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Abstract
Introduction  Metabolomic profiling combines Nuclear Magnetic Resonance spectroscopy with supervised statistical analysis 
that might allow to better understanding the mechanisms of a disease.
Objectives  In this study, the urinary metabolic profiling of individuals with porphyrias was performed to predict different 
types of disease, and to propose new pathophysiological hypotheses.
Methods  Urine 1H-NMR spectra of 73 patients with asymptomatic acute intermittent porphyria (aAIP) and familial or spo-
radic porphyria cutanea tarda (f/sPCT) were compared using a supervised rule-mining algorithm. NMR spectrum buckets 
bins, corresponding to rules, were extracted and a logistic regression was trained.
Results  Our rule-mining algorithm generated results were consistent with those obtained using partial least square discri-
minant analysis (PLS-DA) and the predictive performance of the model was significant. Buckets that were identified by the 
algorithm corresponded to metabolites involved in glycolysis and energy-conversion pathways, notably acetate, citrate, and 
pyruvate, which were found in higher concentrations in the urines of aAIP compared with PCT patients. Metabolic profiling 
did not discriminate sPCT from fPCT patients.
Conclusion  These results suggest that metabolic reprogramming occurs in aAIP individuals, even in the absence of overt 
symptoms, and supports the relationship that occur between heme synthesis and mitochondrial energetic metabolism.

Keywords  1H NMR · Porphyrias · Biomarkers · Subgroup discovery

1  Introduction

Metabolic profiling allows the identification of metabolic 
markers associated with diseases and supports the formula-
tion of new pathophysiological hypothesis. One of the most 
employed analytical techniques for untargeted metabolomics 
is proton based nuclear magnetic resonance (1H-NMR) spec-
troscopy (Goodacre et al. 2004; Shulaev 2006). It provides 
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information on molecular structures and on absolute or relative 
concentrations of compounds in complex mixtures.

Metabolomic studies generate high-dimensional datasets 
requiring the use of powerful modeling techniques (Sugimoto 
et al. 2012). The most commonly used modeling techniques 
for metabolomics profiling are partial least squares (PLS) and 
its derivate (Goodpaster et al. 2010; Liland 2011; Lindon and 
Nicholson 2008; Trygg and Wold 2002). However, these tech-
niques do not perform an exhaustive exploration of the data. 
To overcome this limitation, we used a descriptive and eas-
ily understandable approach for metabolic profiling, which is 
based on a supervised rule-mining algorithm that locally and 
exhaustively explores the variable space of 1H-NMR spectra 
datasets (Luck et al. 2016, 2015).

Metabolic profiling of patients affected by monogenic 
inborn errors of metabolism is a particularly useful approach 
to address diagnosis/prognostic issues, and to provide insights 
into the pathophysiology of the disease (Emwas et al. 2015; 
Mussap et al. 2013; Nicholson et al. 2012). Recently, a proof 
of concept of the relevance of using 1H-NMR-based meta-
bolic profiling to explain the recurrence of Acute Intermit-
tent Porphyria (AIP) attacks was done (Carichon et al. 2014). 
Porphyrias are a group of eight metabolic disorders of the 
heme biosynthesis pathway resulting in the accumulation of 
specific heme and porphyrin precursors. The most frequent 
of them are AIP and Porphyria Cutanea Tarda (PCT). AIP, 
which is caused by a deficiency in the enzymatic activity of 
hydroxymethylbilane synthase (HMBS), is characterized by 
acute attacks, typically consisting of severe abdominal pain, 
nausea, constipation, confusion and seizure. Notably, between 
attacks, patients are asymptomatic. PCT, which is caused by an 
enzymatic deficiency of uroporphyrinogen III decarboxylase, 
is characterized by skin fragility and blisters, and is the most 
frequent type of porphyria worldwide. A sporadic subtype 
(sPCT, 75% of cases) is most often identified in male patients 
with hepatic disease, whereas a familial subtype (fPCT, 25% 
of cases) is transmitted as an autosomal dominant mendelian 
disorder of low penetrance (Puy et al. 2010).

In the present study, we performed the urinary metabolic 
profiling of patients with asymptomatic AIP (aAIP), sPCT and 
fPCT to determine if the urinary metabolome of aAIP can 
yield information on the mechanism of the disease, besides the 
identification of porphyrin precursors, and can fuel new patho-
physiological hypotheses, and to compare the performances 
of the rule-mining based algorithm with Partial Least Square 
Discriminant Analysis (PLS-DA).

2 � Results

2.1 � Local rule‑mining based approach 
on metabolomic data

We first tested whether metabolic profiling could help to 
discriminate sPCT from fPCT patients, but we could not 
generate significant models and consequently the informa-
tion was not clinically relevant. Consequently, sPCT and 
fPCT patients where merged together (s/fPCT patients).

We then compared 1H-NMR urinary spectra of aAIP 
with those from s/fPCT patients. For the rule-mining based 
model, 80 buckets out of the 210 were present at least once 
in the relevant candidate 1D rules highlighted. 57 of the 
variables on which rules were highlighted indicate that the 
same variable (a “bucket”) can be found in 2 different rules 
(Fig. 1) and that a single molecule (as defined by buck-
ets) can belong to both groups of diseases, but that this is 
the range of concentrations that is discriminatory. As an 
example, buckets 2.6 and 2.72, which represent citrate, are 
found in high concentration in urines of aAIP individu-
als compared with a far lower concentration in urines of 
individuals with s/fPCT (and without overlap). We evalu-
ated the relevance of these rules in the classification step 
by applying a logistic regression on the rules (previously 
transformed in binary variables). The local models had 
good and statistically significant performance on the dis-
covery cohort with a F1 score of 0.62 (p value of 0.03).

To further validate our findings, and to test the consist-
ency of the rule-mining based method, we run a PLS-DA 
models on the discovery cohort. The PLS-DA model pro-
vided a F1 score of 0.63 (p value of 0.003). The Variables 
of Influence in the Projection (VIPs) of the first component 
of the PLS-DA model are shown in the Fig. 2. In line with 
the consistency between the two methods, the VIPs in the 
PLS-DA models were almost the same found with the rule-
mining based method. Together, these results indicate that 
urinary metabolic profiling can discriminate individuals 
with aAIP from those suffering with sPCT and fPCT. The 
local model has an enhanced explanatory power providing 
more meaningful and easily interpreted information than 
that provided by a classical model such as PLS-DA. How-
ever, it seems that the explanatory power comes at the cost 
of a small decrease in performance. These findings raise 
the issue of the pathophysiological rationale supporting 
these metabolomic profiles.
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2.2 � Differences in metabolomic profiles of aAIP 
and PCT patients

We next investigated the nature of the metabolites selected 
by the local model to identify the urine metabolomic pro-
files predictive of aAIP and PCT. Among the buckets iden-
tified with the rule-mining algorithm, some of them cor-
responded to metabolites involved in glucose metabolism: 
acetate (1.92, 1.96), citrate (2.6, 2.72), pyruvate (2.36), 
glucose (3.48, 3.52, 3.56, 3.76, 3.92, 5.28), and glycogen 
(3.64, 5.36, 5.4, 5.44), indicating that glucose metabolism 
pathways are likely impacted by hepatic porphyrias. The 

corresponding metabolites were identified manually using 
the Human Metabolome Database (HMDB, http://www.
hmdb.ca/). Notably, some rules characterized by the same 
bucket for both aAIP and PCT patients were disjoint (i.e., 
covered disjoint sub-regions of the bucket space) (Fig. 1). 
The disjoint rules indicate that aAIP patients were spe-
cifically characterized by higher concentrations of acetate, 
citrate and pyruvate, the inverse being observed for PCT 
patients. These findings illustrate that our rule-mining 
algorithm allows the classification of groups of patients 
based on the local trends (i.e., range of values) of some 
variables.

Fig. 1   Representation of the 1D 
rules for the discovery cohort 
dataset. Each horizontal seg-
ment corresponds to a 1D rule 
characterized by its variable 
condition: the bucket’s name 
and the set of covered bins. We 
only show the rules correspond-
ing to buckets for which rules 
could be generated for the two 
classes (i.e., aAIP and s/fPCT). 
The color scale reflects the 
frequency of the buckets values 
covered by the rules over the 
leave-one-out splits. The more 
robust the rule, the darker it will 
be. On the figures on the left a, 
the rules corresponding to the 
s/fPCT class and on the right 
figures, the rules corresponding 
to the aAIP class b 

http://www.hmdb.ca/
http://www.hmdb.ca/
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We estimated the absolute concentration of some metab-
olites identified during metabolic profiling (acetate, pyru-
vate and citrate) in the discovery and validation cohort by 
comparing the peak integrals of the corresponding buckets 
obtained from the 1H-NMR spectrum to the residual sol-
vent peak for which the concentration is known (1 mM 
of TSP—Trimethyl silyl propionate of sodium salt as the 
1H-NMR chemical shift reference) in the 2014 cohorts 
of aAIP (n = 31) and PCT (n = 21) patients (those used to 
build the models) and also in the 2015 replicative cohort 
which was made of 21 PCT patients. aAIP patients were 
specifically characterized by relatively higher concentra-
tions of acetate (p value = 0.0004, one-way ANOVA), 
pyruvate (p value < 0.0001, one-way ANOVA) and citrate 
(p value < 0.0001, one-way ANOVA) (Table 1) compared 
with patients with s/fPCT. Notably, the concentrations of 

these metabolites were within the reference range (based on 
the urine concentrations collected in the HMDB database). 
There was no significant difference in the concentrations 
of acetate, pyruvate and citrate between sPCT and fPCT. 
Together, these results indicate that the urines of aAIP indi-
viduals are characterized by a significant increase of con-
centrations of glycolytic intermediates (citrate, acetate and 
pyruvate) compared with urines of patients with PCT.

3 � Discussion

We provide evidence that a model derived from a data 
mining approach based on rule generation combined with 
logistic regression is an innovative and straightforward 
tool for metabolomic profiling. Local models generate 

Fig. 2   Variables of influence in the projection of the first compo-
nent (VIP[1]) of the PLS-DA. The bar corresponds to the normalized 
mean weights of the most discriminative variables in the projection of 

the first component of the PLS-DA models. The standard errors of the 
weights are indicated on the figure

Table 1   Concentrations of the 
identified buckets

The mean ± standard deviation of the concentration of the identified buckets are given in mmol/mmol uri-
nary creatinine for each groups of patients (aAIP and PCT) for the discovery (2014) and the validation 
(2015) cohort

aAIP 2014 PCT 2014 PCT 2015 Reference p value

Acetate b. 1.96 (3H) 0.015 ± 0.014 0.0046 ± 0.003 0.006 ± 0.007 0.0025–0.106 0.0004
Pyruvate b. 2.36 (3H) 0.0061 ± 0.0017 0.003 ± 0.0013 0.004 ± 0.0013 0.018–0.104 < 0.0001
Citrate b. 2.56 + b. 2.6 (2H) 0.03 ± 0.007 0.02 ± 0.003 0.01 ± 0.0046 0.046–0.484 < 0.0001
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easily interpretable rules compared to the classical PLS-
DA method. In addition, these models provide information 
on the distribution of the groups of diseases with respect to 
range of the spectral values. This point is critical as it can 
be possible to translate this range of spectral values into 
of metabolite concentrations. In turn, the validation of the 
biological relevance of the potential biomarker identified 
by these models can immediately be done by measuring its 
concentration in independent datasets.

Our approach might provide critical information on the 
potent metabolic disturbances associated with porphyrias. 
Metabolic profiling could not help to discriminate sPCT 
and fPCT patients. Indeed, we could not generate signifi-
cant models and consequently the information was not 
clinically relevant but strongly suggests that despite differ-
ent molecular basis, these disorders present with a similar 
urinary metabolic profile suggesting a close relationship in 
their pathophysiology. Conducting a future study with more 
individuals might help to generate more significant models.

The fact that the majority of the discriminating variables 
were metabolites implicated in glycolysis and that urines of 
aAIP have relatively higher concentrations of acetate, cit-
rate and pyruvate compared with PCT patients suggest that 
metabolic reprogramming operates during aAIP, even in the 
absence of attacks. The biological rationale that supports 
such changes remain to be determined but it is tempting 
to speculate that the biochemical consequences of HMBS 
activity could promote, directly or indirectly, alterations in 
glycolytic process that occur in the mitochondria. These 
results must be considered in the perspective of the relation-
ships that occur between heme synthesis and mitochondrial 
energetic metabolism. Indeed, the heme biosynthesis path-
way is closely linked to the tricarboxylic acid (TCA) cycle 
that provides succinyl-CoA as a carbon source for the initial 
aminolevulinic acid (ALA) synthesis step (mediated by ALA 
synthase) of heme biosynthesis. Defects in mitochondrial 
energetic metabolism occur during active AIP (Homedan 
et al. 2014), and TCA seems to be profoundly affected at 
the level of enzymes that orients the first step of the TCA 
flux and the synthesis or utilization of succinyl-CoA. The 
increase of aminolevulinate synthase 1 (ALAS1) activity 
during AIP probably consumes most of the succinyl-CoA 
available in the mitochondria to support the transfer of suc-
cinyl-CoA from the TCA cycle to ALA synthesis. Hence, 
cataplerosis likely occurs in such a way that the TCA cycle 
is unable to provide reduced substrates to the respiratory 
complexes.

Whether the detection of alterations of TCA cycle in 
aAIP urines, considering that they reflect mitochondrial 
energetic disturbances, reveals systemic (produced by the 
liver) or local disturbances (i.e., in the tubular epithelium 
of the kidney) remains an unresolved issue. However, the 
kidney is the third organ involved in heme biosynthesis (5% 

of the heme is synthetized by the kidney) and perturbations 
in heme synthesis affect renal homeostasis. Our findings also 
suggest for the first time that metabolic reprogramming asso-
ciated with AIP occurs even in the absence of overt symp-
toms or attacks, and support the hypothesis that aAIP can 
evolve as a smoldering disease with long-term deleterious 
consequences. In addition, the identification of disturbances 
of glycolysis in aAIP patients could foster therapeutic strate-
gies targeting ALAS1 activity and limiting the cataplerosis 
of TCA cycle, which therefore could also be used in asymp-
tomatic carriers.

In conclusion, we provide evidence that a rule-mining 
algorithm is a useful and straightforward method to select 
variables, and to generate easily interpretable sets of varia-
bles and ranges of variable values that define subpopulations 
with a high risk for the outcome of interest. Using 1H-NMR 
spectroscopy-based metabolic profiling of individuals with 
porphyria, we demonstrate that urines of aAIP patients are 
enriched in glycolytic intermediates that could reflect dis-
turbances of glycolytic intermediates throughout the TCA 
cycle in relation to mitochondrial metabolic associated with 
a decrease in HMBS activity.

4 � Materials and methods

4.1 � Patients

Between 2014 and 2015, 73 individuals with normal renal 
function and with AIP or PCT who were diagnosed and 
followed at the French Porphyria Center (Centre National 
Maladies Rares Porphyries, http://www.porphyrie.net/) were 
included in the study. The criteria for AIP, sPCT and fPCT 
diagnosis followed the European Porphyria Network guide-
lines (Anderson et al. 2005; Bonkovsky et al. 1991). The 
asymptomatic carrier status of AIP, “aAIP” (i.e., individuals 
included in this study), is defined after a family screening 
to identify individuals with latent disease and is based on a 
deficient HMBS enzymatic activity complemented with a 
DNA analysis by direct sequencing to identify the causative 
mutation in the HMBS gene (which requires prior identifica-
tion of the mutation in a related affected family member). 
PCT is characterized by fragile skin, bullae, hypertrichosis, 
pigmentation that may be acquired (sporadic PCT, “sPCT”) 
or inherited (familial PCT, “fPCT”). Most patients with 
sPCT have chronic underlying liver cell damage with iron 
overload related to alcohol, C hepatitis, or haemochromato-
sis. The diagnosis of PCT is confirmed by the detection of 
specific porphyrin profile in urines, feces and plasma. The 
differential diagnosis between sPCT and fPCT was realized 
by measuring uroporphyrinogen III decarboxylase activity 
in erythrocytes and by UROD gene analysis.

http://www.porphyrie.net/
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For each patient, demographic and clinical information 
was retrieved. Urines of aAIP individuals were collected at 
annual systematic follow-up, and urines from PCT individu-
als at the time of the diagnosis. Urine samples were stored at 
− 80 °C until metabolomic analyses. The 2014 cohort cor-
responds to the discovery cohort (52 patients). Two groups 
of patients were defined for our analysis corresponding to 31 
patients with aAIP, and 21 with PCT, including 14 patients 
with sPCT, 7 patients with fPCT. These two porphyrias 
groups (aAIP and PCT) correspond to the main target vari-
ables. The 2015 cohort contains 21 PCT individuals (14 
and 7 patients with sPCT and fPCT respectively) and was 
used as an independent validation replicative cohort for the 
measurement of candidate metabolites. The characteristics 
of patients in these two cohorts are provided in Table 2.

4.2 � 1H‑NMR spectroscopy

The urine samples were prepared with chemical prod-
ucts from Sigma (Sigma Aldrich, Saint Quentin Falla-
vier, France) to obtain a final volume of 600 μL (400 μL 
of urine; 160 μL of 200 mM phosphate buffer at pH 7.4, 
1 mM of TSP—Trimethyl silyl propionate of sodium salt as 
the NMR chemical shift reference-, 6 mM of NaN3; 40 μL 
D2O). Urine 1H-NMR spectra were measured at 300K on a 
Brucker Avance II 500 MHz spectrometer (Brucker Biospin 
GmbH, Rheinstetten, Germany) equipped with a SampleX-
press automation sample changer and a standard 5 mm BBI 
probe with Z-gradient. The spectra acquisition was based 
on a 1D Nuclear Overhauser Effect Spectroscopy (NOESY) 
pulse sequence with pre-saturation for water suppression. 
The parameters used for the pulse sequence were as fol-
lows: a relaxation delay of 1 s, a mixing time of 100 ms, 
an acquisition time of 1.36 s and a 90-degree pulse length 
of 8 μs. Data points (32K) were collected during 64 scans 
with a spectral width of 20 ppm. The preprocessing of the 

urine 1H-NMR spectra was performed with MestReNova 8.0 
software. A line-broadening factor of 0.3 Hz prior to Fourier 
transformation was applied. The spectra were then phased, 
baseline corrected, and referenced to TSP. Each 1H-NMR 
spectrum was reduced by an equidistant binning method 
from 0.24 to 10.00 ppm with a bin width of 0.04 ppm to limit 
misalignment problems. The spectral regions corresponding 
to urea (5.52–6.04 ppm) and water (4.28–5.24 ppm) were 
deleted to remove variability because of the suppression of 
water. Then, as mean of normalization and prerequisite to 
our method we discretized the 210 remaining buckets with 
a 10 quantile-based binning for the main analysis (i.e., aAIP 
vs. PCT) and with a 5 quantile-based binning for the sec-
ondary analysis (i.e., sPCT vs. fPCT). Two NMR spectra 
datasets were obtained from the discovery cohort: one with 
52 individuals and 210 buckets for main analysis (i.e., aAIP 
vs. PCT) and one with 21 individuals and 210 buckets for the 
secondary analysis (i.e., sPCT vs. fPCT). One NMR spectra 
dataset was obtained from the validation cohort containing 
21 individuals and 210 buckets for the secondary analysis 
(i.e., sPCT vs. fPCT). Finally, the resulting matrices were 
centered and scaled to unit variance for the PLS-DA. The 
dataset before normalization containing the two cohorts is 
available in supplementary information (S1 Dataset).

4.3 � Supervised analysis

For the supervised analysis, we used a rule-miming based 
approach that combines a supervised variable selection 
step and a classification step (Luck et  al. 2016). The 
rationale for the use of this approach is to avoid overfit-
ting and provide more precise information compared to 
conventional methods. These approaches were performed 
on the discovery cohort for the prediction of the different 
type of porphyria.

Table 2   Patients characteristics

Continuous variables are expressed as mean ± standard deviation; categorical variables are expressed as 
percentage (%) of the total number of patients (n)

Normal fPCT (n = 14) sPCT (n = 28) aAIP (n = 31) p value

Age (years) 52.3 ± 3.7 55.8 ± 2.4 59.3 ± 2.7 0.3
Sexe ratio (female) 37% 37% 58% 0.1
ALA < 38 µmol/L 28.5 ± 12.8 31.3 ± 7.7 36.6 ± 7.3 0.8
PBG < 9 µmol/L 2.3 ± 7.8 4.2 ± 4.4 23.9 ± 4.2 0.003
Total porphyrins < 250 nmol/L 7375 ± 1616 6277 ± 967 855 ± 1024 0.002
Coproporphyrin III 40–60% 1.9 ± 1.1 4 ± 0.6 – 0.11
Coproporphyrin I 20–30% 2.1 ± 3.4 8 ± 1.9 – 0.14
Pentacarboxyporphyrin N: <3% 5 ± 1.8 7 ± 1 – 0.33
Hexacarboxyporphyrin N: <2% 1.4 ± 0.3 1 ± 0.1 – 0.28
Heptacarboxyporphyrin N: <3% 36.6 ± 3 33.1 ± 1.7 – 0.3
Uroporphyrin N: 10–15% 58 ± 24 44 ± 14 – 0.05
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4.3.1 � Variable selection

The variable selection step is based on the combination of 
two univariate approaches: a global one, based on the χ2 
test (Scikit-learn project implementation (Pedregosa et al. 
2011)), and a local one, based on a supervised rule min-
ing algorithm (in-house implementation) (Luck et al. 2015, 
2016). The global approach first selected variables with a 
chi2 test significant p value < 0.05 leading to a subset of vari-
ables. We did not perform a Bonferroni correction because 
there is a high probability that the test is substantially con-
servative because the Bonferroni method would require p 
values to be smaller than 0.05/210 to declare significance 
since adjacent buckets tend to be highly correlated. Sec-
ondly, the further local feature selection step must perform 
a correction.

This set of selected variables generated by the global 
approach was next used to perform the local approach, 
which is based on a rule-mining algorithm that locally and 
exhaustively explores the variable space (see Algorithm 1). 
The objective is to highlight local phenomena characterized 
by subgroups of subjects. These relationships are under the 
form of 1-dimensional rules (1D rules) where variable con-
dition corresponds to a range of values of a given variable 
observed in the dataset. To identify the most discriminative 
rules, we used as a rule quality measure the z-score and the 
rule modality size. The z-score tests whether the propor-
tions of subjects with the target modality in the rule and 
in the entire dataset are different. We selected rules with a 
z-score > 1.96 corresponding to a confidence level of 95%. 
The rule modality size is the number of subjects in the rule 
having one of the two modalities of interest. Taking into 

account the few number of subject in the different cohort, we 
selected rules with a rule modality size > 5 to ensure robust 
and generalizable rules.

4.3.2 � Classification

For the classification step, we learned a classical L2 penal-
ized (C parameter fixed to 1) logistic regression (L2-LR) on 
the rules [Scikit-learn project implementation (Pedregosa 
et al. 2011)]. The rules were represented under the form of 
local binary variables of the length of the number of sub-
jects. These local binary variables are encoded as follows: 1 
means that the subject belongs to the rule and 0 indicates the 
subject is not in the rule (Luck et al. 2015, 2016).

4.3.3 � Evaluation and comparison of our approach 
with PLS‑DA

The predictive performance was evaluated using a leave-
one-out cross validation and the F1 score with a permu-
tation test of 2000 runs. A p value < 0.05 was considered 
to be significant. As a means of another validation and in 
order to prove the consistency of the results found with our 
methods, we run a PLS-DA on the same dataset as for the 
rule-mining based approach [Scikit-learn project implemen-
tation (Pedregosa et al. 2011)]. For the PLS-DA, the evalua-
tion procedure was the same as for the rule-mining approach 
(i.e., the predictive performance of the models was evaluated 
using the F1-score with a permutation test of 2000 runs). A 
p value below 0.05 was considered to be significant.

Algorithm 1   Supervised rule 
mining

Input:
- a couple of variables (explanatory variable, target)
- the threshold of the quality measure: z-score > 1.96, modality size > 5
Output:
- a set of significant rules for each modality

Step 1: Exhaustive rule generation and selection
a. For feature

Construct all possible candidate rule combinations made from adjacent bins.
b. For each target modality

For each candidate rule
Compute quality measures:

z-score, modality size
if z-score > 1.96 and modality size > 5:

keep the rule

Step 2: Rule candidate minimization
a. Delete rules that are included in bigger rules with smaller z-score.
b. Delete rules covering smaller rules with higher z-score.
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4.3.4 � Biomarkers validation and quantification

A simple estimate of absolute concentration of potential 
biomarkers in the discovery and validation cohort has been 
obtained from the 1H-NMR spectrum by comparing the peak 
integrals of the corresponding buckets to the peak for which 
the concentration is known (1 mM of TSP—Trimethyl silyl 
propionate of sodium salt as the 1H-NMR chemical shift 
reference-) (Corol et al. 2016; Jauhiainen et al. 2014), and 
using the profiler of Chenomx NMR Suite 7.1. The mean 
concentrations per group of patients (aAIP, sPCT and fPCT) 
were compared using a one-way analysis of variance test 
(ANOVA). A p value < 0.05 was considered to be significant.
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