
a Westernized diet appears to exceed beyond nutrition, mod-
ulating behavioral reward and the development of psychopa-
thologies [38—43].

Thus, an understanding of gut peptide signaling may pro-
vide new insights into gut-brain communication to help ex-
plain how the gut microbiota may modulate pathophysiolog-
ical processes relevant to brain disorders such as anxiety and
depression. The latter disorders are major causes of disability
and contribute considerably to the global health burden [44,
45]. Although antidepressants and anxiolytics are usually ef-
fective, these drugs are frequently associated with serious side
effects [46—48]. Conversely, some patients are resistant to the
therapeutic effects of conventional pharmacological therapies.
Recent data from human cohorts support preclinical findings
suggesting that the modulation of the gut microbiota can in-
fluence brain function [49-53]. It is therefore clear that new
therapeutic strategies should be developed to prevent and/or
alleviate the symptoms of depression and anxiety.
Psychobiotics, which target the gut microbiota to affect mental
health for the better, may be one such innovative strategy (for
review, see [54-56]). In this review we will discuss the role of
the microbiota—gut—brain axis in anxiety and depression, and
how gut-derived signaling peptides are likely important medi-
ators in this process.

The Gut Microbiota

We live in a microbial world where each daily action can
shape our microbiome. Mammalian microbial colonization

likely begins at birth [57, 58] although a diverse range of
microbes have been detected in umbilical cord blood, amniot-
ic fluid, the placenta, and the fetal membranes [59-62].
Following parturition, the gut microbiota is refined and mod-
ified until adult-like communities reach homeostasis in its
diversity [63]. A variety of factors can influence the infant
microbiota, including birth delivery mode, breast feeding,
weaning age, and maternal lifestyle [64—66]. In addition, the
use of antibiotics, diet, exercise, and disease shape the micro-
bial landscape creating interindividual differences within the
gut microbiota [25, 67-69]. Typically, within healthy adults,
the composition of the intestinal microbiota remains stable
over time, and the bacterial phyla Firmicutes (including
Lactobacillus, Clostridium, and Enterococcus genus) and
Bacteroidetes (e.g., Bacteroides genus) represent > 90% of
the intestinal community [70]. These phyla are frequently cor-
related with the health outcomes in human and animal studies
(for review, see [71, 72]).

The diversity and stability of the microbiota are important
indices for the overall health of an individual. The gut micro-
biota may impact host health via the conversion of
nondigestible carbohydrates to short-chain fatty acids
(SCFAs) [15], transformation of bile acids [73, 74], action
against pathogenic bacteria [75], and the modulation of host
innate and adaptive immune systems [76]. For example, a
reduction in microbial diversity or the complete absence of
the gut microbiota alters normal immune system function
[77, 78] and decreases the capacity for harvesting energy from
the diet [79, 80]. Consumption of complex carbohydrates rich
in dietary fibers changes the composition of the gut microbiota
often increasing the abundance of Firmicutes and Bacteroides
[43, 81, 82]. Prebiotic supplements, here defined as
nondigestible fibers selectively metabolized by the enteric
microbiome, increase the production of SCFA [15, 83].
SCFA act on G-protein-coupled receptors [free fatty acid
(FFA) receptors] located along the GI tract to regulate energy
homeostasis via the stimulation of leptin production in adipo-
cytes, and the secretion of gut peptides from colonic EECs
[84-87].

The Microbiota—Gut-Brain Pathways: Focus on Gut
Peptides

The brain and the gut are engaged in continuous bidirectional
communication. Such communication may be important in
mediating physiological effects ranging from GI function to
the brain and behavior, bringing about the perception of vis-
ceral events such as nausea, satiety, and pain. In turn, stressful
experiences lead to altered GI secretions and motility. The
clinical relevance of such bidirectional communication, along
with the modification of the gut microbiota composition, is
now being investigated. Bidirectional gut—brain
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communication may begin as sensory information from the GI
tract [88], and is consequently transformed into neural, hor-
monal, and immunological signals. These signals can inde-
pendently or cooperatively relay information to the central
nervous system (CNS). The neural and immune pathway,
when relevant, are discussed throughout the paper. For an
in-depth review of the literature regarding the neural and im-
mune pathway, please see [2, 89, 90] and [11, 76, 91], respec-
tively. Figure 1 also provide a schematic view of the gut mi-
crobiota—brain axis, including both neural and immune
pathways.

The gut endocrine system is comprised of gut peptides and
other signaling molecules (i.e., serotonin), which are released
by different types of EECs along the GI tract in response to
food intake, particularly after ingestion of carbohydrates and
fats. EECs represent approximately 1% of epithelial cells in
the gut lumen and are divided into subtypes according to lo-
cation in the gut and class of molecules released, including
peptides (Fig. 2). Recently, in an elegant study, Bellono et al.
[88] demonstrated that EECs, in particular enterochromaffins,
control serotonin release onto 5-HT3 receptor-expressing pri-
mary afferent nerve fibers that extend into intestinal villi,

Fig. 1 Major communication
pathways of the microbiota—gut—
brain axis. There are numerous
mechanisms through which the
gut microbiota may signal the
brain to control physiological
processes. These include the
release of gut peptides by
enteroendocrine cells (EECs)
where they activate cognate re-
ceptors of the immune system and
on vagus terminals in the gut. Gut
peptides such as neuropeptide Y
(NPY) can also be released by

NPY
CCK

Gut peptide

receptor 7

brain

GLP-1 release
all over the

enabling them to detect and transduce information from the
gut to the nervous system.

Peptides are short chains of amino-acid monomers linked
by amide bonds (approximately < 50 amino-acid residues)
that can be released from specialized neurons in the brain
(where they are called neuropeptides) or in EECs as a signal-
ing molecule through binding G protein-coupled receptors
[88, 92, 93]. Peptides are able to reach receptors far from the
site of their release, and are efficiently metabolized by endog-
enous enzymes and do not accumulate in tissues [92, 94].
There are > 100 peptides in mammals, with those relevant to
gut-brain communication being mostly involved in regulating
digestion and satiety. Many of the peptides found in EECs and
in CNS regulating the GI tract are also found in the enteric
nervous system. For example, tachykinins (i.e., substance P)
and calcitonin gene-related peptide are expressed in intrinsic
sensory neurons [95, 96]. Gastrin-releasing peptide stimulates
the release of gastrin from G cells of the stomach and regulates
gastric acid secretion and enteric motor function [97].
Vasoactive intestinal peptide communicates with adjacent
postsynaptic targets to regulate circadian rhythm and inhibit
gastric acid secretion and absorption from the intestinal lumen
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Fig. 2 Gut peptide distribution in the gastrointestinal tract. Gut peptides
are released from different subgroups of enteroendocrine cells (EECs)
following appropriate stimulation. The stomach is rich in ghrelin expres-
sion from A cells (brown circles), cholecystokinin (CCK) is expressed in
the proximal segment of the small intestine by I cells (blue circles). The
small and large intestine secretes glucagon-like peptide (GLP-1) and pep-
tide YY (PYY) from L cells (red and green circles, respectively). Only
some examples of EEC subgroups and relative hormones secreted are
represented in the figure

[98, 99]. Structurally similar to vasoactive intestinal peptide,
the pituitary adenylate cyclase-activating polypeptide can
stimulate enterochromaffin-like cells, a type of EEC [100].
Other peptides include the opioid peptides (enkephalin, endor-
phins), insulin, calcitonin gene-related peptide,
oxyntomodulin, glucagon, enteroglucagon, GLP-2, somato-
statin, and gastrin inhibitory polypeptide, among others.
Owing to their privileged location in the GI tract, it is possible
that those peptides may be influenced by changes in the gut
microbiota and modulate (directly or indirectly) upstream sig-
naling to the brain. In this review we focus on peptides with
known roles in anxiety and depression; for an in-depth review
of others, please see [7, 101-104].

For the peptides discussed in this review, beyond the
role in satiety, they can be stimulated by bacterial prod-
ucts that come into contact with the gut epithelium [83,
105, 106]. Distinct subtypes of EECs release different
peptides in the gut. For example, the stomach contains
X/A-like cells that secrete ghrelin, an orexigenic peptide.
Increased ghrelin is associated with the timing of a meal.
The proximal small intestine contains I cells and K cells
that produce CCK and glucose-dependent insulinotropic
polypeptide, respectively [5, 107]. In the distal small
and large intestines are L cells, which produce GLP-1/2

and PYY. CRF, which is found in the colon and ileum, is
expressed by enterochromaffin cells [108]. Moreover, an
additional subset of EECs has the ability to co-express
peptides, including CCK, GLP-1, and PYY [109, 110].

Following secretion, gut peptides diffuse throughout the
lamina propria, which is occupied by a variety of immune
cells, ultimately to reach the bloodstream, to stimulate sensory
neurons and potentially to act on the vagus nerve, thereby
creating an intersection for gut peptidergic signaling to the
brain [111]. In a complementary manner, the blood—brain bar-
rier (BBB) selectively facilitates the transport of some pep-
tides in the blood-to-brain direction, suggesting a direct path-
way for some gut peptides that are not quickly degraded after
their release [112—115].

Owing to the wide expression of peptides and their recep-
tors in both brain and gut, in addition to their facilitated transit
into the bloodstream, it seems reasonable to assume that these
peptides can act beyond their primary signaling function, sug-
gesting a possible role (most likely indirect) of the gut pep-
tides in neuropsychiatric disorders [5]. The dynamic profile of
gut peptides, including their direct link with mood disorders,
and their broad role in the gut suggests that the microbiota—gut
peptide—brain communication axis can be a target for
psychobiotics to prevent and treat such disorders (Table 1).

The Gut Microbiota in Anxiety and Depression

The link between gut function and mental health is well ap-
preciated (for review, see [134—136]. Depression and anxiety
are often accompanied by changes in colonic motility, which,
in turn, alters the composition and stability of the gut micro-
biota, as well as the colonic physiology and morphology
[137-140]. Stress-related disorders can also alter the intestinal
barrier, triggering a “leaky gut”, which could allow a
microbiota-driven proinflammatory response through the
translocation of certain bacterial products from the gut
[141-143]. For example, Maes et al. [142, 143] found in 2
different studies that lipopolysaccharide (LPS) produced by
gut bacteria could increase immune responses in depressed
patients. Likewise, in IBS, a disease linked to alterations in
the immune system [144], a correlation was found between
gut microbiota composition and brain volumes in patients
with IBS with early life trauma, suggesting a shift in the
Firmicutes/Bacteroidetes ratio, with Firmicutes increased
and Bacteriodetes decreased [53]. Interestingly, this study
failed to identify correlations between anxiety or depression
symptoms scores. However, in depressive patients without
IBS symptoms, the Firmicutes/Bacteroidetes ratio was in-
versely correlated with the microbiota composition profiled
in patients with IBS [145-147].

Similar observations have been made in animal studies. Yu
et al. [148] found that depressive-like rats had the relative
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Table 1 Summary of the impact
of altered microbiota on peptides Microbial manipulation Effects Reference
Germ-free, and mice treated with antibiotics, probiotics ~ Increases NPY and PYY [25, 116,
and prebiotics 117]
Mice treated with antibiotics Decreases Y; and Y, receptors [25]
Rodents treated with antibiotics, probiotics, and Increases GLP-1 [116-122]
prebiotics
GLP-1 knockout mice Increases Bacteroidetes and reduced [123]
Firmicutes
Glucose-tolerant volunteers treated with Lactobacillus ~ Increases GLP-1 [124]
reuteri for 8 weeks
Germ-free mice Decreases CCK [125,126]
Germ-free mice and rats treated with prebiotics Decreases ghrelin [127-130]
Fasted germ-free mice Increases ghrelin [121]
Germ-free mice Decreases CCK [125,126]
Intracerebral administration of CRF Changes in the gut microbiota [111]
Stress-inducing CRF expression Decreases in Bacteroidetes and [131]
increases in Firmicutes
Mice treated with antibiotics from adolescence onwards ~ No change in CRF and decrease [21]
oxytocin
Mice treated with Lactobacillus reuteri Increases oxytocin [132,133]
Offspring mice from high fat diet-treated Decreases oxytocin/restored after [26]

dam/Lactobacillus reuteri treatment

treatment

NPY = neuropeptide Y; PYY = peptide YY; GLP-1 = glucagon-like peptide; CCK = cholecystokinin; CRF =

corticotropin-releasing factor

abundances of Bacteroidetes significantly increased, whereas
that of Firmicutes was markedly decreased. In mice that
underwent chronic stress, reductions in the genus
Bacteroides were identified [149]. Stressed mice also have
been shown to have greater populations of the genus
Clostridium, which agrees with the gut microbiota profile in
maternally separated rodents [149-151]. The genus
Clostridium is commonly altered as a result of changes mod-
ulated by gut metabolites, such as phenylalanine, tryptophan,
and tyrosine [152, 153]. Such metabolites are part of the me-
tabolism of key neurotransmitters in mammals, including se-
rotonin, with implications for ENS and CNS function and thus
gut-brain axis signaling [154—158].

Antidepressants are well known to have antimicrobial ef-
fects, modulating the pathophysiology of the anxiety and de-
pression by reshaping not only brain biochemistry, but also the
gut microbiota [159, 160]. Conversely, certain antibiotics,
such as (3-lactams and tetracyclines have potential antidepres-
sant properties in rodents and humans [161, 162].
Epidemiologic studies have suggested that some classes of
antibiotics such as fluoroquinolones are associated with the
development of depression and anxiety [163—166].

Although the altered gut microbiota and its effects on host
metabolic phenotype during psychiatric illness remains un-
known, these observations highlight the potential association
of the gut microbiota with host depression and anxiety. Thus,
the manipulation of the gut microbiota may be a useful tool to
decode the physiological role of the gut—brain axis in
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psychiatric disorders [167]. The use of germ-free rodents, an-
imals with pathogenic bacterial infections, animals exposed to
probiotic agents or to antibiotics, prebiotics, and fecal micro-
biota transfer from another animal or human may lead to im-
portant new findings for the development of new therapeutic
strategies to treat or prevent anxiety and depression.

The Neuropeptide Y Family

The members of the neuropeptide Y (NPY) family com-
prise NPY itself, PYY, and pancreatic polypeptide (PP).
The functional role of the NPY family in gut-brain sig-
naling is supported by the wide distribution of the 4 main
NPY receptors in mammals (Y1,Y,, Y4, and Y5 receptor)
(for a review, see [168]). NPY has higher affinity than
PYY for the Y, and Y5 receptors, whereas PYY is the
stronger agonist at Y, receptors [168, 169]. The Y, recep-
tors might also act as an autoreceptor, regulating the re-
lease of NPY, as well as other neurotransmitters, such as
y-amino butyric acid (GABA) [170-172]. The Y4 recep-
tors are preferentially bound by PP [169]. The Y;,Y,, and
Y, receptors are found in the colon and small intestine
[173]. In addition, the Y; and Y, receptors are also widely
distributed within the brain, but both Y4 and Y5 receptors
are restricted to particular areas in the brain, including the
nucleus of the solitary tract (NTS), hypothalamus, and
amygdala [174, 175].
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The NPY family is expressed at all levels of the gut—brain
axis. NPY is the most abundant peptide in the brain and is
expressed from the medullary brainstem to the cerebral cortex
(for review, see [175]). The presence of NPY in the NTS and
the ventral hypothalamus deserves special mention since these
areas are the main relays for peripheral signaling, which are
particularly important for the gut-brain signaling [24].
Moreover, NPY is also found in enteric nerve plexuses and
postganglionic sympathetic neurons [24, 176]. The gut pep-
tides PY'Y and PP are released mainly by EECs, where PYY is
expressed from L cells of the ileum and colon and released in
response to feeding (Fig. 2) [5], whereas PP is synthesized
from F cells of pancreatic islets and under vagal control
[176, 177]. Both PYY and PP are able to cross the BBB by
transmembrane diffusion and bind cognate receptors located
in the area postrema [115, 178]. Moreover, these gut peptides
can activate their cognate receptors located in vagal afferents
to signal to the brainstem [179, 180]. In addition, PYY-
positive neurons are also found in the NTS, and nerve termi-
nals containing PYY are located in the pons, hypothalamus,
and spinal cord [177].

Microbiota and the NPY, PYY, and PP: Relevance
to Anxiety and Depression

There is abundant evidence that the central NPY system af-
fects stress-related disorders such as anxiety and depression
(for a review, see [181, 182]). Additionally, NPY signaling
also has modulatory properties involving neuroprotection,
neurogenesis, and neuroinflammation [183, 184]. The Y, re-
ceptor, which is mainly activated by peripheral PP, modulates
anxiety and fear-related disorders in rodents [174, 185, 186].
PP is about 100 times more potent than NPY in Y, activation,
suggesting that PP/Y receptors can be an important route of
gut-brain communication in the pathogenesis of anxiety and
depression.

Following a meal, PP and PYY are released and inhibit
gastric emptying via the targeting of receptors on the intestinal
epithelium, as well as vagus nerve signaling [187—189]. By
activating Y4 receptors in the gut, PP reduces intestinal motor
activity and facilitates nutrient absorption, an effect likewise
exerted by PYY [24, 188, 190]. Interestingly, it has been sug-
gested that hunger in rodents could promote fear extinction
through Y, receptor signaling [185, 191]. Although the gut
microbiota was not investigated in these studies, the results
strongly suggest a potential role for gut—brain communication
through Y, signaling. The expression of NPY in the hypothal-
amus (where NPY plays a major role in feeding behavior and
stress response) is increased in adult, healthy, germ-free mice
when compared with conventionally raised mice [116]. In
addition, Schéle et al. [116] found that administration of leptin
reduced NPY expression in germ-free mice but not in conven-
tionally raised mice, suggesting that the gut microbiota may

decrease leptin sensitivity, effects that are dependent on vagal
signaling [192].

Despite its elevation by food intake, circulating PYY can
also be increased by exercise and stress [193, 194], conditions
that also modify the gut microbiota [195, 196]. It is important
to note that more studies linking changes in PY'Y and the gut
microbiota are needed. Correlative evidence exists between
PYY and the gut microbiota, where elevation in PYY in obese
individuals was associated with changes in the gut microbiota
[197]. Interestingly, PY'Y secretion is influenced by activation
of FFA receptors by SCFA [85, 198-200]. Moreover, the
SCFA butyrate can increase the expression of receptors that
sense microbial compounds (Toll-like receptors), which, in
turn, increases the expression of PY'Y [201]. Given the impor-
tance of microbiota-generated SCFAs such as butyrate, the
role of the SCFA in mediating PYY expression through im-
mune cells could be an important link in microbial-host com-
munication and PY'Y signaling. The use of dietary compounds
to modulate the gut microbiota has been a useful approach to
investigating the role of intestinal bacteria in PY'Y expression.
For instance, PY'Y expression is upregulated in the ileum after
treatment with prebiotic galacto-oligosaccharides (GOS)
[202]. Although plasma PYY is increased after oligofructose
treatment in healthy rats [202, 203], oligofructose did not alter
plasma PYY levels in obese mice [204]. A separate study in
rodents demonstrated that bacterial proteins produced after
nutrient-induced Esherichia coli growth may signal the CNS
via increased plasma PYY [205]. The same effect was ob-
served after the intake of probiotics. Hong et al. [202] found
an upregulation of intestinal PY'Y with the commensal bacte-
ria Bifidobacterium bifidum in rats. However, a study in
humans showed that plasma PYY was unaffected after treat-
ment with barley kernel bread, an indigestible carbohydrate
source, and a mixture of the probiotics Bifidobacterium
animalis, Lactobacillus reuteri, and Lacobacillus plantarum
[206]. Despite the interspecies variability, the contrasting re-
sults found in humans and animals could be owing to the
selective spectrum of bacteria that can modulate PY'Y expres-
sion. For this, Rajpal et al. [207] investigated selective spec-
trum antibiotics and found that only an alteration of Gram-
negative bacteria (which, in turn, increased the population of
Firmicutes) improved metabolic aspects, including PYY, in
rodents.

Evidence of direct involvement interaction between the
NPY system and the gut microbiota modulating behavior is
lacking. Perhaps the most convincing evidence of the gut
NPY family signaling brain function is found within the
context of depression and anxiety associated with colitis.
For example, in a colitis disease model, it was found that
an increase in the colonic synthesis of NPY was associated
with decreased colonic Y receptor expression [208, 209].
Moreover, circulating levels of plasma PYY and NPY are
also enhanced in patients with IBD, suggesting that the
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epithelial levels of NPY and PYY are exhausted by exces-
sive release of these peptides from EECs and intestinal
neurons [173]. In addition, NPY-depleted mice are resis-
tant to developing colitis and the levels of colonic PYY are
decreased in rats with chemically induced colitis or pa-
tients with IBS [24, 173, 208]. The effects of colitis on
behavior are also modified by NPY or PYY. For example,
depletion of NPY or PYY in mice prevents the anxiogenic
and depressive-like behavior often promoted by colitis
[210]. Moreover, the effect of increased expression of
NPY on immune function, is mediated mainly via NPY
receptors located on immune cells [173, 211], as well as
through the modulatory role of TLR on PYY expression
[201]. Crosstalk between the immune system and the brain
neurocircuitry can drive the development of depression
and raise anxiety [212]. Thus, it is likely that gut microbi-
ota contributes indirectly to NPY release and signaling to
affect its homeostatic role in balancing the brain’s response
to stress in the brain. Recently, it was shown that the de-
pletion of the gut microbiota in adult mice upregulated
NPY expression within the amygdala and hypothalamus,
followed by cognitive deficits [25], an effect also observed
in rats housed in environmental enrichment [213].
However, anxiety- or depression-like behaviors were unaf-
fected in these animals [25]. Interestingly, hypothalamic
NPY was also found increased in germ-free mice [116].
Germ-free mice usually present an anxiolytic phenotype
behaviorally [214]. In fact, the anxiolytic profile of NPY
is associated with its central levels to promote a change in
the anxiety phenotype of the animals [215]. Moreover,
Schéle et al. [116] demonstrated the role of NPY in
counteracting the increased plasma levels of corticosterone
in germ-free rodents. Of note, germ-free rodents have an
exaggerated release of corticosterone after acute restraint
stress [27, 216]. In contrast, plasma NPY levels decreased
after the introduction of conventional intestinal microbiota
in germ-free mice [217], a shift also observed by Sudo
et al. [216] with the corticosterone levels after recoloniza-
tion of germ-free mice. Interestingly, a fiber-supplemented
diet did not affect plasma PYY in germ-free rats, a result
that was not observed in conventional mice [218]. Finally,
NPY and PYY are also antimicrobial peptides, influencing
the composition and function of the gut microbiota [219].
Although a mechanism pointing to how the gut microbiota
influence the NPY system and then modulate brain function
and behavior, it is worth noting that NPY receptors are
expressed on immune cells, brain neurons, primary afferents
in the gut, and sympathetic neurons. Thus, in addition to the
literature mentioned above, this indicates that NPY, PYY, and
PP somehow participate in the reciprocal interaction between
the brain, the gut, and the immune system, therefore
warranting investigation of their pathophysiological implica-
tions within the context of the microbiota—gut—brain axis.

@ Springer

GLP-1

GLP-1, an incretin hormone, is a 30 amino-acid peptide de-
rived from the post-translational processing of
preproglucagon, which is involved in the neural regulation
of food intake, body weight, the modulation of the hypotha-
lamic—pituitary—adrenal (HPA) axis, and overall response to
stress via activation of the GLP-1 receptor (for review, see
[220-223]).

In the brain, GLP-1 is present in the NTS and the olfactory
bulb [5, 224]. In the NTS, GLP-1 fibers directly innervate
hypophysiotrophic CRF neurons in the paraventricular nucle-
us (PVN), where GLP-1 activates the HPA axis response
[225]. GLP-1 receptor is abundantly found in brain regions
that are critical for the regulation of both metabolic and endo-
crine responses [226]. In the periphery, GLP-1 is secreted by L
cells, which also secrete PYY in the ileum and the colon in
response to neuronal and hormonal signals (Fig. 2) [5, 110],
whereas the GLP-1 receptors are distributed in the gut, pan-
creatic 3-cells, kidney, and in the vagus nerve [222, 227].

Following release into the bloodstream, GLP-1 is rapidly
degraded, resulting in < 10% of secreted GLP-1 reaching sys-
temic circulation as a result of enzymatic degradation [221].
Thus, it is likely that GLP-1 acts locally in a paracrine fashion
in the intestine. Indeed, vagal afferent neurons express the
GLP-1 receptor, activation of which induces firing of the re-
spective vagal afferent neurons and most likely stimulation of
NTS [228, 229]. As the NTS projects GLP-1 neurons directly
to the paraventricular nucleus of the hypothalamus, it is plau-
sible to affirm that GLP-1 restricts feeding behavior, which is
dependent of the vagal pathway [230-232]. Although it is
unlikely that nutrient-induced GLP-1 enters the circulation
to act centrally to lower food intake, it has been proposed that
rather than entering the systemic circulation, GLP-1 is re-
leased into the lymph [233-235]. GLP-1 levels in the lymph
were found to be higher, lasting longer than in the blood-
stream, supporting a plausible model where GLP-1 does reach
the brain given its transport via the lymph [233]. If not, it is
also known that intestinal intraepithelial lymphocytes can
modulate energy availability, host microbial responses, and
mucosal integrity through the activation of GLP-1 receptors
in immune cells, and regulate the migration of lymphocytes
and natural killer T cells [123, 236].

Gut Microbiota and GLP-1: Relevance to Anxiety
and Depression

GLP-1 is widely recognized for its role in lowering postpran-
dial blood glucose via augmentation of glucose-dependent
insulin release and inhibition of glucagon secretion (for re-
view, see [237]). Interestingly, brain abnormalities and cogni-
tive deficits similar to those found in depressive patients are
also frequently identified in individuals with metabolic
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disorders [238-241]. It is particularly relevant that patients
with diabetes are twice as likely to suffer from anxiety and
depression than the general population [242, 243]. Growing
evidence supports the role of GLP-1 in the central effects of
metabolic syndrome, as GLP-1 in anxiety appears to be relat-
ed to the improvement of the glucoregulation in diabetic
states, with subsequent reduction in proinflammatory cyto-
kines and an increase in neuroprotection [244, 245]. For ex-
ample, reduction of the phyla Firmicutes and Bacteroidetes in
the gut ameliorates insulin resistance under conditions of a
high-fat diet by stimulating GLP-1 secretion in mice [246].
Moreover, anxiety-like behavior in diabetic mice was blunted
by a GLP-1 receptor agonist [247, 248], whereas in nondia-
betic animals, the impact of a GLP-1 receptor agonist was less
clear in reducing anxiety-like behavior [249-251]. However,
chronic systemic stimulation of GLP-1 receptors promoted
antidepressant-like effects in rodents, coupled with increasing
hippocampal neurogenesis, suggesting plasticity-related ef-
fects could underpin such effects [252—-255]. Furthermore, a
GLP-1 receptor agonist was able to reverse LPS-induced de-
pressive-like behavior without directly affecting inflammatory
cytokines [256]. Taken together, it is likely that attenuation of
glucose fluctuations by GLP-1 is responsible for its neuropro-
tective effects, especially during plasma hyperglycemia.

Evidence suggests a key role for SCFA in modulating GLP-1
expression through the stimulation of FFA2 and FFA3 receptors
in rodents [83, 105, 257-260]. Moreover, butyrate-induced
GLP-1 secretion is attenuated in FFA3 receptor-depleted mice
[105], thereby supporting a role for the gut microbiota in GLP-1
release. Indeed, germ-free or antibiotic-treated mice have elevat-
ed plasma and intestinal GLP-1 levels, as well as increased
proglucagon expression in the colon [118, 205, 246,
261-263]. The expression of GLP-1 in the hypothalamus of
germ-free mice is higher than in conventionally colonized ani-
mals [116]. Probiotics such as Bifidobacterium animalis and
Bifidobacterium bifidum increase intestinal and plasma GLP-1
levels in rodents [119, 202, 259]. GLP-1 is also upregulated in
mice after treatment with the prebiotics GOS, oligofructose, and
inulin-type fructans [127, 202, 264-266]. The depletion of
GLP-1 in rodents alters the composition of the enteric microbi-
ota [123] and abolishes the antidiabetic actions of oligofructose
in mice [266]. Collectively, these findings suggest the gut
microbiome influences central and peripheral GLP-1 production
through L cells in the gut.

The effects observed in animals can also be found in
humans. In healthy volunteers, a mixture of barley kernel
bread and Bifidobacterium animalis, Lactobacillus reuteri,
and Lactobacillus plantarum increased levels of plasma of
GLP-1 without affecting metabolic outcomes [206]. The result
was observed in glucose-tolerant volunteers, where the daily
administration of Lactobacillus reuteri or the commercially
available VSL#3 (a formulation with 8 strains of commensal
bacteria, including different strains of Bifidobacterium and

Lactobacillus) increased GLP-1 release into the blood, with-
out a change in insulin sensitivity or body fat distribution
[120, 124]. In patients with mood disorders and the presence
of cognitive deficits, it was found that 4-week treatment with a
GLP-1 agonist reverted the cognitive deficits without affect-
ing metabolic parameters, suggesting GLP-1 target offers ben-
eficial effects in some symptoms that can be overrepresented
in psychiatric disorders [267].

Taken together, the localization of GLP-1 and the GLP-1
receptors in the gut—brain axis underscores the importance of
the microbiota in the modulatory role for GLP-1 in the central
regulation of energy homeostasis, which may influence de-
pression and anxiety associated with metabolic dysfunctions.

CCK

CCK is derived from a 115 amino-acid precursor and is con-
verted into multiple isoforms, which range from 4 to 58 amino
acids in length, with a wide range of physiological effects such
as the control of gastric emptying, gallbladder contraction,
pancreatic enzyme release, and suppression of appetite (for
review, see [268]). Generally, CCK acts through the G
protein-coupled receptors CCK; and CCK, receptors to mod-
ulate other neurotransmitters, such as GABA, glutamate, do-
pamine, and acetylcholine.

CCK is also found abundantly in the peripheral and central
nervous systems [23]. Within limbic areas, CCK is generally
co-localized with 5-HT; and CB; receptors, which participate
in regulation of mood (for review, see [269—-271]). In the gut,
CCK is released postprandially from I cells of the small intes-
tine (Fig. 2), although mature EECs have the ability to co-
express CCK with GLP-1 and PYY [5, 110]. Both CCK,
and CCK, receptors have distinct patterns of expression.
CCK, is found mainly within the periphery, including vagal
afferent terminals along the mucosal epithelium, whereas
CCK,; is widely distributed in the brain, overlapping with
CCK distribution [23, 272].

Gut Microbiota and CCK: Relevance to Anxiety
and Depression

The role of CCK in emotional behaviors is seen primarily
through the activation of the CCK, receptors in limbic re-
gions, mainly the basolateral amygdala and, to some extent,
cortical areas and the hippocampus. Both human and rodents
studies indicate a positive correlation of CCK levels and in-
creased anxiety-like behavior [273-275]. Moreover, systemic
administration of CCK-8 elevated the levels of brain-derived
neurotrophic factor in the rat hippocampus, suggesting a
neuroplasticity-related effect mediated by CCK [276].

CCK is the first peptide released postprandially to reduce
food intake in both obese and lean individuals, remaining in
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the bloodstream for about 3 h [277, 278]. Then, CCK acts on
its cognate receptors in the periphery located mainly on vagal
afferent neurons that project to the NTS [2, 279, 280]. Indeed,
vagotomy in mice attenuates the effects of CCK on gastric
emptying, whereas the administration of LPS abolishes
CCK-induced inhibition of food intake [281, 282]. Gut CCK
has also been implicated in the pathophysiology of both IBS
and IBD. The densities of CCK cells are reduced in IBD,
which may lower the levels of gastric secretion, such as bicar-
bonate, pancreatic enzymes, and bile salts, resulting in the
development of IBS [283, 284]. Interestingly, a potential role
for CCK in regulating the immune system has also been sug-
gested in mice. Mice lacking T-cell receptors, which develop
inflammation on the colonic epithelium, have been associated
with a decrease in the number of EEC cells specialized in
secreting CCK [285]. As CCK has been reported to have
anti-inflammatory effects, reduced expression of CCK in the
gut may have an impact on gut inflammatory diseases, with
subsequent consequences in IBD or IBS comorbidity.

CCK signaling is also modulated by the gut microbiota.
Obese rodents, which have drastic changes in the composition
of gut microbiota, exhibit reduced response to CCK in the
nodose ganglia [286], as well as decreased CCK signaling in
the brain [287, 288]. Moreover, depletion of CCK; in mice
reduces firing in NTS neurons, indicating that the activation of
the vagal afferent neurons was inhibited [289]. However,
germ-free mice have reduced concentrations of gut CCK and
delayed intestinal transit [125, 126], whereas infection of
germ-free rodents with Giardia increased colonic expression
of CCK [283], corroborating previous studies showing that
intestinal infection could facilitate CCK stimulation of vagal
afferent neurons [290, 291].

Despite the changes observed in CCK levels in obese ani-
mals, plasma concentrations of CCK were not different in
severely obese patients versus normal-weight individuals
[292]. Federico et al. [292] did not observe changes in the
gut microbiota after obese patients underwent bariatric sur-
gery. Taken together, the results from this study show that
circulating CCK may not be modulated by changes in the
gut microbiome facilitated by alterations in energy
metabolism.

The importance of the microbiota in the modulatory role
for CCK in the central regulation of energy homeostasis may
influence depression and anxiety associated with obesity and
represent a potential target in this specific aspect of
emotionality.

Ghrelin
Ghrelin is a 28 amino-acid stomach-derived peptide known

for its powerful physiological orexigenic and adipogenic ef-
fects, as well as for its contribution toward the stress response,
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anxiety, and depression [293-297]. Ghrelin is the endogenous
ligand of the growth hormone secretagogue receptor type la
and was first discovered for its stimulation of growth hormone
secretion from the pituitary [293]. The ghrelin receptor
(growth hormone secretagogue receptor type 1a) is expressed
in the brain predominantly in the anterior pituitary gland, ar-
cuate nucleus, amygdala, substantia nigra, ventral tegmental
area, and raphe nuclei, whereas peripheral expression is found
in the pancreatic islets, adrenal gland, and thyroid [298, 299].

Ghrelin is secreted by A cells of the stomach (Fig. 2) [293,
299], although other peripheral organs such as the testis, pla-
centa, kidney, small intestine, and pancreas also express low
levels of ghrelin [28]. There is also evidence for the synthesis
of ghrelin in the brain, albeit at a much lower level, in specific
neuronal cells of the hypothalamus [28, 300]. Of note, central
ghrelin expression remains highly controversial as no signifi-
cant amounts could be detected in rodent neuronal cells, and
ghrelin receptor-expressing neurons did not receive synaptic
inputs from ghrelin-immunoreactive nerve terminals in these
species, suggesting considerable inconsistency between dif-
ferent studies [299, 301].

Peripherally produced ghrelin exerts its appetite-inducing
effects centrally after passing through the BBB [112,
302-304]. In addition, ghrelin axon terminals were found to
innervate other hypothalamic peptidergic systems, such as
agouti-related peptide- and proopiomelanocortin neurons in
the arcuate nucleus and CRF in the PVN, suggesting that
interactions between ghrelin and NPY/AGPR,
proopiomelanocortin, and CRF circuits are critical for energy
homeostasis and stress responses [305—307]. Nevertheless, it
appears that in addition to its effects on feeding, ghrelin en-
hances the release of NPY onto GABAergic nerve terminals
adjacent to CRH neurons, disinhibiting these neurons and
stimulating CRF release into the pituitary—hypophyseal portal
circulation, driving increased ACTH secretion from the pitu-
itary [28, 308].

Gut Microbiota and Ghrelin: Relevance to Anxiety
and Depression

Ghrelin crosses the BBB via active transport and direct diffu-
sion, making the ghrelinergic system ideally placed to play an
important role in the stress response [112, 297, 302].
Physiological state, such as fasting, strongly affects the trans-
port of ghrelin into the brain [302]. However, different
stressors, such as social defeat and restraint stress in rodents,
can increase long-term ghrelin levels in the stomach
[309-311]. Mice lacking endogenous ghrelin have a damp-
ened circulating glucocorticoid response following an acute
stressor due a deficit in the PVN response needed to stimulate
ACTH from the pituitary [295, 311]. Moreover, mice lacking
growth hormone secretagogue (GHS) receptors are more sus-
ceptible to stress and exhibit anxiety- and depressive-like
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behavior [309, 312]. Recently, some studies have demonstrat-
ed that hunger (which increases ghrelin levels) can instigate
the search for food even under stressful and anxiogenic con-
ditions, a sign of adaptation for survival [185, 313, 314]. In
agreement with the survival theory, recent studies have shown
that repeated injection of GHS receptor agonists into the
amygdala increases stressor-inducing fear memory formation,
whereas antagonists of GHS receptor administered during re-
peated stressors prevented fear memory formation, as well as
anxiety and depression-like phenotypes in mice [296, 315].
Thus, ghrelin may regulate the network designed to enhance
survival potential by increasing vigilance, fear, and controlling
anxiety. This framework provides a model through which
ghrelin could have myriad actions on mood, depending on
contextual states and physiological feedback mechanisms.

Although released in the stomach, the regulatory role of
ghrelin in appetite is mainly achieved centrally within the
arcuate nucleus and the brainstem [316, 317]. Thus, the regu-
latory role of ghrelin in the CNS may be affected by the gut
microbiota via vagus nerve to the NTS. Indeed, germ-free
mice have lower levels of plasma ghrelin under basal condi-
tions than conventional mice [128, 129]. However, after a
period of fasting, germ-free mice have higher plasma ghrelin
concentrations than conventionally colonized mice, which
could reflect a direct effect of fasting and not the microbiota
profile on ghrelin release [121]. Interestingly, serum ghrelin
levels are negatively correlated with the abundance of certain
gut bacteria, including the commensal Bifidobacterium and
Lactobacillus strains [318]. In addition, chronically elevated
plasma ghrelin, associated with changes in the gut microbiota,
can prevent anxiety- and depression-like behavior through
ghrelin receptors [309]. Ghrelin has also been shown to de-
crease in response to the prebiotic supplementation inulin and
oligofructose uniquely in obese and lean rodents, with obese
rats showing attenuated ghrelin levels [117, 122, 127].
However, oligofructose does not change plasma ghrelin levels
in obese rats fed a high fat/high sucrose diet [203]. In addition,
ingestion of conjugated linoleic acid induced changes in the
gut microbiota, increasing Bacteroides/Prevotella species and
ghrelin levels in the gastric mucosa of mice [319]. Increased
ghrelin was also observed in rats after treatment with a
diet containing 10% cocoa or cocoa fiber, which was
negatively associated with Bifidobacterium and
Streptococcus [320], whereas infection with pathogenic
Toxoplasma gondii lowered ghrelin serum levels in rats
[321]. A negative correlation between Firmicutes and
ghrelin levels was observed both in humans and rodents
[322, 323]. Moreover, the SCFA butyrate, as well as
physical exercise, reduce serum ghrelin levels through
involvement of FFA3 receptor [105, 318]. Of note,
physical exercise alters the composition of the microbi-
ota in the cecum and increases the concentration of
butyrate in the cecal content of rats [324].

In humans, the relationship between the gut microbiota and
ghrelin levels seems to mirror that in rodents where the rela-
tive abundance of bacterial taxa such as Bacteroides was neg-
atively correlated with plasma ghrelin, which, in obese pa-
tients, was increased [130, 197, 292]. Interestingly, plasma
ghrelin did not return to levels found in normal weight indi-
viduals after obese patients underwent bariatric surgery, de-
spite a postoperative increase of Lactobacillus and
Streptococcus [292]. The use of dietary capsaicin was shown
to increase the Firmicutes/Bacteroidetes ratio, which was as-
sociated with decreased plasma ghrelin levels and an increase
in butyrate [325]. Although dietary capsaicin was given to
healthy subjects, this study may warrant future investigations
into how the manipulation of the enteric microbiome may
achieve lowered ghrelin levels in people. Reduced ghrelin
levels could have implications in daily stress, minimizing in-
cidence of psychiatric disorders. For example, injection of
ghrelin in healthy humans increased plasma glucocorticoids
levels [326].

Ghrelin has recently attracted attention not only as a hunger
hormone, but also because of its role in modulating aspects of
stress, including anxiety-like behavior and fear. In concert
with other gut peptides, ghrelin signaling through the gut—
brain axis may tune communication between the periphery
and brain during daily life stressors. Nevertheless, a direct link
between the gut microbiota and the modulation of ghrelin
remains absent.

CRF

CRF is a 41 amino-acid residue peptide that plays a key role in
orchestrating the endocrine, behavioral, and GI responses to
stress (for review, see [327-329]). CRF is abundantly
expressed in neurons of the PVN of the hypothalamus where
it is released through effector neurons, which, in turn, mediate
neural control of adrenocorticotropic hormone (ACTH) re-
lease from pituitary corticotrophs. Then, ACTH passes into
systemic circulation to cause the release of cortisol (in
humans) or corticosterone (in rodents) from the adrenal glands
[328, 330]. Apart from hypothalamic CRF, this peptide and its
receptors are also expressed throughout several other limbic
regions and in the gut [331, 332]. In the gut, CRF is mainly
localized in enterochromaffin cells of the colon [333, 334],
and in submucosal and lamina propria cells, but not in epithe-
lial cells in the ileum [335]. CRF can bind two G protein-
coupled receptor subtypes, namely CRF; and CRF, receptors,
with different affinities. Apart from receptor binding, CRF
also binds to CRF-binding protein with high affinity. CRF-
binding protein is thought to play an inhibitory role in which
it binds CRF to prevent the activation of CRF receptors [336].
CREF is centrally expressed on GABAergic, glutamatergic, and
dopaminergic neurons [337], and can modulate the

@ Springer



46

Lach et al.

catecholaminergic response to stress by activating the norad-
renergic neurons in the locus coeruleus or regulating the syn-
thesis and release of adrenaline in the adrenals [329, 330].
Bethin et al. [338] found that immune activation induced by
endotoxin produced a robust rise in plasma corticosterone in
CRF or CRF; receptor knockout mice, comparable with wild-
type mice. Since the gut microbiota strongly affects the im-
mune system, intestinal diseases where the gut microbiota is
changed, such as IBS and IBD, may induce the expression of
inflammatory cells, which, in turn, can increase expression of
glucocorticoids but not CRF.

Gut Microbiota and CRF: Relevance to Anxiety
and Depression

Functional CRF, receptors are essential for the activation of
the endocrine response to stress [169]. However, when acute
stress reactions become more frequent, it can lead to the de-
velopment of stress-related disorders, including anxiety and
depression (for review, see [329, 339]). Whereas the absence
of CRF; receptors impairs basal and stress-induced HPA axis
response and induces an anxiolytic- and antidepressant-like
effect [329, 340, 341], CRF; overexpression results in an
anxiogenic- and depressive-like profile in rodents and humans
[342-346]. Interestingly, antidepressant treatment normalizes
expression of CRF and CRF; receptors in association with
remission of depression [329, 344, 346].

The CRF system also induces functional changes within
the gut, including slowed gastric emptying, colonic motile
stimulation, and impairment of the intestinal epithelial barrier,
each an effect independent of a stressful situation [347, 348].
Recently, a study has found that a single administration of
CRF modified the gut microbiota in rats, with specific reduc-
tions in Lactobacillus [349]. Although the inhibitory effect of
central CRF on gut motility and permeability does not change
with peripheral injection of CRF or the removal of different
HPA axis components [108, 350—352], acute stress in mice
induced the release of intestinal CRF independently of the
HPA axis [131]. Sun et al. [131] also observed changes in
gut microbiota composition, which was reverted with a probi-
otic supplement. The central administration of CRF in rodents
induces depressive and anxiolytic-like behavior, which was
followed by changes in the intestinal microbial community
[138]. Furthermore, the intestinal microbiota can interfere in
host CREF signaling. Germ-free rodents have increased hypo-
thalamic CRF gene expression, as well as circulating levels of
ACTH and corticosterone to acute restraint stress in adulthood
[27, 216]. These effects in the HPA axis are normalized in
recolonized germ-free mice [216]. Taken together, such data
indicate that CRF-mediated activation of the HPA axis de-
pends on the gut microbiota. Interestingly, the depletion of
the gut microbiota via antibiotic treatment in mice from
weaning onward does not alter hypothalamic mRNA CRF
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expression in adulthood, even when mice underwent acute
restraint stress [21], suggesting gut microbiota-mediated
CREF signaling may occur during early life. Prenatal stress
induced depressive-like behavior in adulthood mice, which
led to a long-lasting change of the enteric microbiota compo-
sition associated with an exaggerated HPA axis response to
stress [353-355]. Early-life stress such as maternal separation
results in changes in the gut microbiota followed by an in-
crease in stress reactivity, including a decrease in
Lactobacillus in adult mice [137]. Lactobacillus also sup-
pressed plasma corticosterone and hypothalamic CRF-
expressing cells in rats that underwent water-avoidance stress
[356]. Using a mixture of 8 bacterial strains, including
Lactobacillus and Bifidobacterium, Abildgaard et al. [357]
observed lowered hippocampal transcript levels of CRF re-
ceptors followed by marked reduction in depressive-like be-
havior in rats. Furthermore, social stress in mice also induced
changes in the microbiota, which were accompanied by
changes in cytokine and chemokine levels [149]. Taken to-
gether, these data support a role for the gut microbiota as a
potential treatment intervention to blunt stress reactivity.

Preclinical data from prenatal stress studies have been
confirmed in clinical trials. Infants of mothers with high
self-reported stress and high levels of salivary cortisol
during pregnancy had a significantly higher relative
abundance of Proteobacteria and lower relative abun-
dances of lactic acid bacteria (i.e., Lactobacillus,
Lactoccus, Aerococcus) and Bifidobacteria [358].
Nonetheless, those infants with altered microbiota com-
position exhibited a higher level of infant GI symptoms
and allergic reactions, highlighting the functional conse-
quences of aberrant colonization patterns in early life,
which can contribute to psychiatric comorbidities.
Increased CRF concentration in the cerebrospinal fluid
was also reported in depressive patients and victims of
suicide [359, 360]. Interestingly, administration of
Clostridium butyricum from the phylum Firmicutes can
block increased CRF levels in patients before surgical
procedures [361]. These patients also presented a re-
duced degree of anxiety before surgery, suggesting an
interesting effect of probiotics in mediating CRF expres-
sion to modulate stress reactivity. However, how gut
microbes initiate such a response through CRF signaling
is still unknown. A better understanding of CRF—micro-
biota interactions may identify potential gut microbiota-
targeted interventions to enhance resilience in stress
situations.

Oxytocin

Although oxytocin facilitates parturition and lactation in fe-
males, decreased oxytocin levels have been linked with
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depression (not only postpartum depression) and maternal ne-
glect [362, 363]. Oxytocin is synthesized by the
magnocellular neurons in the supraoptic and paraventricular
nucleus of the hypothalamus and secreted to the circulation by
the posterior pituitary or to nerve terminals located mainly in
the anterior pituitary, amygdala, hippocampus, and the bed
nucleus of the stria terminalis (for review, see [364]).
Peripherally, oxytocin and OXT receptors are mainly
expressed in the uterus, with low expression in many other
tissues and organs, including kidney, pancreas, adrenal, and
adipose tissue [365]. Interestingly, oxytocin can be found in
enteric neurons; however, gut OXT receptors are not only
found in enteric neurons, but they are also found in
enterocytes [366]. There is little evidence that oxytocin is
modulated by gut bacteria, although gut microbiota seems to
influence oxytocin in the brain [21, 26]. Moreover, there is
cross reactivity in binding of oxytocin and vasopressin with its
respective receptor, where oxytocin binds its receptor with
only 10 times greater affinity than vasopressin [367].

Gut Microbiota and Oxytocin: Relevance to Anxiety
and Depression

Oxytocin-expressing neurons within the hypothalamus are
stimulated by stress-mediated noradrenaline release, which
elevates oxytocin levels in mammals to counteract the physi-
ologic actions of stressors (for review, see [368-371]).
Oxytocin secretion is also directly modulated by various clas-
sical immune cytokines, such as inteleukin-1f3 and
interleukin-10 [372, 373], an effect that minimizes immuno-
logic insults and exerts protective effects by restoring host
homeostasis. Moreover, the administration of oxytocin exerts
an antidepressant-like effect in rodents [374-377], whereas
lowered oxytocin levels observed in nonweaned rats induces
a depressive-like phenotype, which correlates positively with
changes in the gut bacterial taxa [378]. Experimental stress in
rodents is associated with the downregulation of OXT recep-
tors in the amygdala [378]. Since stress can alter the gut mi-
crobiota composition, it is not surprising that there is interac-
tion between oxytocin and the gut microbiome. Interestingly,
gut microbiota depletion from early adolescence impacts oxy-
tocin signaling, reducing both hypothalamic oxytocin and va-
sopressin levels in mice subjected to stress [21, 379].
Normalized oxytocin levels in stressed animals was followed
by a reduction of anxiety-like behavior and correction in cog-
nitive deficits [21]. However, mice fed with L. reuteri restored
hypothalamic oxytocin neurons, as well as social behaviors, in
a study investigating the effects of maternal high-fat diet on
the offspring [26]. Interestingly, the effects observed above are
dependent on vagal signaling, which blunted the effects of
Lactobacillus on host plasma and hypothalamic oxytocin
[132, 133]. Oleoylethanolamide, a product of fat absorption,
which has antidepressant-like and neuroimmune properties

[380, 381], excites vagal afferent neurons and stimulates both
axonal and somatodendritic oxytocin secretion [382—384].
Oleoylethanolamide-inducing activation of the NTS in ro-
dents precedes the activation of oxytocinergic neurons in the
PVN, and the latter response appears to be mediated by nor-
adrenergic projections from the NTS to the PVN [383], sug-
gesting that gut-signaling oxytocin may be mediated by
oleoylethanolamide. Nonetheless, plasticity in the oxytocin
system is likely a protective coping mechanism in response
to stress shaped by the gut microbiota during the early life
stage, mainly through maternal exchange, which can contrib-
ute to depressive phenotypes when offspring become adults.
However, additional studies are needed to demonstrate a func-
tional role of the gut microbiota in the host oxytocin system.

Psychobiotics: Towards a New Class of Psychiatric
Treatments

Psychobiotics are defined as an exogenous intervention to effect
changes in mental health via modulation of the gut microbiome
(forreview, see[54, 56]). This may include not only prebiotics and
probiotics, but also diet and exercise that affect enteric bacterial
communities [54]. Few studies have shown results that may sup-
port a clinical role for psychobiotic intervention. For example,
changes in diet even for a short duration (24 h) can drastically alter
the composition of the gut microbiota [385]. Moreover, the qual-
ity of the diet (i.e., a typical Western diet rich in fat and protein)
drastically reduces Bifidobacteria and butyrate-producing bacte-
ria [386, 387], whereas a Mediterranean diet, which is thought of
as a healthy diet, shows significant increases in SCFAs [43]. An
overview of epidemiological studies showing the impact of diet
on SCFA produced by the gut microbiota can be found in Rios-
Covian et al. [388].

Regarding direct administration of probiotic or other com-
mercially available formulations to manipulate the gut microbi-
ota, a study found that students who ingested Lactobacillus spp.
had lower plasma cortisol, which can be interpreted as a mea-
sure indicative of reduced anxiety during a stressful situation
[389]. In a separate investigation, participants consumed a
fermented milk product containing Lactobacillus casei self-
reported the same as the control subjects [49]. However, when
only participants whose baseline mood scores were lower (in-
dicative of an antidepressive state), probiotic supplementation
resulted in significantly more of this group of participants self-
scoring as happy rather than depressed compared with placebo
[49]. In yet another study, healthy participants who ingested
Lactobacillus helveticus and Bifidobacterium longum showed
less self-reported negative mood and decreased urinary cortisol
[50, 390]. A similar effect was also observed in healthy partic-
ipants who consumed a mixture of Bifidobacterium bifidum and
Bifidobacterium lactis, and Lactobacillus acidophilus,
Brevibacillus brevis, Brevibacterium casei, Bifidobacterium
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salivarius, and Lactococcus lactis [51]. Allen et al. [52] found
that healthy individuals fed Bifidobacterium longum had atten-
uated levels of cortisol and reduced subjective anxiety in re-
sponse to the socially evaluated cold stress pressor test. A sim-
ilar effect was observed following consumption of a commer-
cially available prebiotic Bimuno® galacto-oligosaccharides,
where individuals showed a reduction in waking-cortisol re-
sponse and decreased attentional vigilance to negative versus
positive information, suggesting a role in modulating depression
[391]. Schmidt et al. [391] found that Bimuno galacto-
oligosaccharides intake decreased attentional vigilance to nega-
tive versus positive information. However, the probiotic
Lactobacillus rhamnosus failed to alter mood, anxiety, and
stress-related measures when subjects faced a socially evaluated
cold pressor test [392], an effect previously observed in rodents
[20]. Taken together, the above findings highlight the challenges
associated with translating promising preclinical studies to
healthy human subjects. Studies in populations with mental dis-
orders are therefore required to assess the potential benefit of the
manipulation of the gut microbiota as a therapeutic strategy. In
recent studies investigating patients with depression and anxiety,
a mixture of the probiotics Lactobacillus acidophilus,
Lactobacillus casei, and Bifidobacterium bifidum found a sig-
nificant decrease in depression scores [393], whereas a separate
investigation of the effects of Bifidobacterium longum on anx-
iety and depression in patients with IBS demonstrated probiotic
treatment reduced depression but not anxiety scores and in-
creased the quality of life in patients with IBS [167], indicating
that this probiotic may reduce limbic reactivity.

Psychobiotics: Targeting Gut Peptides

There are major challenges associated with the development
of peptide therapeutics, including limited peptide stability, a
short duration of action, and the ability to cross the BBB [394,
395]. Such limitations may reduce the potential of exogenous-
delivered peptides to reach specific target sites, which may fail
to reflect the effect of the endogenously derived peptide [396].
Although several approaches have been designed to address
the efficacy of the peptide delivery, the majority are concerned
with targeted modification of peptide chemistry.

Targeting the release of the gut peptides may be an ap-
proach to be considered in conjunction with future break-
throughs in psychobiotics. Advances in the field of
pharmacomicrobiomics, which focuses on the interpretation
of intraindividual human microbiomes stratified according to
different lifestyles, may highlight how an improved under-
standing of the human microbiome may lead to the develop-
ment of psychobiotic therapeutic agents [397, 398].

Thus, psychobiotics could be designed to target, for exam-
ple, specific EECs to elicit the release of controlled endoge-
nous peptides without upstream consequences. Personalized
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medicine may consider questions of the individual’s own
microbiome, thereby necessitating the personalization of
psychobiotics. This could focus potential peptide-mediated
immune responses, improve vagal signaling, or modulate neu-
ropeptide expression in brain regions associated with mental
health.

Another interesting approach is the development of
targeted antimicrobials. Since the nature of bacteria that occu-
py overlapping niches is to compete for the same nutrients,
antimicrobials such as bacteriocins may help gain terrain over
neighbor competitors. Bacteriocins are ribosomally synthe-
sized peptides that are produced by bacteria to eliminate
neighboring cells through toxic and immune functions, while
protecting itself and its progeny [399—402]. Moreover, a re-
cent paper described that commensal bacteria are able to pro-
duce G-protein-coupled receptor agonists to regulate the GI
tract physiology, including metabolic hormones and glucose
homeostasis [4].

Therefore, the manipulation of gut peptides via
psychobiotics may represent a promising opportunity to target
mental disorders from the site of the GI tract. Identification of
the mechanism(s) underlying the activity of gut peptides and
how might the gut microbiota modulate the peptide physiolo-
gy may facilitate greater understanding of gut to brain com-
munication and its role in the neurobiology of the anxiety and
depression.

Conclusion

We are at the very early stages of understanding the complex-
ities of communication along the microbiota—gut—brain axis.
However, there is already strong evidence to support the in-
fluence of the enteric microbiome on brain function in health
and disease, suggesting the gut microbiome plays a crucial
role in normal brain development, as well as modulation of
host physiological systems important in stress-related disor-
ders. Among the diverse pathways by which the gut can signal
the brain, the endocrine system seems to play an important
role, as it is capable of modulating not only other endocrine
functions, but also the neural and immune systems. As sug-
gested here, peptides released by specialized cells in the gut
participate in gut-to-brain communication. Peptides may be
envisaged to orchestrate the molecular, functional, behavioral,
and autonomic reactions that take place in response to alter-
ations of the gut microbial community. There is significant
anatomical and functional overlap of peptides released in the
gut and brain, suggesting that these peptides exert common
downstream effects on neural systems involved in mental
health. Nevertheless, the dynamic changes in peptides and
respective receptor expression in the gut and brain of rodents
and humans with altered microbiota attests to a profound role
of the gut bacteria on peptides. Understanding how the gut
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microbes might influence peptide physiology should be a cen-
tral objective of future research in this field. The generation of
specialized psychobiotics to modify gut hormone secretion
from EECs may represent feasible and therapeutic
microbiota-based strategies for the treatment of depression
and anxiety disorders. Interestingly, microbiota-derived me-
tabolites might be able directly to modify gut-peptide recep-
tors, displaying gut-peptide mimicry. Rising interest in this
area of research will no doubt lead to greater insights into
the mechanism(s) underlying microbiome—gut—brain commu-
nication, and provide novel understanding of the potential for
microbial-based therapeutic strategies that may aid in the
treatment of mood disorders.
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