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Introduction

Toxoplasma gondii belongs to the Apicomplexa phylum that caused a widespread zoo-

notic infection in a wide range of intermediate hosts, including men, livestock, birds, 

marine mammals, and snakes [1-7]. More than one century ago, this protist was disco

vered from the spleen and liver smears of a north African rodent namely Ctenodacty-

lus gondii [8]. Recent review papers have documented over one-third of peolple through-

out the globe are latently infected with T. gondii and carry it [7,9,10].

  The biologic stages and the main transmission routes of T. gondii are depicted in 

Fig. 1. Briefly, Toxoplasma has three infectious stages: sporozoites (in oocysts), tachyzo-

ites (rapidly multiplying form), and bradyzoites (tissue cyst form). Tachyzoites as rapid-

ly multiplying forms are the main reason of the acute phase of toxoplasmosis and re-

sponsible for a wide spectrum of clinical signs. Once a host becomes infected, the par-

asite can survive with complex mechanisms for the whole lifespan within tissue cysts 

located usually in the skeletal muscles, brain, eyes, and myocardium. In some circum-

stances, particularly upon the suppression of immune system, latent encysted para-

sites can reactivate and the symptoms of infection became evident [11,12].
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Toxoplasma gondii belongs to the Apicomplexa phylum that caused a widespread zoonotic 
infection in wide range of intermediate hosts. Over one-third of the world’s population are la-
tently infected with T. gondii and carry it. The complex life cycle of T. gondii indicates the pres-
ence of a plurality of antigenic epitopes. During the recent years, continuous efforts of scien-
tists have made precious advances to elucidate the different aspects of the cell and molecular 
biology of T. gondii. Despite of great progresses, the development of vaccine candidates for 
preventing of T. gondii infection in men and animals is still remains a challenge. The calcium-
dependent protein kinases (CDPKs) belongs to the superfamily of kinases, which restricted to 
the apicomplexans, ciliates, and plants. It has been documented that they contribute several 
functions in the life cycle of T. gondii such as gliding motility, cell invasion, and egress as well 
as some other critical developmental processes. In current paper, we reviewed the recent 
progress concerning the development of CDPK-based vaccines against acute and chronic T. 
gondii.

Keywords: Toxoplasma gondii, Calcium-dependent protein kinase, Vaccines, Immunization, 
Adjuvant
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  Toxoplasmosis predominantly is asymptomatic in immu-

nocompetent persons, while may cause severe complications 

with life-threatening outcomes in immunosuppressed per-

sons such as human immunodeficiency virus/acquired im-

mune deficiency syndrome subjects, patients with malignan-

cy and transplant recipients [3,10,13-15]. Upon maternal in-

fection, fetus is probably to be exposed with vertical trans-

mission, which may cause abortion in those pregnant wom-

en that acquired toxoplasmosis during her pregnancy. Nota-

bly, the complications will be differ according to the gesta-

tional age ranged from retardation, microcephaly, hydroce

phalus, brain focal lesions, deafness, so on [16-19]. In the 

Fig. 1. The biologic stages and the main transmission routes of Toxoplasma gondii. The only known definitive hosts for T. gondii are members 
of family Felidae (domestic cats and their relatives). Unsporulated oocysts are shed in the cat’s feces (1). Although oocysts are usually only shed 
for 1-2 weeks, large numbers may be shed. Oocysts take 1-5 days to sporulate in the environment and become infective. Intermediate hosts in 
nature (including birds and rodents) become infected after ingesting soil, water, or plant material contaminated with oocysts (2). Oocysts trans-
form into tachyzoites shortly after ingestion. These tachyzoites localize in neural and muscle tissue and develop into tissue cyst bradyzoites (3). 
Cats become infected after consuming intermediate hosts harboring tissue cysts (4). Cats may also become infected directly by ingestion of 
sporulated oocysts. Animals bred for human consumption and wild game may also become infected with tissue cysts after ingestion of sporu-
lated oocysts in the environment (5). Humans can become infected by any of several routes: eating undercooked meat of animals harboring 
tissue cysts (6); consuming food or water contaminated with cat feces or by contaminated environmental samples (such as fecal-contaminated 
soil or changing the litter box of a pet cat) (7); blood transfusion or organ transplantation (8); transplacentally from mother to fetus (9). Diagno-
sis is usually achieved by serology, although tissue cysts may be observed in stained biopsy specimens (10). Diagnosis of congenital infections 
can be achieved by detecting T. gondii DNA in amniotic fluid using molecular methods such as polymerase chain reaction (11) Adapted from 
Centers for Disease Control and Prevention [20].

= Infective stage
= Diagnostic stage

Tissue cysts

Fecal oocysts
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other hand, this unicellular protozoan parasite may result in 

fetal death, neonatal loss, and abortion in domestic animals, 

especially in goats and sheep which imposes heavy econom-

ic losses in the industry of veterinary medicine and animal 

husbandry. Furthermore, they serve as a source of transmis-

sion to humans [3,21]. Interestingly, it has been shown chron-

ic toxoplasmosis considerably associated with some autoim-

mune diseases, mental and neurodegenerative disorders. In 

addition, the scientists frequently have confirmed that T. gon-

dii infection can manipulate and alter the behavior, not only 

in animal models, but in men as well [22-26].

Vaccine Candidate: Current State and Future

The present common primary control measures for men and 

animals T. gondii infection depends on chemotherapy. The 

drugs are not sufficiently satisfactory due to their side effects. 

For example, many concerns remain regarding the use of 

these medications in pregnant women because of the proba-

ble teratogenic effect on the fetus [27]. Besides, the routinely 

prescribed therapeutic medicines for the treatment of toxo-

plasmosis, can limit the proliferation of tachyzoites in the on-

set of infection, while they are unable to eliminate them and 

have no effect on the encysted parasites within infected hosts 

[27]. Hence, discover and development of an effective vaccine 

has high priority and urgently needed to prevent and control 

toxoplasmosis, because of the heavy burden of chronic infec-

tion throughout the world in different host species, particu-

larly in men and domestic animals. For this reasons, several 

vaccine types with different approaches have been experi-

mentally evaluated worldwide [28-36].

  During three recent decades, continous efforts of research-

ers have made precious successes in the development of T. 

gondii candidate vaccines mainly on dense granule antigens, 

microneme antigens, rhoptry antigens (ROP), and surface 

antigens. These vaccines predominantly induced partial pro-

tection along with reduction of brain cyst load post challenge 

with virulent and/or avirulent T. gondii strains in mouse mod-

els [30-33,37]. Currently, there is a commercially licensed vac-

cine known as Toxovax (the live-attenuated tachyzoites of T. 

gondii S48 strain) which used in the veterinary industry in 

some countries [38]. Toxovax reduces the incidence of con-

genital toxopllasmosis in sheep; however, it is not useful for 

human vaccination, particularly in immunosuppressed sub-

jects, because of its reversion to the wild-type virulence as 

previously the accidental infections have been reported in 

farmers [28,31,33]. 

  In regard to the major transmission routes of parasite and 

the toxoplasmosis manifestations in high risk groups, the main 

targets for vaccination strategy would cover [29,39]:

  ‒ �Vaccination to prevent acute parasitemia and protect aga

inst congenital toxoplasmosis

  ‒ �Prevent or reduce tissue cysts in food animals to interrupt 

the transmission route to humans

  ‒ �Prevention or reduction of oocyst shedding in cats to con-

fine environmental contamination as well as minimize the 

risk of toxoplasmosis for all intermediate hosts

Calcium-Dependent Protein Kinase 

The increasing number of experiments over the past decade 

has focused on the evaluation of the immunogenicity of main 

functional proteins including kinases and enzymes. These 

functional proteins, mainly involve in the duplication, tran-

scription, metabolism, signaling pathways and other biologi-

cal procedures of the parasite life cycle [40-47]. Based on ge-

nomic analysils, T. gondii encoded 108 protein kinases (pre-

sumably with a catalytic activity) and 51 pseudokinases genes 

(due to the absence of a catalytic domain) [48]. As signaling 

mediators of calcium-related signaling cascades, the calci-

um-dependent protein kinases (CDPKs) are a distinct pro-

tein kinase family, which belongs to the superfamily of kinas-

es [49-51]. CDPKs are restricted to the apicomplexans, cili-

ates, and plants. In apicomplexan, particularly T. gondii, sev-

eral CDPKs (as the most crucial household proteins) have 

been characterized involving in a different array of functions 

in the life cycle of parasite, including gliding motility, cell in-

vasion and egress as well as some other pivotal developmen-

tal processes [49,51,52]. CDPKs not expressed by mammals 

and fungi which indicates validated targets that can be ex-

ploited for a promising target vaccine candidate against toxo-

plasmosis and anti-T. gondii drugs [52-56]. Out of 14 CDPKs 

present in T. gondii, CDPK1, CDPK3, CDPK4, CDPK5, CD-

PK6, and CDPK7 are the only CDPKs which expressed and 

conserved in almost all apicomplexan parasites [49,57,58]. 

The specific features and main functions of some CDPKs have 

been embedded in Table 1.

  It is well known that gene knockouts of CDPKs may affect 

on specific developmental stages [49]. For instance, Billker et 

al. [59] showed the disruption of CDPK4 in asexual stages of 

Plasmodium berghei leads to differentiation defects in male 

gametocytes. They concluded “CDPK4 is essential for the 
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sexual reproduction and mosquito transmission of P. ber-

ghei.” Furthermore, it has been shown conditional suppres-

sion of CDPK1 protein lead to loss of some capabilities, in-

cluding parasite motility, host cell invasion, and egress [60]. 

The T. gondii kinase CDPK2 has functional Ca2+ and carbohy-

drate-binding domains, which its deficiency causes hyperac-

cumulation of starch in Toxoplasma parasites results death of 

chronic-stage parasites [47]. In another study, Morlon-Guyot 

et al. [57] reported that the downregulation of CDPK7 protein 

in T. gondii results in pronounced defects in parasite division 

and a major growth deficiency. The polarity of daughter cells 

budding and the fate of several subcellular structures or pro-

teins involved in cell division were affected, as well. The au-

thors have remarked “CDPK7 is crucial for proper mainte-

nance of centrosome integrity required for the initiation of 

endodyogeny” [57]. More recently, Wang and colleagues as-

sessed the functions of six different CDPKs including CDPK4, 

CDPK4A, CDPK5, CDPK6, CDPK8, and CDPK9 in T. gondii to 

determine are they suitable for designing as drug targets or 

not? For this purpose, clustered regularly interspaced short 

palindromic repeats/Cas9 system was employed to disrupt 

the CDPKs genes by insertion of dihydrofolate reductase and 

ultimately the six knockout (KO)-CDPK strains were success-

fully identified by indirect immunofluorescence. The findings 

revealed a lack of considerable difference between the six 

KO-CDPK strains and wild-type strain in virulence and the 

lytic cycle in terms of invasion, egress, and replication. The 

authors have highlighted “these CDPKs seems not pivotal for 

parasite lytic cycle and also not virulence factors for mice, 

probably they contribute in other functions of parasite [61].

CDPK DNA Vaccine

DNA vaccination as a robust method have become a major 

focus with many advantages compared to traditional vaccines 

in several parameters as follows [62-64]:

  ‒ �Design (more rapid design as well as can be rapidly iso-

lated and cloned)

  ‒ �Versatility (ease in adapting or improving plasmid sequence, 

capability to deliver multi-antigen vaccines into a host 

only with a single dose, ease in formulation with different 

adjuvants)

Table 1. The main features and functions of some CDPKs

Antigen Features or major effect on host Reference

CDPK1 Conserved among apicomplexans [56,60,65,66]
Conserved between type I and type II Toxoplasma gondii strains
Express in the bradyzoite and tachyzoite stages
A key regulator of calcium dependent exocytosis in T. gondii
Acts in calcium-dependent secretion of specialized organelles called micronemes, which play a main role in parasite motility, host-cell 

invasion, and egress
A promising drug target for the therapy of toxoplasmosis 
Localize in the cytoplasm but also found in the nucleus 

CDPK2 Plays a critical role in amylopectin metabolism [47,58]
The deletion of CDPK2 gene can lead to massive ultrastructural changes and loss of viability in the bradyzoite stage

CDPK3 Important in the calcium-dependent egress of parasites from host cells, but not in motility or host cell invasion [52,67,68]
Localized to the parasite periphery in intracellular and extracellular parasites and partially to the apical end of the intracellular parasite
Control the calcium-dependent permeabilization of the PVM and regulate microneme secretion
Critical for formation of latent stages in the brains of mice
Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle
Capable of phosphorylating T. gondii aldolase 1, an important component of the gliding motility machinery of this parasite

CDPK6 Twenty-six post-translational modification sites were identified in the protein [66]
The secondary structure showed that 58.35% amino acids of TgCDPK6 are exposed to the solvent interface

CDPK7 Crucial for parasite division, growth, and proper maintenance of centrosome integrity [57]
Contribute in early steps of parasite division and is crucial for parasite survival 
Broadly conserved across the apicomplexa phylum 
Depletion of TgCDPK7 led to a reduced number of vacuoles undergoing division 
TgCDPK7 knockdown affects the orchestrated division of parasites and the polarity of the budding 
TgCDPK7 knockdown affects the partitioning and the number of centrosomes during parasite division 

CDPK, calcium-dependent protein kinase; PVM, parasitophorous vacuole membrane.
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  ‒ �Production (cost effective, ease of production, capable of 

large-scale production, appropriate protein folding for 

correct epitope expression)

  ‒ �Transport (stability at room temperature and no need to 

cold chain)

  ‒ �Safety (cannot revert to the pathogenic form, safer than 

live or attenuated vaccines)

  ‒ �Immune responses (boost the expression of an encoded 

vaccine antigen lwithin host cells, able to induce a long-

lasting immunity, elicits efficient and specific humoral 

and cellular immune responses, provide immune prim-

ing but poor immune boosting)

  DNA vaccination recruits the plasmid vector in order to 

transfer and expression of the target gene and strongly elicit 

specific humoral and cell-mediated immune responses [34,62]. 

After the inoculation, the DNA enter to the cell cytoplasm 

then express the encoded protein target inside the host cell 

[62]. In general, during the course of toxplasmosis both cell-

mediated and humoral immune responses are elicited, so 

that the secretion of anti‒T. gondii specific antibodies hamper 

the attachment of parasites to related host cell receptors. Fur-

thermore, the specific-IgG antibodies have a critical role in 

restriction of toxoplasmosis through activation of the classi-

cal complement cascades, enhancement of killing activity of 

macrophages to eliminate the intracellular parasites and oth-

er roles against this opportunistic agent [69]. Besides, the 

production of interferon-γ (IFN-γ) as the adaptive cellular 

immunity, limit the growth of T. gondii in different infection 

stages [70,71]. Notably, protection against T. gondii infection 

predominantly is developed through both types of CD8+ and 

CD4+ T cells as cell-mediated immunity arms. Although, as it 

is well established CD8+ T cell and IFN-γ are obvious to be 

more fundamental to restrict toxoplasmosis [33]. Recently, 

was shown that DNA vaccination with CDPK1, CDPK2, CD-

PK3, and CDPK5 dramatically increased the number of CD4+ 

and/or CD8+ T cells in immunized mice [52,54-56,58].

  There are several limitations affecting the immune efficacy 

of DNA vaccines, which occasionally confined the immuno-

genicity of them such as dosages of inoculum and the deliv-

ery route [62]; however, 100 µg of the plasmid are routinely 

injected intramuscularly in mice [52,54-56,58]. It should be 

noted, following the inoculation, the naked DNA poorly dis-

tributed and rapidly degraded by lysosomes and DNAses, 

thereby, reduce the expression of plasmid DNA [72-74]. Thus, 

the use of adjuvants as a robust strategy has become popular 

because of the following reasons [62,63,74,75]:

  ‒ Augment the immunogenicity of DNA vaccines

  ‒ Boost DNA delivery

  ‒ �Increased the magnitude/duration of plasmid DNA ex-

pression 

  ‒ �Recruit the immune cells to the site of inoculation, there-

by increases the immunostimulatory features of plasmid

  ‒ �Help the uptake of DNA into host cells or by professional 

antigen-presenting cells (APCs)

  ‒ �Protect plasmid against degradation by DNAses

  An increasing number of papers have demonstrated that 

the use of genetic adjuvants such as cytokines (IFN-γ, inter-

leukin [IL]-7, IL-12, IL-15, IL18, IL-21, etc.), chemokines, co-

stimulatory molecules (B7-1, B7-2, etc.), etc. strongly aug-

ment the protective efficacy of DNA vaccine [33,34,54,56,76-

79]. Genetic adjuvants can be either encoded on a separate 

vector, or expressed on the same vector as the antigen and 

thereafter co-administrated with the vaccine [34,62,63,75].

  CDPK1 as an essential regulator of calcium-dependent 

exocytosis in T. gondii is conserved between both type I and 

type II T. gondii strains which expressed in the bradyzoite and 

tachyzoite stages [56,60]. TgCDPK1 was localized in the cyto-

plasm, but also found in the nucleus [65]. It has been shown 

that Kunming mice immunized with pVAX-CDPK1 survived 

for a significant longer time post intraperitoneally challenge 

with 1×103 tachyzoites of RH strain. Also, the immunized mice 

showed a mixed Th1/Th2 response with the predominance 

of IgG2a levels over IgG1, increased secretion of IFN-γ, IL-2, 

IL-4, and IL-10 cytokines, enhanced splenocyte proliferation 

and percentages of CD4+ and CD8+ T cells as well as reduction 

of brain cyst load, compared with control groups (p<0.05) 

[54,56]. Notably, co-delivery of pVAX/IL-21/IL-15 or pVAX/

IL-7/IL-15 plus pVAX-CDPK1 considerably boosted the above-

mentioned outcomes in mice (p<0.05) [54,56]. The co-injec-

tion of plasmids encoding cytokine is one the best approach-

es to boost the efficiency of DNA vaccines that has several ad-

vantages, including ease of cloning process, simplicity, and 

cost benefits [63]. For instance, IL-7 and IL-15 are dominantly 

involved in the generation and homeostasis of memory T cells 

[80]. Besides, it is well established that signaling by both IL-7 

and IL-15 cytokines could synergize to boost the generation 

of memory T cells [81]. As common g chain cytokines, includ-

ing IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, recent papers have 

reported co-administration of pVAX/IL-21/IL-15 plus pVAX-

MIC8 or pVAX-CDPK1 promoted protective immunity of DNA 

vaccines expressing MIC8 and CDPK1 [56,82]. More examples 

of immunization experiments with DNA vaccines against T. 
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with rROP18+rCDPK6+ PLG (p<0.001). Moreover, increased 

percentage of CD4+ and CD8+ T cells were recorded in mice 

immunized with the various protein vaccines (especially in 

protein–PLG groups). The brain tissue cyst burden in mice 

immunized with the various proteins was significantly re-

duced than those in control groups (p<0.001), ranging from 

47.7% to 73.6%. The authors concluded that “the use of PLG is 

superior than Montanide 206, because of encapsulated pro-

teins into PLG conferred immunity to T. gondii for an extend-

ed period. However, evaluation of the potentcy of PLG in the 

development of a vaccine against toxoplasmosis should be 

further studied in future” [53]. More details can be found in 

Table 2. Application of PLG on other antigens frequently have 

been tested and showed acceptable outcomes [90-92]. For in-

stance, rROP18 encapsulated in nanoparticles with polylac-

tide-co-glycolide acid (rROP18+PLGA), significantly increased 

the values of IgG antibody, elicited Th1-type responses with 

the predominance of IgG2a over IgG1, and enhanced intesti-

nal IgA values [91]. In another investigation, rROP18 and 

rROP38 encapsulated into PLG elicited both humoral and 

cell-mediated immune responses in Kunming mice in terms 

of total IgG titers (p<0.01), IgG2a subclass (p<0.01), IFN-γ cy-

tokine (p<0.01) and mixed Th1/Th2 immunity responses 

(but bias to Th1). Also, the formulation of mixed antigens 

(rROP38+rROP18+PLG) boosted the efficacy of vaccine [90]. 

The above findings suggest that PLG could be a promising 

novel adjuvant with preserving the protein immunogenicity 

for longer duration.

CDPK Peptide Vaccine

More recently, bioinformatics as a novel interdisciplinary sci-

ence has become favorite which analyze the biological data 

using defined technologies and algorithms from computer 

sciences, mathematics, statistics, physics, biology, and medi-

cine [93]. This new science has several advantages in com-

parison to traditional methods such as satisfactory precision 

and accuracy, relatively inexpensive and affordable, etc. Now-

adays, Bioinformatics is extensively used to predict protein 

structures, biological characteristics, functions, epitopes, and 

design of new vaccines [93-95]. The prediction of epitopes is 

highly fundamental to assess the immunogenicity of an anti-

gen in design of reverse vaccines. Accordingly, bioinformatics 

softwares and online databases could help scientists to pre-

dict and recognize the potential B and T cell epitopes [93,95,96]. 

In this regards, Zhang et al. (2014) [66] designed an investiga-

gondii have been listed in Table 2.

Recombinant CDPK Protein Vaccine

During recent decades, continuous attempts of researchers 

have revealed great achievements to clarify the different per-

spectives of the cell and molecular biology of T. gondii [49,57, 

60,67,68,83-86]. These efforts resulted great motivation in the 

current focus on vaccine development against chronic and 

acute toxoplasmosis, based on the distinctive subcellular 

components of the parasite [28-32,34]. Recombinant subunit 

vaccines provide an alternative way for the development of 

vaccine candidates in both animals and men. These vaccine 

types can induce humoral and cellular immune responses as 

well as they are very suitable for large-scale production [30,31]. 

Application of traditional and genetic adjuvants has become 

popular, due to their potential capability in augmenting spe-

cific and long-lasting protective immunity [75,87].

  Owing to proteolytically degradation of recombinant pro-

teins, presence of a proper delivery system is necessary to 

protect them from degradation [88]. Polylactide-co-glycolide 

(PLG) is a biodegradable and biocompatible polymer which 

extend the protein releasing period to induce a long-lasting 

immune response as well as reduce the protein degradation. 

Besides, PLG by increasing the uptake of antigen and its pre-

sentation by APCs would augment the protective immunity. 

This biodegradable polymer encapsulates the recombinant 

subunit vaccines, which maintain their antigenicity to boost 

the efficacy [53,89]. In this context, Zhang et al. (2016) [53] de-

signed a comprehensive study on two recombinant proteins 

rROP18 and rCDPK6 adjuvanted with PLG and Montanide 

ISA 206 VG (206). In brief, the mice were vaccinated subcuta-

neously with different proteins (with or without adjuvant) and 

then challenged intraperitoneally with 1×103 tachyzoites of 

RH strain (type I) and orally with 10 cysts of the PRU strain 

(type II) for acute and chronic infection, respectively. The find-

ings revealed both recombinant protein vaccines promoted 

specific humoral and cellular Th1-biased immune responses, 

high production of IFN-γ and IL-2 cytokines with strong lym-

phocyte proliferative responses. The titers of IgG values in 

Kunming mice vaccinated with rROP18+PLG or rCDPK6+ 

rROP18+PLG were dramatically higher than rROP18 or rCDPK6+ 

rROP18 (p<0.01) groups, however, were not dramatically dif-

ferent from those mice injected with various proteins-mon-

tanide 206 adjuvant (p>0.05). Also, the highest splenocyte 

proliferative responses were observed in the mice vaccinated 
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tion using multiple Bioinformatics approaches on TgCDPK6 

protein to identify potential antigenicity, signal peptides, to-

pological structures, epitopes, and other chemical and physi-

cal characteristics. They showed 26 post-translational modi-

fication sites in the protein. In addition, the secondary struc-

ture of CDPK6 showed that nearly 58% of its amino acids are 

exposed to the solvent interface. The prediction of functional 

domains revealed TgCDPK6 possess seven protein kinase C 

phosphorylation sites and one protein kinase adenosine tri-

phosphate (ATP)-binding region. In the other hand, the high 

hydrophilic domains were distributed in amino acid posi-

tions 21-59, 68-81, 156-205, 245-271, 280-294, 297-324, 334-

356, 367-393, 474-498, and 543-553. The advanced structure of 

TgCDPK6 was developed by a homology modeling method 

and then validated by PROCHECK, represented that most 

amino acid residues were in the most favored regions. In the 

study, ten potential epitopes were recognized. The authors 

have concluded that “TgCDPK6 could be a highly potent DNA 

vaccine candidate against T. gondii; however, more experi-

mentally studies are needed in future” [66]. It should be not-

ed, a recent study by the same authors from the same lab dem-

onstrated satisfactory outcomes following vaccination of Kun-

ming mice with the formulation of rCDPK6+rROP18+PLG [53].

  There is a lack of study regarding epitope-based vaccines 

on CDPKs. Previously was shown that multi-epitope-based 

vaccines, strongly elicited both humoral and cellular immune 

responses, thereby significantly prolonged survival time along 

with reduction of brain cyst burden in immunized mice [97-

100]. Multi-epitope-based vaccines, carry the potential B and 

T cell epitopes simultaneously that relevant with the targeted 

antigens or helper epitopes. Also, these vaccines with reduc-

tion of undesirable factors lead to improve the highly specific 

responses and better protection [95,98]. 

Conclusion 

T. gondii can infect a wide spectrum of warm-blooded verte-

brate species. Toxoplasmosis predominantly is asymptomatic 

in normal persons, while may display severe complications 

with life-threatening outcomes in immunocompromised in-

dividuals. Since current drugs have no effect on the encysted 

parasites, thus, discover of an appropriate vaccine has high 

priority and urgently required to prevent and control toxo-

plasmosis, because of the heavy burden of chronic infection 

worldwide. The use of DNA vaccines expressing CDPK1, CD-

PK3, and CDPK5, prolonged the survival time as well as re-

duced the percentage of brain tissue cysts (up to 73.5% reduc-

tion) in mice. Nevertheless, these experiments failed to show 

complete protection (Table 2). The use of live-attenuated vec-

tors as vehicles and prime-boost regimens are other powerful 

strategies in vaccine design studies which should be paid more 

attention in future investigations. The complex life cycle of T. 

gondii indicates the presence of a plurality of antigenic epit-

opes. As confirmed earlier, vaccination with stage-specific 

antigens often lead to stage-limited protection. Hence, those 

antigens that are expressed in various stages of Toxoplasma 

life cycles, confers more protective immunity against parasite 

infection [95,101]. Since the immunogenicity of the predicted 

sequences by bioinformatics softwares should be confirmed 

in suitable animal models, thus, design of investigations with 

both in vivo and in silico methods is highly recommended to 

assess the potency of vaccine candidates for the future. Col-

lectively, valuable finding has been gained that gives promis-

ing perspectives. Notably, various limitations may affect the 

outcomes of vaccine studies, including inadequate evalua-

tion criteria, unsuitable vaccination protocol, the strain of T. 

gondii, the vaccine constructs, the delivery route, dosage of 

inoculum, various mouse models, and so on. The future sur-

veys must be covered all above mentioned aspects to mini-

mize the faults. Besides, optimized vaccination protocol and 

use of different types of delivery systems, genetic and/or non-

genetic adjuvants undoubtedly would influence the results.
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