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Advanced Steel Microstructural 
Classification by Deep Learning 
Methods
Seyed Majid Azimi1,2,4, Dominik Britz2,3, Michael Engstler2,3, Mario Fritz1 & Frank Mücklich2,3

The inner structure of a material is called microstructure. It stores the genesis of a material and 
determines all its physical and chemical properties. While microstructural characterization is widely 
spread and well known, the microstructural classification is mostly done manually by human experts, 
which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination 
of different phases or constituents with complex substructures its automatic classification is very 
challenging and only a few prior studies exist. Prior works focused on designed and engineered features 
by experts and classified microstructures separately from the feature extraction step. Recently, Deep 
Learning methods have shown strong performance in vision applications by learning the features 
from data together with the classification step. In this work, we propose a Deep Learning method for 
microstructural classification in the examples of certain microstructural constituents of low carbon 
steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network 
(FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, 
drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong 
performance of our method, this line of research offers a more robust and first of all objective way for 
the difficult task of steel quality appreciation.

Steel is still one of the most important and extensively used classes of materials because of its excellent mechanical 
properties while keeping costs low which gives a huge variety of applications1,2. The mechanical properties of 
steel are mainly determined by its microstructure3 shown in Fig. 1, so that the performance of the material highly 
depends on the distribution, shape and size of phases in the microstructure4. Thus, correct classification of these 
microstructures is crucial5. The microstructure of steels has different appearances, influenced by a vast number 
of parameters such as alloying elements, rolling setup, cooling rates, heat treatment and further post-treatments6. 
Depending on how the steel is produced due to these parameters, the microstructure consists of different constit-
uents such as ferrite, cementite, austenite, pearlite, bainite and martensite7 shown in Fig. 1.

This motivation leads us to use Deep Learning methods which are recently grabbing the attention of scien-
tists due to their strong ability to learn high-level features from raw input data. Recently, these methods have 
been applied very successfully to computer vision problems8,9. They are based on artificial neural networks such 
as Convolutional Neural Networks (CNNs)9. They can be trained for recognition and semantic pixel-wise seg-
mentation tasks. Unlike traditional methods in which feature extraction and classification are learnt separately, 
in Deep Learning methods, these parts are learnt jointly. The trained models have shown successful mappings 
from raw unprocessed input to semantic meaningful output. As an example, Masci et al.10 used CNNs to find 
defects in steel. In this work, we show that Deep Learning can be successfully applied to identify microstruc-
tural patterns. Our method uses a segmentation-based approach based on Fully Convolutional Neural Networks 
(FCNNs) which is an extension of CNNs accompanied by a max-voting scheme to classify microstructures. Our 
experimental results show that the proposed method considerably increases the classification accuracy compared 
to state of the art. It also shows the effectiveness of pixel-based approaches compared to object-based ones in 
microstructural classification.
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Related Works
Based on the instrument used for imaging, we can categorize the related works into Light Optical Microscopy 
(LOM) and Scanning Electron Microscopy (SEM) imaging. High-resolution SEM imaging is very expensive com-
pared with LOM imaging in terms of time and operating costs. However, low-resolution LOM imaging makes 
distinguishing microstructures based on their substructures even more difficult. Nowadays, the task of micro-
structural classification is performed by observing a sample image by an expert and assigning one of the micro-
structure classes to it. As experts are different in their level of expertise, one can assume that sometimes there are 
different opinions from different experts. However, thanks to highly professional human experts, this task has 
been accomplished so far with low error which is appreciated. Regarding automatic microstructural classification, 
microstructures are typically defined by the means of standard procedures in metallography. Vander Voort11 used 
Light Optical Microscopy (LOM) microscopy, but without any sort of learning the microstructural features which 
is actually still the state of the art in material science for classification of microstructres in most institutes as well 
as in industry. His method defined only procedures with which one expert can decide on the class of the micro-
structure. Moreover, additional chemical etching12 made it possible to distinguish second phases using different 
contrasts, however etching is constrained to empirical methods and can not be used in distinguishing various 
phases in steel with more than two phases. Nowadays, different techniques and approaches made morphological 
or crystallographic properties accessible4,13–18. Any approach for identification of phases in multiphase steel relies 
on these methods and aims at the development of advanced metallographic methods for morphological analysis 
purposes using the common characterization techniques and were accompanied with pixel- and context-based 
image analysis steps.

Previously, Velichko et al.19 proposed a method using data mining methods by extracting morphological fea-
tures and a feature classification step on cast iron using Support Vector Machines (SVMs) - a well established 
method in the field of machine learning20. More recently, Pauly et al.21 followed this same approach by applying 
on a contrasted and etched dataset of steel, acquired by SEM and LOM imaging which was also used in this work. 
However, it could only reach 48.89% accuracy in microstructural classification on the given dataset for four dif-
ferent classes due to high complexity of substructures and not discriminative enough features.

Deep Learning methods have been applied in object classification and image semantic segmentation for differ-
ent applications. AlexNet, a CNN proposed by Alex Krizhevsky et al.22, with 7 layers was the winner of ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC)23 in 2012 which is one of the most well-known object clas-
sification task challenges in computer vision community. It is the main reason that Deep Learning methods drew 
a lot of attention. AlexNet improved the accuracy ILSVRC2012 by 10 percent points which was a huge increase 
in this challenge. VGGNet, a CNN architecture proposed by Simonyan et al.8 has even more layers than AlexNet 
achieving better accuracy performance. Fully Convolutional Neural Networks (FCNNs) architectures, proposed 
by Long et al.24, is one of the first and well-known works to adapt object classification CNNs to semantic segmen-
tation tasks. FCNNs and their extensions to the approach are currently the state-of-the-art in semantic segmenta-
tion on a range of benchmarks including Pascal VOC image segmentation challenge25 or Cityscape26.

Our method transfers the success of Deep Learning for segmentation tasks to the challenging problem of 
microstructural classification in the context of steel quality appraisal. It is the first demonstration of a Deep 
Learning technique in this context that in particular shows substantial gains over the previous state of the art.

Figure 1.  Some examples of different microstructure classes. In columns from left to right: martensite, 
tempered martensite, bainite and pearlite phases or rather constituents as “objects” (second-phase) have 
been illustrated. Ferrite is the matrix phase in these images, having the role of the background. The upper 
row contains images taken by Scanning Electron Microscopy (SEM) and lower row taken by Light Optical 
Microscopy (LOM).
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Review of recent Deep Learning techniques in computer vision
Previous work in the context of steel microstructural classification relies on hand-designed features. Engineering 
high-level features e.g., morphological21 features require complex feature extraction algorithms and a tedious 
trial-and-error process of finding good features in the first place. Deep Learning methods are capable of learning 
complex features from raw input data that turn out to also be superior across a wide range of application domains. 
These methods are inspired by neural networks and an “end-to-end” learning paradigm. Unlike classical meth-
ods, feature extraction and classification is done simultaneously in Deep Learning methods and optimized jointly. 
This is facilitated by composing complex, parameterized functions from simple, efficient, piece-wise differentiable 
building blocks. Therefore, training the whole system is facilitated by gradient descent on the parameters using a 
recursive gradient computation via the chain rule of differentiation (this is called back propagation algorithm27). 
Among these Deep Learning methods, Convolutional Neural Networks (CNNs) and their modification, Fully 
Convolutional Neural Networks (FCNNs) have been shown particularly successful for image classification and 
segmentation.

CNNs were developed originally for vision tasks. The basic concept of CNNs dates back to 19809,28, but due to 
the increase in computational resources, available data and better learning algorithms, they have recently attained 
a new level of quality across a range of domains. Therefore, CNNs are the state-of-the-art approaches in many 
vision applications. As images are of high dimensionality applying traditional neural networks with fully con-
nected neurons to process visual data would lead to a huge number of trainable parameters. Furthermore, they 
are not able to exploit the natural structures in the images like correlation among neighboring pixels and station-
ary image statistics. Typical Convolutional Neural Networks consist of multiple, repeating components that are 
stacked in layers: convolution, pooling, fully connected and classifier layers.

Convolution Layer convolves the input data with a linear convolution filter as shown in Equation (1):

h W x b( ) ( ) (1)k ij k ij k= ∗ +

where k K1, ,= …  is the index of the k-th feature map in convolution layer and (i, j) is the index of neuron s in 
the k-th feature map and x represents the input data. Wk and bk are trainable parameters (weights) of linear filters 
(kernel) and bias for neurons in the k-th feature map respectively. h( )k ij is the value of the output for the neuron in 
the k-th feature map with position of (i, j). The spatial 2D convolution operation between the input data and the 
feature map has been represented by “*”.

Pooling Layer is a nonlinear down-sampling layer which either takes maximum or average values in each 
sub-region of the input data. Today’s CNNs typically employ a maximum pooling called “max-pooling” layer in 
order to achieve invariance to small shifts in the feature maps.

Fully-connected Layer is a classic neural network layer where the features of the next layer are a linear com-
bination of the features of the previous layer as shown in Equation (2):
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where yk represents the k-th output neuron and Wkl is the kl-th weight between xl and yk.
Activation Function usually follows a pooling or fully connected layer and introduces a nonlinear activation 

operation like a sigmoid or rectified linear unit (ReLU). The ReLU function relu x x( ) max(0, )=  are most com-
mon as the gradient is piece-wise constant and does not vanish for high activations (in contrast to e.g., sigmoid).

Classifier Layer is the last layer of the network and computes a class posterior probability of the input image. 
The most widely used classifier layer in CNNs is the softmax function. The vector of real values between (0,1) 
generated by this function denotes a categorical probability distribution shown by Equation (3) for the j-th class 
and an input vector X.
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Loss Layer is used to measure the difference between true class labels and corresponding predicted class 
labels. The most common loss layer for classification is the cross-entropy loss. The c ross-entropy loss is shown 
in Equation (4):

∑   = − ′P x P xCross Entropy Loss Function ( )log ( )
(4)x

in which the softmax classifier (P x( )) is minimizing the cross-entropy between the “true” one-hot encoded distri-
bution of data( ′P x( )) and the predicted class probabilities.

CNN Training is done end-to-end which means without separation between the feature extraction and the 
classification step. They receive raw input data e.g., image pixels, to produce semantic outputs. CNNs are trained 
to learn the hidden pattern in the data by using a training set. A loss function  measures how far the outputs of 
the network from the correct output is. This optimization problem is solved by gradient descent9 and a 
well-known process called Back-Propagation9 to propagate the loss function gradient to previous layers. The 
gradient descent is performed based on the loss function gradient 

wij

δ
δ

. Then, the weights are adapted in order to 

decrease the loss function output by modifying into the direction opposite to the direction of increasing gradient 
with a step size (learning rate) represented by η in Equation (5). Learning rate does not have a unit. It is a user 
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defined parameter. It determines the step size for updating the weights in each back-propagation step during 
CNN training phase.

η δ
δ

= −
w w
w (5)
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new old

Dropout Layer29 is a technique to improve the generalization of CNNs by randomly ignoring (dropping) neu-
rons and their corresponding parameters from the network architecture only during the training phase.

As annotated SEM images are rare, most likely a training network on such dataset will lead to overfitting to 
noise present in the training set. To address this problem, networks which have already been trained using large 
training datasets like ImageNet are trained on the new dataset. This trick is known as “fine tuning”. Using this 
technique, we can initialize the weights more effectively. Therefore, it can be assumed that the network is already 
close to a good local minimum and needs far less training data to converge. From pre-trained CNNs, features can 
also be extracted without fine tuning. In this case, the network is not fine tuned. Instead, output of fully connected 
layers before the classification layer is considered as feature vector. These features known as DeCAF30 and can be 
classified with e.g., SVMs. Another trick in case of utilizing small datasets is to artificially enlarge the training set 
e.g., by flipping or rotating while preserving the class labels. This trick is known as “Data Augmentation”.

Network Architectures: In the following, we describe the three specific CNN architectures (with increasing 
depth) that we use for classification: CIFARNet is a CNN with three convolutional and max-pooling layers with 
two fully-connected layers. It is a modified version of LetNet9 proposed by Lecun et al., containing 431 K param-
eters to which the ReLU activation layer and dropout layer (will be described in the following) have been added.

AlexNet, proposed by Alex Krizhevsky et al.22, is a deep CNN with 60 million parameters.
AlexNet is deeper than CIFARNet. It has eight layers including five convolutional, three max-pooling and 

three fully-connected layers. VGGnet was proposed by Simonyan et al.8 and it is even deeper with 13 convolu-
tional, five pooling and three fully-connected layers known as VGG16 with 138 million parameters. Another 
version called VGG19 has 19 layers. VGG19 network was able to achieve empirically better performance than 
CIFARNet and AlexNet. In VGGnet, a 3 × 3 convolution kernel size was applied which resulted in fewer param-
eters, but with the same support.

Fully Convolutional Neural Networks (FCNNs).  While CNNs have been shown successful for image 
classification, we are also interested in predicting a set of semantic classes for each pixel which is called semantic 
segmentation. CNNs can be extended to perform this task by removing the fully-connected layers and “sliding” 
the CNN over a larger image. However, the resulting semantic segmentation would not quite be of the same res-
olution as the original image. Therefore, Long et al.24 proposed Fully Convolutional Neural Networks(FCNNs) 
with an additional up-sampling layer.

Up-sampling layer can be achieved by simple bilinear interpolation (which is differentiable). Today’s FCNNs 
learn also the up-sampling kernel which is parameterized as shown in Equation (6):

⌊ ⌋ ⌊ ⌋y i f i j x1 { / } 1 { / }
(6)ij i f j f
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1
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where y and x are the input and output of the up-sampling layer, and f and α,β stand for the up-sampling factor 
and pixel fraction parts, respectively. One can consider an up-sampling layer with factor f as a convolution oper-
ation, but instead of an integer stride it has a fractional input stride of 1/f.

To capture different information about the input data by preserving the dimensions of input feature maps, 
we can fuse different pooling layers together known as “skip layers”. FCNNs can be seen as an encoder-decoder 
system in which convolutional layers do encoding of input images by extracting high-level learned feature s and 
deconvolution layers do decoding on these features to present semantic segmentation of the input. As image 
semantic segmentation datasets are typically small, these networks are frequently pre-trained on object recogni-
tion datasets and then fine-tuned to perform the segmentation task.

Methods
In this section, we describe our methods to classify microstructures in steel. First, we applied Deep Learning 
methods to classify each cropped steel object as illustrated in Fig. 2 from SEM or LOM images which we call 
object-based microstructural classification. Then we explain our main methods which classify each pixel as one 
of a microstructure class and then we classify each object by considering the classes of pixels inside the object. To 
avoid misunderstandings, “substructure” and “texture” is used equally, owed the different current languages in 
material science and computer vision. All experimental protocols have been approved by Material Engineering 
Center Saarland (MECS) and Max Planck Institute for Informatics (MPI) institutes. The methods were carried 
out in accordance with the relevant guidelines and regulations.

Object-based Classification of Microstructures with CNNs.  The first approach we used, was the 
classification of microstructures (second/dual phases) by CNNs. However, CNNs work on images of fixed size. 
Therefore, we normalized the images for each structure by cropping objects from the images, resized them to a 
fixed size and then applied the CNN classifier.

Masking.  By applying a user-defined threshold on pixel intensity in LOM image, binary segmented LOM as 
shown in Fig. 2 can be computed. Corresponding SEM image which has already been registered with LOM image 
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from the same area are masked using the mentioned binary mask. In the resulting masked SEM all of matrices 
(here ferrite) are masked as illustrated in Fig. 2. In addition, by using this mask, each constituent can be localized.

Cropping.  Using location information obtained from the binary segmented LOM, each constituent (object) in 
the masked SEM image is cropped and separated from the main image as shown in the part of “cropped object” 
in Fig. 2. Hence, the cropping operation is systematic. These operations have been described with more details in 
Britz et al.31.

Warping.  Due to fully-connected layers in CNNs, input images should be warped to a fixed size e.g., 224 × 224 
px for VGG16 network. The cropped objects should be then warped to a fix size.

Classification.  Each warped constituent (object) image is then given to CNN as input to be classified. In this way, 
the system performance is comparable to the previous work of Pauly et al.21 As the objects have been automatically 
warped and split randomly into training and test set, their distribution can be assumed identical independently 
distributed. We considered three possible techniques of using CNNs for image classification: (I) full-training 
(from scratch) CNNs, (II) fine-tuning CNNs and (III) DeCAF features with SVM classifier. Since in this case, 
classification was done directly based on the object input image, we refer to this system as the object-based CNN 
microstructural classification.

The (I) technique is a network which was trained with random initialized parameters. In this method we are 
free to choose the size of the input image. The (II) strategy was using transfer learning. However, in this case, we 
were limited to the input size of the CNN.

The first and second strategy is illustrated in Fig. 2. The third strategy is similar except that classification is 
done by SVMs rather than a softmax layer. The output of the object-based CNN before classification is P C O( )i| , 
where Ci is the class of each phase, O stands for the observation or the input image, and P is the posterior proba-
bility that the input image belongs to class i. Classification is performed by choosing the class with the highest 
probability.

Segmentation-based Classification of Microstructures with FCNNs.  Resizing of each cropped 
object image to a fixed size, as required in the object-based CNN approach, could destroy valuable information 
related to the phase texture by heavy distortion. On the other hand, pixel-wise classification (segmentation) can 
work with any image size. Thus, we propose a SEM or LOM image segmentation-based microstructural classifi-
cation approach using a FCNN and max-voting scheme to classify each object. The processing pipeline for this 
approach is illustrated in Fig. 3. We refer to this approach as max-voted FCNN (MVFCNN). Using this method, 
SEM or LOM images are classified pixel-wise. In our experiments, we used a network architecture proposed by 
Long et al.24. The architecture is almost the same as VGG16, except a converting from fully-connected layers to 
convolutional ones and up-sampling layers plus skip layers. They used skip layers to fuse coarse and local appear-
ance information to improve the semantics. By using no skip layer, the network is called FCN-32s, with skip 
layer A and with A and B together denoted in Fig. 3 network is called FCN-16s and FCN8s respectively. We used 
cropped raw SEM or LOM images as input to FCNNs. For pixel-wise microstructural classification, we can not 
use the original image sample due to the big size of samples(7000 × 8000 px) and GPU memory limit. Therefore, 
original image should be cropped into small patches and each patch should be segmented separately. Patch crop-
ping is done using sliding window technique (e.g., Dalal et al.32). We consider a window of HxW size illustrated in 
Fig. 3. This window slides over the original image with a horizontal and vertical step sizes. We call these step sizes 
as stride parameters. In each step, the original image is cropped using the sliding window. Then the cropped patch 
is given to FCNN as input image. We do this operation for all of patches to cover the whole input image. In other 
words, the whole original input image will be given as separate input patches to the network. The maximum size 
of the cropped images is determined by the GPU memory.

Figure 2.  Workflow of o bject-based classification approach using CNNs. In this figure one object in the SEM 
image is cropped and classified using a trained CNN. 224 × 224 px is the fixed input size of the VGG16 network 
and “C” stands for class.
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The output of FCNN is a 3D matrix with the number of channels equal to the number of classes. Each pixel in 
this matrix has a value representing the score confidence or posterior probability (output of the softmax classifier 
function) for the corresponding microstructure class Ci. The pixel-wise classification step is then performed by 
choosing the class for each pixel with the highest posterior probability. Afterwards, all of the segmented patches 
belonging to the original input image are stitched together as illustrated in Fig. 3. In order to classify objects 
(microstructures) rather than pixels, a max-voting policy is applied on each object, assigning it to the class of 
the majority of the pixels. In other words, the microstructure class with the maximum classified pixels inside an 
object will be assigned to that object. The location information of objects is obtained using a binary LOM image. 
The motivation for using this aggregation step was that by using stitched patches we can decide the class of each 
object instead of only a part of it.

Implementation Details.  In order to train and test CNNs and FCNNs, Caffe33 framework and a K40 m 
NVIDIA GPU was used. Caffe framework is a library in which most of the fundamental layers of neural networks 
have been implemented efficiently by C++ and Cuda programming languages.

Training object-based CNN.  All of the cropped object images were resized to 224 × 224 px which is the fixed 
input size of VGG16. We also considered this size of input for training networks from scratch. We used a fixed 
learning rate of 0.001, a momentum of 0.9 and weight decay of 0.004 in stochastic gradient descent algorithm. 
The training iterations continue until the training loss reached a plateau. For training CIFARNet from scratch, the 
standard deviation of Gaussian noise for initial random weights for the first convolutional layer is 0.0001 and for 
the rest is 0.01. For fine tuning, a pre-trained VGG16 network was used. We initialized the last fully-connected 
layer with random Gaussian noise with standard deviation of 0.01. The learning rate of 0.0001 (chosen on valida-
tion set) was used to train CIFARNet and VGG16 respectively.

Using pre-trained extracted features (DeCAFs).  To classify DeCAF features using SVMs, we trained a multi-class 
SVM with RBF kernel with extracted features from pre-trained VGG198 network. In VGG19 architecture, a 
fully-connected layer before the classification layer (size of 1 × 1 × 4096 px) was considered as the feature vector. 
Therefore, the feature vector is a 1 × 1 × 4096 dimension vector.

Training MVFCNN.  In training MVFCNN, we used learning rate of 10−10, 10−11 and 3 10 12∗ −  to train FCN-
32s, FCN-16s, and FCN-8s, respectively. A bigger learning rate causes the training loss to explode. The momen-
tum of 0.9 with weight decay of ∗ −5 10 4 was considered. Regarding input images, patches were cropped with 
1000 × 1000 px size with a batch size of 1, due to memory issues. We first trained a FCN-32s model, and then 
added a skip layer (FCN-16s) and fine-tuned it. Afterwards, another skip layer (FCN-8s) was added to fine-tune 
the final model. Direct training of FCN-8s gave worse results. A pre-trained FCN-32 model was trained with an 
ImageNet dataset. The network was trained with 7000 iterations for ~4.5 days. The inference time for a 
1000 × 1000 px input image was ~600 ms.

Class Balancing and Data Augmentation.  In order to address the problem of class unbalance in the dataset, in 
the MVFCNN method cropping was carried out for different classes with different stride (step size) parameters 
in horizontal and vertical directions which in the end all of classes had the same number of patches i.e. the class 
with least number of images had smaller stride than the class with the largest number of training images. Stride 
parameters are the parameters determining the steps using which patches are cropped. For example if the hori-
zontal stride is 100 px, it means when a patch is cropped, the next patch will be cropped with a 100 px step. The 
same goes for the vertical direction. In our experiments, we chose different stride parameters corresponding to 
the number of images for each class. Stride parameters in horizontal and vertical directions were chosen the same. 
For an example, an image of 7000 × 8000 px includes ∗ =7 8 56 patches with 1000 × 1000 px size stitched 

Figure 3.   Overview of max-voted segmentation-based microstructural classification approach using FCNNs 
(MVFCNN). In this figure, the input image is an SEM image. The input image is first cropped. Then cropped 
patches are given to the FCNN part of the MVFCNN algorithm. The segmented crops are stitched together by 
FCNN. In the last step, the Max-voting policy is applied on the resulting stitched image. The max-voted output 
is used to classify microstructure objects. H and W represent height and width and the third number is the 
number of the feature map.
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together. By using a stride parameter of 100 px, one can produce ∗ =61 71 4331 patches each with the size of 
1000 × 1000 px. Resulting cropped patches were also rotated by 90°, 180° and 270° to augment the dataset. In this 
case, the number of the training images can increase three times.

Results
Dataset.  In our experiments, we use a steel image dataset21 provided by Material Engineering Center Saarland 
(MECS) in Saarbrücken, Germany. This dataset will be available at the MECS website: http://www.mec-s.de/.

The dataset contains registered images of steels taken by LOM and SEM and the corresponding binary LOM 
images. The steel samples were first polished and etched according to Britz et al.18 and Pauly et al.21. In total, 
21 LOM and SEM images with an average size of 7000 × 8000 px were available. LOM and SEM images for 
each microstructure class are shown in Fig. 4. For ground truth, the procedure according to Britz et al.31 was 
applied. Afterwards a group of material experts and metallographers assign the objects of the second phase to 
the mentioned phases/constituents according to Aarnts et al.5. In other words, the assignment of the images to 
each microstructural class (ground truth) has been made by material science experts and metallographers. For 
example, if one SEM image contains martensitic and ferritic constituents, a group of material science experts 
have assigned martensite and ferrite labels to the “objects” or rather grains which the mentioned sample contains. 
Informed consent has been obtained from all material expert co-authors from MECS.

The microstructures contain a ferritic matrix as first phase and a pearlitic, martensitic or bainitic microstruc-
tures as second constituent. Therefore, objects are also referred to as two-phase steel images with two constituents. 
21 images are distributed into martensitic (11 samples), tempered martensitic (2 samples), bainitic (4 samples) 
and pearlitic (4 samples). A further subdivision for the bainite (upper, lower, granular etc. according to Zajac  
et al.34) will be considered in the next step after this proof of concept. The dataset split is image-based with 11 
training images and 10 test images which results in 2831 training and 2262 test objects. It should be mentioned 
that in the test set, one of two bainite samples is a bainitic sample which was normalized afterwards and therefore, 
it shows a different appearance despite being in the same class.

Task Definition and Metrics.  In the microstructural classification problem, the goal is to classify constituents 
(object) inside steel images based on microstructure classes. These objects are grains within the microstructure 
which can be considered as “background” (matrix (ferrite)) and “foreground” (second constituent in the present 
microstructure) according to Fig. 5. The substructure of such an object can be seen as texture - which should not be 
confused with the meaning of the term “texture” in Material Science - which will be classified with the correct label 
in the present work. Therefore, the more objects that are classified correctly, the more accurate the system is.

Figure 4.  SEM and LOM example images for each microstructure class with ferrite as matrix and with diameter 
of up to 100 μm. The columns show SEM, LOM and segmented LOM images from left to right. Size ratios of 
samples have been preserved. The sub-images are corresponding to (a) martensitic, (b) tempered martensitic, 
(c) bainitic and (d) pearlitic microstructures.

http://www.mec-s.de/
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In addition to the classification task, we also evaluated the semantic segmentation performance using the 
metrics in Equations (7), (8), (9), and (10). For more information, the reader is encouraged to read the paper by 
Long et al.24. In the following, nij is the number of the pixel of class −i th predicted as class j, ncl is the number of 
different classes and t ni j ij= ∑  is the whole pixel number of class i:

•	 pixel accuracy:

n
t (7)

i ii

i i

∑
∑

•	 mean accuracy:
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In microstructural classification via a pixel-based MVFCNN approach, segmented objects are classified with 
the class that the majority of those pixels vote for (max-voting). Then the evaluation is carried out by enumerating 
correct classified microstructure objects. After this step, the results of object-based and pixel-based methods are 
comparable with each other as well as with the state of the art.

Evaluation.  In Table 1, comparable results of our experiments with object-based CNN and pixel-based 
MVFCNN are presented using SEM images. Also the performance of the previous state-of-the-art method 
of Pauly et al.21 with an accuracy of 48.89% is shown. In their work, they enumerated the correctly classified 
microstructural objects by data mining tasks using the same dataset. Hence, the performance of our system 
both object-based CNN and pixel-based MVFCNN are comparable with theirs. Instead, from-scratch trained 
CIFAR-Net is able to outperform this method by achieving 57.03% accuracy. Using pre-trained VGG19-Net fea-
tures with a SVM classifier and a fine tuned VGG16-Net we even achieve a better performance of 64.84% and 

Figure 5.  SEM image of a steel microstructure. The right image is an original SEM image and the left one shows 
a magnified object. In this example, the substructure (microstructure) is martensitic within a ferritic matrix 
(background/first phase). The foreground (second/dual phase/constituent) will be considered as “object”.

Method Type Training Strategy Accuracy

Pauly et al.21 object-based — 48.89%

CIFAR-Net object-based from scratch 57.03%

pre-trained VGG19-
Net Features + SVM object-based — 64.84%

VGG16-Net object-based fine tuning 66.50%

MVFCNN pixel-based fine tuning 93.94%

Table 1.  Microstructural classification results using object-based CNN and pixel-based MVFCNN approaches. 
The results show that object-based classification approaches improve over prior work at most by around 
18 percent points. The pixel-based approach has even better performance by around 45 percent points 
improvement.
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66.50%, respectively. All of these methods apply object-based algorithms. However, Table 1 shows that micro-
structural classification using pixel-based methods can achieve a considerably higher accuracy of 93.94% accu-
racy which shows that the pixel-based classification of microstructures is a very promising approach.

In Table 2, the effect of data augmentation and fine tuning using SEM images in the MVFCNN approach have 
been depicted. The results shows that fine tuning and using balanced augmented training data achieves the best 
results of 93.94%. Among training data and training strategy, using a fine tuned MVFCNN has the most impact of 
32.48 percent points improvement compared to MVFCNNs with unbalanced data that are trained from scratch. 
In Table 3, the accuracy of the methods using LOM images have been provided which are able to achieve up to 
70.14% accuracy with a similar configuration as the best results using SEM images. These results indicate that, by 
considering the available dataset, the LOM is not as useful as the SEM because of the feature size of the objects 
in this microstructural classification approach. However, there is still a potential to increase the LOM accuracy 
by taking into account e.g., color etchings like Klemm or contrasting described in the literature11. In Table 4, the 
confusion matrix of the MVFCNN approach (fine tuned with balanced and augmented SEM training data) as the 
best performing method without matrix (ferrite), is shown. In this matrix, missed objects in segmentation step 
are not taken into account (#48 objects). That is why the overall accuracy is 95.23% (see Table 4) which is slightly 
higher than the best classification accuracy of 93.94%, shown in Table 1. The confusion matrix shows the number 
of samples for each class predicted by the system. Recall and precision numbers show the correct classification 
percentage of actual classes and predictions, respectively e.g., the network has classified 1190 martensite objects 
correctly which is 94.97% of the whole martensitic objects, Table 4, column 1. On the other hand, the network has 
misclassified 24 and 39 martensitic objects as tempered martensite and bainite, respectively. This performance 
gives 94.97% recall rate and 99.08% precision rate. The dataset is heavily unbalanced, especifically for tempered 
matersitic samples. Even though there is one training image for tempered martensite, it is a big image for which, 
after cropping and applying data augmentation techniques, the number of patches are far more than one. In 
our experiments without data augmentation, we could not get a high precision rate for tempered martensitic 

Network Architecture Training Data Training Strategy Test Accuracy

MVFCNN Unbalanced SEM from scratch 55.50%

MVFCNN Unbalanced SEM fine tune MVFCNN 87.98%

MVFCNN Balanced SEM fine tune MVFCNN 90.97%

MVFCNN Balanced and 
augmented SEM fine tune MVFCNN 93.94%

Table 2.  The effect of fine tuning and data augmentation techniques using the MVFCNN approach are 
depicted. The results show that fine tuning together with data augmentation achieves the best result. However, 
the effect of data augmentation is not significant.

Method Input Data Data Training Strategy Test Accuracy

CIFARNet cropped object LOM from scratch 51,27%

VGG-19- DeCAF-RBF-kernel SVM cropped object LOM — 56.56%

VGG-16 cropped object LOM fine tuning 60,02%

MVFCNN cropped patch LOM fine tuning 70.14%

MVFCNN cropped patch SEM fine tuning 93.94%

Table 3.  The results of the same experiments with LOM images are provided in this table. he results show 
inferior performance using LOM instead of SEM images.

Actual Class Labels

Martensite Temp. Martensite Bainite Pearlite Class Precision

Predicted Class Labels

Martensite 1190 
94.97%

0 
0.00%

11 
3.19%

0 
0.00% 99.08%

Temp. Martensite 24 
1.92%

268 
97.81%

0 
0.00%

0 
0.00% 91.78%

Bainite 39 
3.11%

6 
2.19%

325 
94.20%

16 
4.80% 84.19%

Pearlite 0 
0.00%

0 
0.00%

9 
2.61%

317 
95.20% 97.23%

Class Recall 94.97% 97.81% 94.20% 95.19% Total Accuracy 
95.23%

Table 4.  Confusion Matrix of the best MVFCNN approach. The matrix shows the number of samples for each 
class predicted by the system. Due to an unbalanced multi-class problem, percentage numbers for each class 
show normalized recall rates. Note: #48 not-segmented objects have not been considered. Overall accuracy is 
93.94%.
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samples. However, after having used data augmentation techniques, the precision rate for tempered martensite 
was improved dramatically. In Table 5, the results of the pixel-wise semantic segmentation with different config-
urations are presented. In this table, as expected, the FCNN method for pixel-wise segmentation step can achieve 
the best results. It can achieve a pixel accuracy of 93.92%, a mean pixel accuracy of 76.70%, a mean intersection 
over union of 67.84% and a frequency weighted intersection over union of 88.81%. In Table 6, the same config-
urations have been evaluated pixel-wise for accuracy of each class. The matrix has the highest pixel accuracy of 
94.22% as expected. And bainite has the lowest pixel accuracy of 37.32%. The matrix is present in all examples 
which is the reason why the network has learned its structure well - although it has to be mentioned that so far, 
the grain boundaries are neglected. However, bainite has small objects and also one of two bainite test images is 
the transformed bainite sample which the network has not seen what leads to a poor performance in this class. 
Surprisingly, LOM can achieve a pixel accuracy of matrix with 94.11% which is comparable to the SEM images.

In Fig. 6a, some successful examples of SEM segmentation using FCNN networks, trained with balanced and 
augmented training data are shown next to some failure cases in Fig. 6b. Regarding the failure case of bainite, it 
should be noted that the network was trained using isothermally transformed bainitic specimens which showed 
no failure cases in the test set. The final results of the microstructural classification by stitching and applying a 
max-voting scheme over the segmented patches are depicted in Fig. 7. The final results in this figure show that 
most of the objects in each microstructure image are classified correctly. If we consider the classification of the 
overall microstructure of each image, all of the ten test images are classified correctly.

To compare segmentation performances between segmented LOM and SEM images, in Fig. 8a, segmentation 
of patches of four microstructures using LOM and SEM images by the FCNN approach, trained with balanced 
and augmented training data have been shown. In most cases, SEM segmentation has a better accuracy, but it is 
interesting that the network can still learn correct pixel-wise classification from a low-resolution LOM images 
compared to SEM which suffer from different illumination and stitching artifacts. Figure 8b shows a few noisy 
sample patches in SEM images with the corresponding segmentations. Noise originates mostly from dirt, dust 
and sample preparation. The matrix (ferrite) segmentation is considered as background which is also presented 
showing a very good robustness.

Discussion
Classification using object-based CNNs.  Based on Table 1, all of the Deep Learning methods outper-
form the state-of-the-art method which proves our motivation regarding using learned high-level features rather 
than engineered features. The results also indicate that deeper networks show better results than shallower ones 
i.e. depth matters. Even with features extracted from pre-trained VGG19, which are classified with SVM, one can 
achieve comparable performances with the results of trained CIFARNET and VGG16. However, training VGG16 
on the dataset used in this work makes features more informative and discriminative as network parameters can 
learn the pattern in this dataset. The surprising performance of the MVFCNN method indicates that the perfor-
mance of object-based CNNs is negatively influenced by the image resizing step. In other words, we observe that 
resizing distorts the texture inside objects, hampering the accurate differentiation of objects bigger or smaller 
than the input size of the network. In another approach, we split big objects into 224 × 224 px objects which led 
to a higher performance which supports our assumption. However, this approach made the system less practical 
and introduces a hyper parameter into the system to choose the best split size.

Classification using MVFCNNs.  The results in Table 1 shows that a MVFCNN approach using SEM 
images achieves a very high performance. It indicates that a classification using pixel-wise segmentation is more 

Network Data Balanced Augmented Training Strategy pixel acc. mean acc. Mean IU f.w. IU

FCNN SEM — — scratch 80.84 33.99 24.25 71.74

FCNN SEM — — fine tuning 92.01 76.26 68.26 86.80

FCNN SEM ✓ — fine tuning 92.11 79.63 66.27 86.91

FCNN SEM ✓ ✓ fine tuning 93.92 76.70 67.84 88.81

FCNN LOM ✓ ✓ fine tuning 88.27 54.01 45.43 81.66

Table 5.  Evaluation of the segmentation-based approach using FCNNs with different training data and 
training strategies. As the results show, using SEM images, fine tuned networks and augmented data, the best 
performance can be achieved. However, LOM has an inferior performance compared to SEM.

Network Data Balanced Augmented Training Strategy Matrix Marten. Temp. Marten. Bain. Pear.

FCNN SEM — — scratch 86.47 36.08 0 0 0

FCNN SEM — — fine tuning 92.03 77.25 71.43 22.05 63.27

FCNN SEM ✓ — fine tuning 92.47 74.71 57.44 33.25 69.65

FCNN SEM ✓ ✓ fine tuning 94.22 79.85 72.62 37.32 70.46

FCNN LOM ✓ ✓ fine tuning 94.11 50.11 58.36 5.21 19.35

Table 6.  Pixel-wise accuracy evaluation of the segmentation approach using FCNNs for each microstructure 
class. The matrix has the highest and bainite the lowest pixel-wise accuracy.
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efficient and accurate compared to object-based CNN methods and significantly better than hand-crafted fea-
tures. Resizing is no longer required in this method and therefore does not have an impact on the performance 
of the MVFCNN.

The confusion matrix in Table 4 shows that the network still produces some misclassification of martensite 
objects due to the confusion of martensite with tempered martensite and bainite which have similar textures – 
unlike the texture of pearlite’s texture which is easy to distinguish. All wrongly classified bainite objects belong 
to the “transformed” bainite sample in the test set which is not present in the training set. It is impressive that in 
this condition the network is still able to classify more than half of the objects in the “transformed” bainite sample 

Figure 6.  Examples of (a) successful and (b) failure cases in SEM segmentation using the best MVFCNN 
approach configuration. The ground truth colors of martensite, tempered martensite, bainite and pearlite are 
red, green, blue and yellow respectively.
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correctly. The achieved high accuracy indicates that considering each pixel and taking into account its neighbor-
ing pixels plays a crucial role in the correct classification of objects.

Based on the results of Table 2, data augmentation improves the performance by 2 percent points which is 
not considerable. One possible reason for this phenomenon is that different rotations of textures inside objects 
are already present in the dataset before data augmentation which the network has already seen and learned. For 
example, in the pearlite microstructure, there are many cases that by rotating a patch, the resulting augmented 
patch still contains the previous orientations before the rotation. The results presented in Table 3 confirm our 
expectation that LOM images will perform poorly compared to SEM due to lower resolution. The artifacts due 
to stitching as well as the different illumination and preparation residues and scratches in LOM images degrade 
classification accuracy. The results in Table 3 have the same trend compared with Table 1 and confirm our find-
ings. Table 5 shows that using pixel-wise classification using MVFCNNs, one can achieve a high performance of 
93.94% accuracy de spite of more complex microstructural textures. These results also show that the better the 
pixel-wise segmentation criteria are, the better the microstructural classification will be.

Regarding Table 6, the results show how important fine tuning is when working with little training data. 
Without fine tuning, tempered martensite, bainite and pearlite microstructures could have not been segmented 
at all. Low performance in bainite class even by doing data augmentation could be due to the fact that bainite 
objects compared to other classes are a lot smaller. In the dataset, there are quite a few tiny areas belonging to 
matrix class which are not completely plain and contain some textures similar to those in bainite. As as result, bal-
ancing and augmenting the dataset makes the network decide that those small objects are more likely matrix than 
bainite. This assumption is verified by observing the bainite test image that pixels are either classified as bainite 
or as matrix. Another reason is also presence of isothermally transformed bainite which has different appearance 
with bainite of the other sample and network was not trained on that. More training data, specially for bainite 
class according to34 would help to decrease the miss-classified bainite objects in the segmentation step. This is in 
process for the next generation although it is very hard to find enough samples with a sufficient number of objects 
- especially for upper and lower bainite - which can be separated from a matrix to define the ground truth and to 
have a sufficiently good training dataset. Moreover, first efforts are heading in the direction of producing lab melts 
which are then analyzed by dilatometry to further enhance the division of the classes. Also the ferrite including its 
grain boundaries will be added in a next iteration as additional class. Regarding noise robustness, Fig. 8b shows 
strong robustness of the system with different types of noises. We also noted that the system is rotation invariant 
which means similar patches with different rotation angles have the same system response. It is worth mentioning 
that MVFCNNs can also have input images smaller than 1000 × 1000 px. However, in input image smaller than 
100 × 100 px the response is for the same area worse than has 1000 × 1000 px.

Figure 7.  Examples of applying a max-voting scheme to stitched and segmented SEM patches for different 
microstructure classes. The ground truth colors of martensite, tempered martensite, bainite and pearlite are red, 
green, blue, and yellow, respectively. Not-segmented objects in the segmentation phase are shown with white 
color.
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Conclusion
This work demonstrates the feasibility of an effective steel microstructural classification using Deep Learning 
methods without a need of separate segmentation and feature extraction. We performed a pixel-wise micro-
structural segmentation using a trained FCNN network followed by a max-voting scheme. The observed strong 
improvements in classification performance over the prior state of the art confirm our idea of leveraging the raw 
data input for training Deep Learning-based classification systems. Besides the high accuracy result, we are able 
to achieve a very fast prediction.

We found that resizing objects directly as input to object-based CNNs can eliminate discriminative texture 
information relevant to different microstructural classes. In contrast, MVFCNN approach does not have this 
problem and it is independent of the size of objects. Data augmentation was considered for further performance 
improvements. Furthermore, we found that rotating the SEM images does not introduce considerable new infor-
mation and therefore the performance is not significantly improved. We conclude that pixel-wise segmentation 
using Fully Convolutional Neural Networks is an effective and robust way of determining the distribution and 
size of different microstructures when these networks are trained end-to-end.
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