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High expression of SMARCA4 or 
SMARCA2 is frequently associated 
with an opposite prognosis in 
cancer
Jose A. Guerrero-Martínez & Jose C. Reyes

The gene encoding the ATPase of the chromatin remodeling SWI/SNF complexes SMARCA4 (BRG1) is 
often mutated or silenced in tumors, suggesting a role as tumor suppressor. Nonetheless, recent reports 
show requirement of SMARCA4 for tumor cells growth. Here, we performed a computational meta-
analysis using gene expression, prognosis, and clinicopathological data to clarify the role of SMARCA4 
and the alternative SWI/SNF ATPase SMARCA2 (BRM) in cancer. We show that while the SMARCA4 
gene is mostly overexpressed in tumors, SMARCA2 is almost invariably downexpressed in tumors. 
High SMARCA4 expression was associated with poor prognosis in many types of tumors, including 
liver hepatocellular carcinoma (LIHC), and kidney renal clear cell carcinoma (KIRC). In contrast, high 
SMARCA2 expression was associated with good prognosis. We compared tumors with high versus low 
expression of SMARCA4 or SMARCA2 in LIHC and KIRC cohorts from The Cancer Genome Atlas. While 
a high expression of SMARCA4 is associated with aggressive tumors, a high expression of SMARCA2 is 
associated with benign differentiated tumors, suggesting that SMARCA4 and SMARCA2 play opposite 
roles in cancer. Our results demonstrate that expression of SMARCA4 and SMARCA2 have a high 
prognostic value and challenge the broadly accepted general role of SMARCA4 as a tumor suppressor.

ATP-dependent chromatin remodeling is essential for almost every aspect of DNA metabolism including transcrip-
tion, recombination, DNA repair, and DNA replication1,2. Therefore, it is not surprising that chromatin remodeling 
enzymes play a fundamental role in the development of cancer3,4. The first chromatin remodeling machinery iden-
tified was the SWI/SNF complex (also called the BAF complex), comprised in mammals by 11–15 subunits5–7. In 
fact, there is not a single SWI/SNF complex but rather a polymorphic family of complexes that also includes different 
members of small gene families. The enzymatic motor of the complexes are two mutually exclusive ATPases of the 
SNF2 family called SMARCA2 (also called BRAHMA, BRM)8 and SMARCA4 (also called BRAHMA RELATED 
GENE 1, BRG1)9. The mammalian SWI/SNF complexes have been involved in chromatin remodeling at enhanc-
ers, promoters, and gene bodies and are associated with gene activation and repression (see for example10–15). In 
addition, members of the SWI/SNF complexes have been implicated in DNA repair, and genome instability16. 
Importantly, genes encoding subunits of the SWI/SNF complexes are mutated in about 20% of all human tumor 
samples, making them among the most frequently mutated complexes in cancer7,17–20. The mechanisms by which 
loss-of-function mutations in SWI/SNF complex subunits trigger tumor formation or affect tumor cell behavior is 
still a highly debated issue. Several data point to the pathological effects of aberrant residual SWI/SNF complexes as 
the cause of the potential selective advantage of SWI/SNF mutant cancer cells21–24.

The human SMARCA4 gene is frequently mutated in ovarian small cell carcinoma of the hypercalcemic type 
(in approx. 90% of the cases)25–27, and at much lower frequency in other cancer types28–32. In addition, SMARCA4 
has been found to be silenced or mutated in a number of cancer cell lines33–35. Brg1 homozygous knockout mice 
die early during development; however, heterozygote mice or conditional inactivation of Brg1 in some adult tissues 
display increased tumor formation36–38. While SMARCA2 is not frequently mutated in tumors, it has been found to 
be silenced in a number of cancer cell lines39 and primary tumors33,40. Brm knockout mice develop normally, but 
Brm−/− embryonic fibroblasts present increased proliferation in vitro41. Furthermore, heterozygote and homozygote 
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Brm mutants treated with carcinogens display increased tumor development39. Re-expression of SMARCA4 or 
SMARCA2 into cancer cell lines deficient for these proteins decreases cell proliferation34,42,43. Taken together, these 
results indicate that SMARCA4 and SMARCA2 have tumor suppressor activity. However, other recent reports point 
to essential roles of SMARCA4 and/or SMARCA2 in cell survival and proliferation in some types of cancers12,44–46, 
complicating our understanding of the role of these ATPases in cancer. In order to clarify this complex scenario, 
we have now used data from The Cancer Genome Atlas (TCGA) and other databases to investigate the levels of 
SMARCA4 and SMARCA2 mRNAs in several types of cancer. Notably, while SMARCA4 was mostly overexpressed 
in tumors, SMARCA2 expression decreased in tumors, as compared to normal tissue. A meta-analysis of prognosis 
data indicated that tumors with high SMARCA4 expression are mostly associated with poor prognosis, while tumors 
with high SMARCA2 expression are mostly associated with good prognosis. Analyzing liver hepatocellular carci-
noma and kidney renal clear cell carcinoma TCGA cohorts, we found that high levels of SMARCA4 and SMARCA2 
transcripts were inversely associated with survival prognosis, clinicopathological factors, and gene expression pat-
terns, pointing to an inverse role of SMARCA4 and SMARCA2 in cancer.

Results
SMARCA4 is overexpressed, and SMARCA2 is underexpressed, in multiple types of tumors.  
First we compared the levels of SMARCA4 and SMARCA2 transcripts in normal tissue with respect to tumor 
tissue in different types of tumors. For this, we performed a meta-analysis of microarray expression data from 
different studies collected form the ONCOMINE database47. In 130 out of the 161 datasets selected (see meth-
ods), SMARCA4 was found to be more highly expressed in the tumor samples than in the normal samples 
(Fig. 1a). Of the 32 datasets with highly significant changes (P ≤ 0.0001 and |lineal fold change (FC)| ≥ 2) (Fig. 1a; 
Supplementary Table S1), 26 (81%) presented higher levels of SMARCA4 transcript in tumor samples than in 
non-tumor samples. A similar analysis for SMARCA2 showed that its expression was reduced in 104 out of the 
132 tumor datasets selected. Of the 16 datasets with highly significant changes (P ≤ 0.0001 and |FC| ≥ 2) (Fig. 1b 
and Supplementary Table S2), 13 (81%) presented lower levels of SMARCA2 transcript in tumor samples than 
in non-tumor samples. These data suggest that SMARCA4 gene is mostly overexpressed in tumors while, in con-
trast, SMARCA2 is mostly underexpressed in tumors. In order to corroborate these results, we collected total 
RNA-seq normalized data of 22 different types of tumors from The Cancer Genome Atlas (TCGA) consortium 
(Supplementary Table S3). Levels of SMARCA4 transcript were significantly higher in tumors than in normal 
tissue for 11 tumor types, and either unchanged or not quantifiable (due to lack of normal samples) in a further 
10 tumor types (Fig. 1c). Only one type of tumor—kidney renal clear cell carcinomas (KIRC) — showed a higher 
expression of SMARCA4 in normal samples than in tumor samples. In stark contrast, SMARCA2 transcript levels 
were decreased in tumors compared to normal samples in 15 of the 22 tumor types analyzed and was not over-
expressed in any type of tumor (Fig. 1d). These data confirm that SMARCA4 is mostly overexpressed in tumors, 
while SMARCA2 is mostly underexpressed in tumors.

Factor

SMARCA4 expression SMARCA2 expression

High expressiona

n = 37
Lower expressionb

n = 335 P value
High expressiona

n = 37
Lower expressionb

n = 335 P value

Age 57.4 ± 13.5 59.7 ± 13.5 0.30c 60.8 ± 12.2 59.3 ± 13.6 0.49c

Gender 0.01d 0.70d

   Male 18 (48.6%) 233 (69.6%) 24 (64.9%) 227 (67.8%)

   Female 19 (51.4%) 102 (30.4%) 13 (35.1%) 108 (32.2%)

Tumor Stage (T) 0.008d 0.29d

   T1 + T2 21 (56.8%) 255 (76.8%) 25 (67.6%) 251 (75.6%)

   T3 + T4 16 (43.2%) 77 (23.2%) 12 (32.4%) 81 (24.4%)

Tumor Stage (S) 0.010d 0.11d

   SI + SII 19 (55.9%) 239 (79.1%) 22 (62.9%) 236 (75.4%)

   SIII + SIV 15 (44.1%) 75 (23.9%) 13 (37.1%) 77 (24.6%)

Lymph node metastasis 0.014d 0.99d

   N0 27 (93.1%) 226 (99.1%) 25 (96.2%) 228 (98.7%)

   N1 2 (6.9%) 2 (0.9%) 1 (3.8%) 3 (1.3%)

Metastasis Stage Code 0.51d 0.27d

   M0 30 (100%) 235 (98.3%) 24 (96.0%) 243 (98.8%)

   M1 0 (0.0%) 4 (1.7%) 1 (4.0%) 3 (1.2%)

Histological grade 0.004d 0.019d

   G1 + G2 15 (41.7%) 218 (65.9%) 30 (81.1%) 203 (61.5%)

   G3 + G4 21 (58.3%) 113 (34.1%) 7 (18.9%) 127 (38.5%)

Table 1.  Association between SMARCA4 and SMARCA2 mRNA expression and clinicopathological factors 
in the liver hepatocellular carcinoma dataset from TCGA. aDecile of the tumor population with higher levels 
of SMARCA4 or SMARCA2 mRNA. bRest of the tumors not included in the high expression decile. cStudent’s 
t-test. dChi-square test. Significant P values (P ≤ 0.05) are depicted in bold.
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We next investigated whether SMARCA4 overexpression occurs predominantly in tumors harboring 
SMARCA4 mutations as a possible consequence of a putative negative autoregulation. Using data on SMARCA4 
mutations in 18 types of tumors obtained from TCGA through cBioPortal48, we found SMARCA4 to be mutated 

Figure 1.  SMARCA4 is overexpressed, and SMARCA2 is underexpressed, in multiple types of tumors. (a,b) 
Volcano plots of SMARCA4 (a) or SMARCA2 (b) expression change (log2(FC)) in tumors with respect to 
normal samples versus significance (−log10(P value)), from different datasets. Data were obtained from 
ONCOMINE. Datasets with changes of P > 0.01 were not included. Highly significant changes (P ≤ 0.0001 
and |FC| ≥ 2) are highlighted in orange and listed in Supplementary Tables S1 and S2. (c,d) Boxplot of levels 
of SMARCA4 (c) or SMARCA2 (d) mRNA (RNA-seq data) in normal or tumor samples of 22 different tumor 
cohorts from TCGA. Names and number of tumors and normal samples are listed in Supplementary Table S3. 
Significant Student’s t-test P value (P ≤ 0.05) are depicted in red.
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Figure 2.  Meta-analysis of prognosis consequences of SMARCA4 or SMARCA2 upregulation. (a,b) Cox 
regression analysis of the correlation between SMARCA4 (a) or SMARCA2 (b) tumor expression levels and patient 
survival in different studies (data collected from PrognoScan). Volcano plots of log2(HR) versus significance 
(−log10(COX P value)) from different datasets are shown. A positive log2(HR) value indicates that the analyzed 
risk increases when the level of gene expression increases, and thus the prognosis is worse. Conversely, a negative 
Log2(HR) value implies a better prognosis for patients with tumors with higher values of gene expression. Different 
survival endpoints (overall survival, disease-free survival, and distant metastasis–free survival) are shown in 
different graphics. Significant changes (COX P ≤ 0.01) are highlighted in orange. (c–f) Kaplan-Meier plots showing 
inverse prognosis behavior of SMARCA4 and SMARCA2 expression in the same studies. Data corresponding to 
four different types of tumors are shown: lung adenocarcinoma104, breast cancer105, liposarcoma106, and ovarian 
cancer107. GEO references of the data are provided when available. Long-rank test P values are provided. Patient 
tumors were divided into two expression groups (high and low) according to PrognoScan (see Methods).
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in either none or up to 8.5% of the samples, depending on the tumor type. SMARCA4 mutated tumors displayed 
similar level of accumulation of SMARCA4 mRNA as tumors harboring non-mutated SMARCA4 (Supplementary 
Fig. S1a). Similar results were found for SMARCA2 (Supplementary Fig. S1b). Taken together, these data demon-
strate that SMARCA4 expression is upregulated and SMARCA2 is downregulated in most types of tumors irre-
spectively of the presence of mutations in the gene.

Inverse association for prognosis between high expression of SMARCA4 and SMARCA2.  We 
next investigated whether having tumors with increased expression of SMARCA4 or SMARCA2 was linked to 
patient prognosis. For this, we performed a meta-analysis of data collected from the PrognoScan database49. This 
database allows systematic analysis of the prognostic value of the expression of a gene across a large collection 
of publicly available cancer microarray datasets. Correlation between gene expression and patient prognosis was 
evaluated using COX univariate analysis. Volcano plots of log2 hazard ratios (HR) versus −log10(COX P value) 
were drawn for every endpoint available (overall survival, disease-free survival, and distant metastasis-free sur-
vival). High expression of SMARCA4 was significantly associated (COX P ≤ 0.01) with a poor prognosis in breast 
and ovarian cancer, lung adenocarcinoma, liposarcoma and uveal melanoma datasets (Fig. 2a). In contrast, high 
expression of SMARCA2 was associated to good prognosis in breast and ovarian cancer, lung adenocarcinoma, 
and liposarcoma datasets (Fig. 2b). In fact, high expression of SMARCA2 was associated with poor prognosis 
only in colon carcinoma. Kaplan-Meier survival plots of patients from the same dataset, with high versus low 
expression of SMARCA4 and SMARCA2 are shown in Fig. 2c–f. These data indicate that, at least in some types of 
tumors, upregulation of SMARCA4 or SMARCA2 has opposite consequences in prognosis.

Next, we extended these studies to other types of tumors using TCGA data. Clinical data of cohorts of four 
different types of tumors were collected: liver hepatocellular carcinoma (LIHC)50, bladder urothelial carcinoma 
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Figure 3.  High levels of SMARCA4 or SMARCA2 expression are frequently associated with the opposite 
prognosis. Kaplan Meier survival plots of patients with tumors that have high or low expression levels of 
SMARCA4 (a,c,e,g) or SMARCA2 (b,d,f,h) in liver hepatocellular carcinoma (LIHC), bladder urothelial 
carcinoma (BLCA), skin cutaneous melanoma (SKCM), or kidney renal clear cell carcinoma (KIRC) cohorts 
from TCGA. Patients with tumors that had expression values in the upper decile (left panels) or upper quartile 
(right panels) values were compared with the rest of the patients.
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(BLCA)51, skin cutaneous melanoma (SKCM)52, kidney renal clear cell carcinoma (KIRC)53. Tumor collections 
were ranked according to the SMARCA4 or SMARCA2 mRNA levels (RNA-seq data). Then, survival of patients 
with expression values in the upper decile (first and third columns, Fig. 3) or upper quartile (second and fourth 
columns, Fig. 3) were compared with survival of the remaining patients. Analysis of these plots indicates that 
high expression of SMARCA4 is associated with poor prognosis in LIHC, BLCA, SKCM and KIRC (Fig. 3a,c,e,g). 
In clear contrast, high expression of SMARCA2 is associated with good prognosis in LIHC and KIRC (Fig. 3b,h) 
while in SKCM, prognosis improved but not significantly (Fig. 3f). Taken together, these data suggest that in most 
of the cohorts analyzed, high expression of SMARCA4 is associated with poor prognosis, while high expression of 
SMARCA2 is associated with good prognosis.

We further investigated the apparently opposite roles of SMARCA4 and SMARCA2 in the LIHC and KIRC 
tumors types. First we investigated whether expression levels of the SMARCA4 and SMARCA2 genes were 
associated to specific clinicopathological factors such as gender, age, tumor stage (T1 to T4 and stage I to IV), 
lymph node metastasis (N), distant metastasis (M), and differentiation (histological grade G1 to G4), obtained 
from TCGA. Consistently with the prognosis results, LIHC tumors with high levels of SMARCA4 expression 
(upper decile) presented a significant increased proportion of advanced stages, and poorly differentiated his-
tology with respect to the rest of the LIHC tumors analyzed (Table 1). In contrast, tumors with high levels of 
SMARCA2 transcript (upper decile) presented increased proportion of well-differentiated tumors (Table 1). 
Further, increased undifferentiated histological grade is associated with a progressive increase of SMARCA4 and 
a decrease of SMARCA2 expression (Fig. 4a). Similarly, in KIRC tumors, high expression of SMARCA4 is associ-
ated with increased undifferentiated histological grade (Fig. 4b and Table 2), while high levels of SMARCA2 were 
associated with low tumor stages and well differentiated histology (Fig. 4b and Table 2). In addition, in KIRC 
tumors, high expression of SMARCA4 was strongly associated with the presence of metastasis (high proportion 

Figure 4.  Correlation between SMARCA4 or SMARCA2 expression levels and clinicopathological factors. (a) 
Boxplot of levels of SMARCA4 (left panel) and SMARCA2 (right panel) transcript (normalized RNA-seq data) 
in LIHC tumors with different histological grades (G1 to G4). (b) Boxplot of transcript levels of SMARCA4 (left 
panel) or SMARCA2 (right panel) in KIRC tumors with different histological grades (G1 to G4). (c) Boxplot of 
transcript levels of SMARCA4 (left panel) or SMARCA2 (right panel) in KIRC tumors with different metastasis 
stages (M0 or M1). See Methods for description of G and M grading.
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of N1, P = 0.035, and M1, P = 0.0009) (Table 2). In stark contrast, this trend was not observed in tumors with a 
high expression of SMARCA2. In fact, metastatic KIRC tumors (M1) presented significantly increased levels of 
SMARCA4 mRNA and decreased levels of SMARCA2 mRNA, with respect to non-metastatic tumors (Fig. 4c).

Transcriptome changes associated with SMARCA4 or SMARCA2 upregulation in liver hepa-
tocellular carcinoma.  We next investigated the gene expression patterns that characterize LIHC tumors 
with high expression of SMARCA4 or SMARCA2. For that, LIHC tumors were ranked according to the level of 
SMARCA4 mRNA, and ten tumors were randomly selected from the upper decile (SMARCA4-high) or from 
the lower decile fractions (SMARCA4-low) (Fig. 5a; Supplementary Table S4). RNA-seq transcriptomic data of 
60,483 genes from the 20 selected tumors were collected from TCGA and subjected to unsupervised principal 
component (PC) analysis. PC analysis differentiated almost all SMARCA4-low from SMARCA4-high tumors 
(only two tumors, L1 and L4, had an intermediate pattern), suggesting that the level of SMARCA4 expres-
sion characterizes different subtypes of LIHC tumors (Fig. 5b). We then selected genes that were differentially 
expressed (P ≤ 0.01 and |FC| ≥ 2) in the SMARCA4-high versus the SMARCA4-low collection of tumors. Of 
the 1396 differentially expressed genes, 561 were upregulated and 835 were downregulated in SMARCA4-high 
tumors (Supplementary Fig. S2; Supplementary Table S5). A similar analysis was performed for SMARCA2-high 
versus the SMARCA2-low tumors (Fig. 5c; Supplementary Table S4). In this case, PC analysis clearly differ-
entiated all SMARCA2-high from the SMARCA2-low tumors, being all SMARCA2-high tumors very closely 
related according to the three PCs analyzed (Fig. 5d). Differential expression analysis showed that 842 genes 
were significantly (P ≤ 0.01 and |FC| ≥ 2) upregulated and 1027 genes were downregulated, in SMARCA2-high 
versus SMARCA2-low tumors (Supplementary Fig. S2; Supplementary Table S6). Interestingly, the genes that 
were downregulated or upregulated in SMARCA4-high tumors strongly overlapped with the genes that were 
upregulated or downregulated, respectively, in SMARCA2-high tumors (Fig. 5e), demonstrating that these types 
of tumors not only have inverse prognosis but also opposite gene expression patterns.  

Genes upregulated in SMARCA4-high tumors were enriched in regulation of transcription, cell cycle, DNA 
replication, and Wnt signaling pathways and functional categories (Fig. 5f; Supplementary Figs S3a and S4a). 
Furthermore, DNA binding sites for the LEF1 (P = 8.9 × 10−18), MAZ (P = 1.7 × 10−12), SP1 (P = 1.8 × 10−10) 
and E2F (P = 2.7 × 10−10) transcription factors were strongly overrepresented in the promoter regions of upregu-
lated genes. In agreement with the enrichment in Wnt signaling categories and LEF1 DNA binding sites, several 
genes related to this pathway were activated (Fig. 5g). Genes downregulated in SMARCA4-high tumors were 
enriched in lipid and amino acids metabolism, xenobiotic metabolism, blood coagulation and aerobic respi-
ration categories and pathways (Fig. 5h; Supplementary Figs S3b and S4a). All of these processes are impor-
tant liver functions carried out by differentiated hepatocytes54. Consistently, promoters of downregulated genes 
were enriched in binding sites for typical liver transcription factors such as HNF1 (P = 9.1 × 10−11), FOXO4 
(P = 5.9×10−8), and HNF4 (P = 6.4×10−7). These data suggest that SMARCA4-high tumors present a strong 

Factor

SMARCA4 expression SMARCA2 expression

High expressiona

n = 54
Lower expressionb

n = 479 P value
High expressiona

n = 54
Lower expressionb

n = 479 P value

Age 58.48 ± 11.0 60.84 ± 12.2 0.15c 57.6 60.9 0.06c

Gender 0.037d 0.99d

 Male 28 (51.9%) 317 (66.2%) 35 (64.8%) 310 (64.7%)

 Female 26 (48.1%) 162 (33.8%) 19 (35.2%) 169 (35.3%)

Tumor stage 0.16d 0.028d

 T1 + T2 30 (55.6%) 312 (65.1%) 42 (75.9%) 300 (62.6%)

 T3 + T4 24 (44.4%) 167 (34.9%) 12 (24.1%) 179 (37.4%)

Tumor stage (S) 0.076d 0.019d

 SI + SII 27 (50.0%) 297 (62.4%) 41 (75.9%) 283 (59.5%)

 SIII + SIV 27 (50.0%) 179 (37.6%) 13 (24.1%) 193 (40.5%)

Lymph node metastasis 0.035d 0.06d

 N0 30 (85.7%) 209 (95.0%) 26 (92.9%) 213 (93.8%)

 N1 5 (14.3%) 11 (5.0%) 2 (7.1%) 14 (6.2%)

Metastasis Stage Code 0.0009d 0.24d

 M0 34 (68.0%) 387 (86.0%) 45 (86.5%) 376 (83.9%)

 M1 16 (32.0%) 63 (14.0%) 7 (13.5%) 72 (16.1%)

Histologic grade 0.043d 0.008d

 G1 + G2 17 (32.7%) 224 (47.5%) 33 (63.5%) 209 (44.2%)

 G3 + G4 35 (66.0%) 248 (52.5%) 19 (36.5%) 264 (55.8%)

Table 2.  Association between SMARCA4 and SMARCA2 mRNA expression and clinicopathological factors 
in the renal clear cell carcinoma dataset from TCGA. aDecile of the tumor population with higher levels of 
SMARCA4 or SMARCA2 mRNA. bRest of the tumors not included in the high expression decile. cStudent’s 
t-test. dChi-square test. Significant P values (P ≤ 0.05) are depicted in bold.
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decrease of hepatocytes-specific functions, which is in agreement with the high proportion of undifferentiated 
cells (G3 + G4 histological grade) and the poor prognosis observed in these tumors (Table 1; Fig. 3a).

In contrast to SMARCA4-high tumors, SMARCA2-high tumors had upregulated gene sets prominently 
involved in hepatocytes-specific functions such as fatty acid metabolism, amino acid metabolism, drugs and 
xenobiotic metabolism, blood coagulation, and respiration categories and pathways (Fig. 5i; Supplementary 
Figs S3c and S4b). For instance, genes encoding typical hepatic enzymes such as tyrosine aminotransferase 
(TAT) and alcohol dehydrogenases 1B and 1 C (ADH1B, ADH1C) were increased 43.2-, 42.3- and 14.9-fold, 
respectively. In addition, genes downregulated in SMARCA2-high tumors were strongly enriched in ribosome 
RNA processing, translation, cell cycle, DNA-replication, and mitosis-related functions and pathways (Fig. 5j; 
Supplementary Figs S3d and S4b), and often presented E2F (P = 1.05×10−26), MYC (P = 3.9×10−16) and ELK1 
(P = 1.2 × 10−11) binding sites, suggesting a reduced proliferation of these tumor cells. In sum, these data suggest 
that SMARCA2-high tumors maintain a high differentiation stage with low levels of proliferation, which is con-
sistent with the good prognosis for patients with tumors with high levels of SMARCA2 expression.

In order to further characterize the roles of SMARCA4 and SMARCA2 in liver hepatocellular carcinoma, we 
have performed a genome-wide co-expression analysis using all available LIHC tumors from the TCGA cohort. 
We calculate Spearman correlation coefficients (rho) between the expression levels of SMARCA4 or SMARCA2 
and 22,300 genes (data collected from cBioportal). A scatter plot was drawn with each dot corresponding to a 
gene, and the x and y coordinates as the Spearman correlation coefficient with SMARCA4 and with SMARCA2, 
respectively. This showed a negative correlation (rho = −0.39; P < 0.0001) between Spearman coefficients, indi-
cating that most of the genes whose expression is positively correlated with SMARCA4 are negatively correlated 
with SMARCA2, and vice-versa (Fig. 6). We next analyzed the gene ontology (GO) of the genes that are most 
robustly co-regulated in an opposite way with SMARCA4 and SMARCA2 (rho ≥0.3 and ≤−0.3). Genes posi-
tively coexpressed with SMARCA4 and negatively coexpressed with SMARCA2 (Supplementary Table S7) were 
enriched in cell cycle (CCNB1, CCNE1, CDK1, E2F1), mitosis (PLK, AURKB, CDC20, CDC25A) and DNA rep-
lication (POLD1, RFC4) GO categories. In contrast, genes positively coexpressed with SMARCA2 and negatively 
coexpressed with SMARCA4 (Supplementary Table S7) were enriched in liver metabolism functions, such as 
lipid metabolism (ACADL, ACSL1, LIPG), amino acid metabolism (TAT, BCKDHB, PAH, IDH1), xenobiotic 
detoxification (CYP3A4, CYP4V2, CYP8B1), and blood coagulation (F8, F11) categories. This analysis confirms 
that high expression of SMARCA4 or SMARCA2 characterizes types of LIHC tumors with opposite patterns of 
gene expression.

Transcriptome changes associated with SMARCA4 or SMARCA2 upregulation in kidney renal 
clear cell carcinoma.  A similar gene expression analysis as for LIHC tumors (above) was then performed 
for KIRC tumors. For this, ten tumors of each type: SMARCA4-high, SMARCA4-low, SMARCA2-high and 
SMARCA2-low, were selected from the KIRC cohort (Fig. 7a,c; Supplementary Table S4), and RNA-seq tran-
scriptomic data from 60,483 genes were collected from TCGA. PC analysis of whole transcriptomic data was 
unable to discriminate between SMARCA4-high and SMARCA4-low tumors (Fig. 7b). However, PC analysis 
clearly differentiated SMARCA2-high from SMARCA2-low tumors (Fig. 7d), as SMARCA2-high tumors were 
very closely grouped with respect to the three PCs analyzed.

Only 140 genes were differentially expressed (P ≤ 0.01 and |FC| ≥ 2) in the SMARCA4-high versus the 
SMARCA4-low collection of tumors, of which 69 were upregulated and 71, downregulated (Supplementary 
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Fig. S2; Supplementary Table S8). Upregulated genes were significantly enrichment in categories related to regula-
tion of small GTP hydrolases (GTPases) (Fig. 7e; Supplementary Fig. S5a). Three genes encoding guanine nucleo-
tide exchange factors (GEF) were upregulated: ARHGEF18, RASGEF1A, and VAV2. While ARHGEF18 and VAV2 
are Rho GEFs, RASGEF1A is a regulator of RAP2. GEFs promote the transition of small GTPases from the inac-
tive (GDP bound) to the active (GTP bound) state during signal transduction. Rho and RAP GTPases play essen-
tial roles in the regulation of cell morphology, cytokinesis, cell adhesion, and cell migration, and their activation 
and overexpression have been associated to metastasis55,56. Further, high expression of VAV257, ARHGEF1858 and 
RASGEF1A59 has also been linked to metastasis, which is consistent with the high proportion of metastasis (M1 
code) and metastatic lymph nodes (N1 code) we observed in SMARCA4-high tumors (Table 2). SMARCA4-high 
tumors also display high expression of PAX8, a well-known marker for primary and metastatic renal clear cell 
carcinomas60,61.

We observed 1152 genes to be upregulated, and 2183 genes downregulated, in the SMARCA2-high with 
respect to the SMARCA2-low tumors (Supplementary Fig. S2; Supplementary Table S9). SMARCA2-high 
upregulated genes were enriched in regulation of transcription, regulation of cell migration, regulation of small 
GTPases, focal adhesion, negative regulation of ERK1/2 cascade, and tight junction categories and pathways 
(Fig. 7f; Supplementary Figs S5b and S6a). Interestingly, several genes encoding Rho GTPase activating pro-
teins (GAPs) were found to be upregulated in SMARCA2-high tumors, such as DLC1 (FC = 3.8) NF1 (FC = 2.3), 
ARHGAP19 (FC = 2.1), ARHGAP31 (FC = 3.0). This is in clear contrast with the presence of high levels of Rho 
GEFs in SMARCA4-high tumors. DLC162,63 and NF164 are well-known tumor suppressors, which is consistent 
with the good prognosis of the SMARCA2-high tumors. Increased expression levels of genes encoding cell-cell 
contact molecules (tight, GAP and adherens junctions) were also observed, including the TJP1, JMY, JAM2, 
JAM3, GJA1, and OCLN genes, suggesting a marked epithelial or endothelial phenotype of the SMARCA2-high 
tumors. Several genes encoding markers of endothelial cells were upregulated, such as PCAM1, VWF, CD34, 
NRP1, TEK, and FLT1, consistent with the fact that the renal glomerulus is mostly formed by three types of 
cells: endothelial cells, podocytes and mesangial cells65. Interestingly, we also observed a significant overlap 
between mesangial-expressed genes66,67 and genes upregulated in SMARCA4-high tumors (Fig. 7g,h). The fact 
that SMARCA2-high tumors express high levels of markers of glomerulus cell types is in agreement with the high 
differentiation (e.g., low histologic grade) of these tumors (Table 2).

Genes downregulated in SMARCA2-high tumors were strongly enriched in categories related to both cyto-
solic and mitochondrial ribosomal proteins, translation, and mitochondrial respiration electron transport (Fig. 7i; 
Supplementary Figs S5b and S6b). Promoters of downregulated genes were very significantly enriched in binding 
sites for ELK1 (P = 6.6 × 10−45), NRF1 (P = 1.4 × 10−21), NRF2 (P = 1.5 × 10−9) and MYC (P = 6.3 × 10−15). NRF1 
and NRF2 have important functions controlling cell growth, respiration, mitochondrial DNA transcription and 
replication68. The downregulation of mitochondrial respiration suggested that SMARCA2-high tumors might 
present a strong Warburg effect69. However, none of the ten glycolysis genes (gene set M15109 from MSigDB) 
were upregulated in SMARCA2-high tumors, in fact the expression levels of GAPDH (FC = 0.47; P = 1.3×10−5) 
and PFKFB4 (FC = 0.41; P = 0.0007) decreased, suggesting that SMARCA2-high tumors have a reduced energetic 
metabolism. Notably, analyzing for similarity between the transcription patterns of LIHC SMARCA2-high and 
KIRC SMARCA2-high tumors revealed a very significant overlap between downregulated genes in these two 
types of tumors (Fig. 7j). Most overlapping genes encoded ribosomal proteins and proteins related to transla-
tion and ribosome biogenesis (Fig. 7k). These data suggest that LIHC and KIRC tumors with high expression of 
SMARCA2 have reduced translation and, therefore, probably a reduced cell growth.

Discussion
SMARCA4 is frequently upregulated in tumors.  A role of SWI/SNF complexes as tumor suppressors 
is widely accepted, mostly based on the fact that genes encoding SWI/SNF subunits are mutated in a wide-rang-
ing proportion of tumors18,20. Thus, SMARCA4 is frequently mutated (more than 90% of the cases) in ovarian 
small cell carcinoma of the hypercalcemic type25–27. However, several studies and inspection of the TCGA data 
indicate that, in most of the tumor types SMARCA4 mutations vary between 0% and 15% of the cases18,20,25–32. 
Tumor suppressor genes are normally either mutated or downregulated in tumor tissues70. However, we now 
show that SMARCA4 is frequently overexpressed in tumors. Furthermore, we show that SMARCA4 upregulation 
is associated with a poor prognosis in published datasets for breast and ovarian cancer, lung adenocarcinoma, 
liposarcoma, and uveal melanoma and in the SKCM, LIHC, BLCA, and KIRC TCGA cohorts, indicating that 
high expression of SMARCA4 can be used as a prognosis marker for these types of tumors. Consistently, loss of 
expression of SMARCA4 protein has been recently associated to improved prognosis in clear cell renal cell car-
cinoma71. Increased expression of SMARCA4 has been previously reported in several types of tumors45,46,72–77. In 
addition, several studies have shown that SMARCA4 is required for tumor cell proliferation12,44–46. Furthermore, 
we find that high levels of SMARCA4 expression are associated with an advanced tumor stage and histological 
grade in LIHC, and with increased metastasis in KIRC. Taken together, these data suggest that, at least for several 
types of cancers, high expression of SMARCA4 confers a selective advantage to tumor cells. This is, therefore, not 
consistent with a general role of SMARCA4 as a tumor suppressor. A context-dependent dual role of SMARCA4 
in cancer has been also proposed by Dr. Imbalzano and collaborators78. A growing number of genes play both 
tumor suppressor or oncogenic roles in different tissue, tumor types or experimental settings79. Therefore, our 
data are not incompatible with a role of SMARCA4 as a tumor suppressor when it is mutated in certain types of 
tumors, probably due to the pathological activity of aberrant residual SWI/SNF complexes.

What is the mechanism by which increased levels of SMARCA4 are important for cancer development? The 
answer is still unclear but probably it is dependent on the cancer type. SMARCA4 has been shown to promote 
breast cancer by reprogramming lipid synthesis45 and to be required for maintaining repopulation of hematopoi-
etic stem cells in leukemia44. In fact, a role of SMARCA4 in regulation of stem cells pluripotency has been well 
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characterized11,80, and SMARCA4 is highly expressed in stem cells81. Therefore, it is possible that SMARCA4 
plays an essential role in the maintenance of cancer stem cells. The role of the Wnt/β-catenin/LEF1 pathway in 
activation of hepatic cancer stem cells in hepatocellular carcinoma and during liver regeneration has been well 
characterized82–84. Interestingly, we observed that LIHC SMARCA4-high tumors presented increased levels of 
several genes of the Wnt/β-catenin/LEF1 pathway. This is also consistent with the relative undifferentiated state 
of these tumors, according to gene expression pattern and histological grade. In addition, we show that LIHC 
SMARCA4-high tumors had high expression of positive regulators of cell cycle progression and mitosis, such as 
cyclins, mitotic kinases, and DNA replication factors, which also suggests a positive correlation between levels 
of SMARCA4 and proliferation in LIHC. Consistently, Kaufmann et al., recently showed that knockdown of 
SMARCA4 impairs proliferation and decreases cyclin B and cyclin E expression in hepatocellular carcinoma cell 
lines77. A role of SWI/SNF complexes containing SMARCA4 in positive regulation of cell cycle genes85 has been 
previously described.

In KIRC SMARCA4-high tumors, we did not find increased expression of the Wnt/β-catenin/LEF1 path-
way or cell cycle genes, illustrating the absence of similarity between SMARCA4-high tumors of different 
origins. However, we found that KIRC SMARCA4-high tumors presented a high proportion of metastasis. 
SMARCA4-high tumors displayed high expression of the RhoA GEFs ARHGEF18 and VAV2, which are involved 
in activation of RhoA small GTPase. The RhoA signaling pathway and ARHGEF18 and VAV2 proteins have been 
implicated in metastasis formation56–58. Interestingly, RhoA signaling activation was reported upon SMARCA4 
re-expression in SMARCA4-deficient human adrenal adenocarcinoma SW13 cells86.

SMARCA2 is frequently downregulated in tumors.  In contrast to SMARCA4, SMARCA2 expression 
was strongly downregulated in most cancer types, which is consistent with a role as tumor suppressor of this pro-
tein. SMARCA2 levels were correlated with good prognosis in published datasets for breast and ovarian cancer, 
lung adenocarcinoma, and liposarcoma, and in the LIHC and KIRC TCGA cohorts. In addition, high levels of 
SMARCA2 expression were associated with a low tumor stage and well-differentiated tumors in LIHC and KIRC. 
SMARCA2 is not frequently mutated in tumors but gene silencing in tumor cell lines has been reported33,39,43. 
Several experimental data support a role of SMARCA2 as a tumor suppressor. Brm−/− mouse embryonic fibro-
blasts present increased proliferation and have lost inhibition of growth by cell-cell contact41. Additionally, het-
erozygote and homozygote Brm mutant mice treated with carcinogens have increased tumor development39,87. 
Expression of SMARCA2 is negatively regulated by mitogenic stimulation and Ras and ERK signaling, and res-
toration of SMARCA2 levels leads to reversion of the transformed phenotype42,43,88. Finally, SMARCA2 is not 
expressed in stem cells or during early development until the stage of blastocyst, and its levels increase during 
stem cells differentiation and during late development41,81. Recent data also show that SMARCA2 is required 
for cell cycle arrest during myoblast differentiation89. Taken together, these data suggest that a reduced level of 
SMARCA2 expression confers a selective advantage for many types of tumor cells. In agreement with this, LIHC 
and KIRC SMARCA2-high tumors form a coherent and well-defined subtype of tumors, with high differentia-
tion according to gene expression patterns and histological grade and with low expression of cell cycle genes (for 
LIHC) and low expression of ribosomal and translation genes (for both LIHC and KIRC). A reduction in the 
levels of SMARCA2 transcript in a cohort of hepatocellular carcinomas has been previously reported90. In this 
study, SMARCA2 protein expression was lost in nine of 40 tumors and patients with these tumors presented a 
poor overall survival. Similarly, decrease of overall survival in SMARCA2 negative tumors has been also recently 
reported in clear cell renal cell carcinoma but only when levels of PBRM1 protein, another subunit of the SWI/
SNF complex were also reduced71,91. These data suggest that SMARCA2 expression is a good marker for charac-
terizing LIHC and KIRC prognosis.

Do SMARCA4 and SMARCA2 play antagonistic roles in cancer?.  Our data demonstrate that levels of 
SMARCA4 and SMARCA2 expression correlate with opposite prognosis in several types of tumors and, in addi-
tion, with opposing clinicopathological factors and gene expression patterns in LIHC and KIRC tumors. Whether 
SMARCA4 and SMARCA2 expression are the cause or the consequence of differences in tumors is not yet clear. 
However, the facts that SMARCA4 expression is mostly associated to cell types that constantly undergo prolifer-
ation or self-renewal81,92 while SMARCA2 is absent from stem cells and inversely correlated with proliferation in 
several types of cells42,88,89,92, suggest the attractive possibility that the SWI/SNF complexes use a different ATPase, 
or a different ratio of ATPases, for proliferating-undifferentiated versus quiescent-differentiated conditions. How 
this equilibrium would be controlled is unclear. However, it has been demonstrated that a decrease in the protein 
level of one of the ATPases of the SWI/SNF complexes causes an increase of the level of the paralogous ATPase 
as well as its replacement in the complexes41,93, suggesting that the changes of the mRNA levels in tumors that we 
describe in this work can alter the composition of the complexes. Finally, it has been proposed that the SMARCA4 
and SMARCA2 ATPases are appropriate targets for anticancer drugs design94. The antagonistic behavior uncov-
ered in our work should be taken into account to design specific drugs that specifically target one but not the 
other ATPase.

Methods
Data collection and analysis of SMARCA4 and SMARCA2 levels.  For meta-analysis of SMARCA4 
and SMARCA2 transcript levels in normal and tumor samples data were collected from the cancer microarray 
expression database ONCOMINE 4.547 (https://www.oncomine.org/). Those datasets in which changes of expres-
sion between normal and tumor tissue were significant, with a P value ≤ 0.01 (Student’s t-test), and which ranked 
in the top 10% of the more significant changes, were selected. Volcano plots of −Log10(P value) versus log2(FC) 
were then generated.

https://www.oncomine.org/
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Expression of SMARCA4 and SMARCA2 was also analyzed in 22 cohorts of different types of tumors from 
The Cancer Genome Atlas (TCGA) consortium. SMARCA4 and SMARCA2 RNA-seq mRNA expression data 
(FPKM-UQ normalized) in tumors and the corresponding available normal tissue samples were collected from 
TCGA (https://cancergenome.nih.gov/) though the Genomic Data Commons Data Portal (https://portal.gdc.
cancer.gov). Types of tumors as well as the number of tumors and normal samples are provided in Supplementary 
Table S3.

All methods and use of data were carried out in accordance with relevant guidelines and regulations of the 
corresponding databases. No experiments were performed using human samples.

Analysis of prognosis.  Meta-analyses of the association of SMARCA4 and SMARCA2 expression levels with 
survival outcomes were performed using data collected from the PrognoScan database (http://www.abren.net/
PrognoScan/)49. COX regression analysis95 data (HR and COX P value) were downloaded and used to construct 
volcano plots of log2(HR) versus −log10(COX P value) for every endpoint available (overall survival, disease-free 
survival and distant metastasis-free survival). Only studies with COX P values ≤ 0.01 were considered as signif-
icant. For Kaplan-Meier plots of Fig. 2c–f, patients were divided into two (high and low) groups according on 
the expression of SMARCA4 or SMARCA2 in the tumors. The optimal cut-point that gave the most pronounced 
corrected P value (in the log-rank test) between the two groups was provided by the PrognoScan database.

Association between SMARCA4 or SMARCA2 expression levels and prognosis was also analyzed in four 
cohorts of TCGA: Liver hepatocellular carcinoma (LIHC), bladder urothelial carcinoma (BLCA), skin cutaneous 
melanoma (SKCM), and kidney renal clear cell carcinoma (KIRC). Overall survival data of patients were collected 
from TCGA, and Kaplan-Meier plots were performed in Prism 5 (GraphPad). Significance was determined using 
log-rank test.

Clinical data.  Clinicopathological data of patients in the LIHC and KIRC cohorts were obtained from 
TGCA. For tumor description, the Tumor-Node-Metastasis (TNM) staging system (www.cancerstaging.org/) 
was used, whereby T followed by a number (1–4) describes the size of the tumor (with T4 being the largest); 
N followed by 1 or 0 indicates whether lymph nodes have metastasis or not, respectively; and M followed by 1 
or 0 indicates whether the tumor has metastasized or not, respectively. Histopathologic grade G followed by a 
number (1–4) was also considered: G1, well differentiated; G2, moderately differentiated; G3, poorly differen-
tiated and G4, undifferentiated tumor. We also considered the roman numeral stage annotation (S) from I to 
IV, with each number corresponding approximately to a combination of the TNM numbers. No subdivisions 
of stages were used (e.g., T1a, T1b, and T1c were considered as T1). To determine significance of differences 
between groups either Student’s t-test or Chi-square test with confidence interval of 95% were computed, using 
Prism 5 (GraphPad).

Principal component and differential expression analysis.  To characterize gene expression changes 
between tumors with high or low levels of SMARCA4 or SMARCA2, all analyzed LIHC or KIRC TCGA tum-
ors were ranked according to their level of SMARCA4 mRNA or SMARCA2 mRNA, respectively. Ten tumors 
were then randomly selected from the upper decile (SMARCA4-high or SMARCA2-high) or from the lower 
decile (SMARCA4-low or SMARCA2-low) for each tumor type. These were used to generate following sets of 
ten tumors: SMARCA4-high LIHC, SMARCA4-low LIHC, SMARCA2-high LIHC, SMARCA2-low LIHC, 
SMARCA4-high KIRC, SMARCA4-low KIRC, SMARCA2-high KIRC, SMARCA2-low KIRC. The refer-
ence numbers of the TCGA tumors used is provided in Supplementary Table S4. The expression patterns of 
SMARCA4-high versus SMARCA4-low, and SMARCA2-high versus SMARCA2-low, in both types of tumors 
were then subjected to PC analysis. For this, RNA-seq expression data (FPKM-UQ normalized) of 60,483 Ensembl 
reference genes from the 20 compared samples were centered on the median (z-scores), and non-expressed genes 
in any of the samples were removed. Data were then subjected to unsupervised PC analysis using default param-
eters in MultiExperiment viewer (MeV) 4.8.1 software96. Data of the three PCs (PC1, PC2 and PC3) were then 
represented in 3D scatter plots using Plotly 2.0(https://plot.ly/create/).

Differential expression analyses between sets of tumors (SMARCA4-high LIHC versus SMARCA4-low 
LIHC; SMARCA2-high LIHC versus SMARCA2-low LIHC; SMARCA4-high KIRC versus SMARCA4-low 
KIRC; SMARCA2-high KIRC versus SMARCA2-low KIRC) were performed using RNA-seq expression data 
(FPKM-UQ normalized) of 60483 Ensemble genes and standard methods97. Unpaired two-samples Students 
t-test with unequal variances was used to compute P values. Differentially expressed genes were considered 
to be significant when P ≤ 0.01 and |FC| ≥ 2. Expression values of differentially expressed genes were then 
centered on the median (z-scores), and heat maps were produced using MeV 4.8.1 software96. Unsupervised 
hierarchical clustering analysis (HCA) of the differentially expressed genes was also performed in MeV 
4.8.1. Clustering was done with complete linkage and Euclidean distance. Venn diagrams were performed in 
Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html). To test the significance of overlap in Venn 
diagrams, the hypergeometric tests were performed in R, using the dhyper function from the stats package. 
Population size was considered to be 60,483, the total number of genes for which RNA-seq data were avail-
able in TCGA.

Functional enrichment analysis.  Gene ontology (GO) functional categories were analyzed using 
DAVID98 or WebGestalt99 software packages. Pathways enrichment was investigated using the WebGestalt soft-
ware packages. KEGG and Pathway Commons databases were screened. Enrichment of DNA binding sites was 
also investigated though WebGestalt using the Transfac database. Bonferroni-adjusted P values of the hyper-
geometric test were used to determine enrichment significance. Geneset enrichment analysis was performed 

https://cancergenome.nih.gov/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.abren.net/PrognoScan/
http://www.abren.net/PrognoScan/
http://www.cancerstaging.org/
https://plot.ly/create/
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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using GSEA v2.0.14 software with 1000 phenotype permutations100. Gene sets were downloaded from MSigDB101. 
Enrichment maps were generated with the Enrichment Map Plugin 1.3102 developed for Cytoscape 2.8103 using 
the default parameters.

Availability of data and materials.  All data used in this work are available through the following data-
bases: ONCOMINE (https://www.oncomine.org/), ATCG (https://cancergenome.nih.gov/), cBioportal (http://
www.cbioportal.org/) and PrognoScan databases (http://www.abren.net/PrognoScan/).
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