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Molecular and genomic studies have shown the presence of a large number

of SPX gene family members in plants, some of which have been proved to

act in P signalling and homeostasis. In this study, the molecular and

evolutionary characteristics of the SPX gene family in plants were compre-

hensively analysed, and the mechanisms underlying the function of SPX
genes in P signalling and homeostasis in the model plant species Arabidopsis
(Arabidopsis thaliana) and rice (Oryza sativa), and in important crops, includ-

ing wheat (Triticum aestivum), soya beans (Glycine max) and rapeseed

(Brassica napus), were described. Emerging findings on the involvement

of SPX genes in other important processes (i.e. disease resistance, iron

deficiency response, low oxygen response and phytochrome-mediated

light signalling) were also highlighted. The available data suggest that

SPX genes are important regulators in the P signalling network, and may

be valuable targets for enhancing crop tolerance to low P stress. Further

studies on SPX proteins should include more diverse members, which

may reveal SPX proteins as important regulatory hubs for multiple processes

including P signalling and homeostasis in plants.
1. Introduction
The SPX family was named after SYG1, PHO81 and Xpr1, the first three SPX
gene members identified [1]. SYG1 and PHO81 encode yeast gpa1 suppressor

and cyclin-dependent kinase, respectively, while Xpr1 codes for the xenotropic

and polytropic retrovirus receptor 1 in humans. More and more studies have

shown that SPX genes are involved in phosphorus (P) signalling and homeosta-

sis and are prevalent in plants, and phosphate transport is impaired if the SPX

domain is mutated [2]. P is an indispensable macroelement required for normal

plant growth and development, and P content is quite high in plant tissues. P is

not only an important component of membranes and nucleic acids, but also plays

important roles in diverse physiological processes, including photosynthesis,

enzyme activity regulation, respiration, signal transduction, oxidation–

reduction reactions, energy metabolism and carbon metabolism [3–6]. Plants

absorb P mainly from the soil through their roots [7,8]. Soil P exists primarily

in the forms of calcium, iron and aluminium salts, and organic molecules,

which are difficult for the roots to absorb [9]. This decreases the bioavailability

of P, leading to an available P content in the soil that is far lower than that

required for normal plant growth [10–12]. In plant cells, P concentration in

the cytosol is approximately 60–80 mM [13], which is much higher than the

concentration of available P in the soil (less than 10 mM) [14]. Thus, plants

are usually under low P conditions. The phenotypic symptoms of P deficiency

are mainly dark-green leaf colour, reduced elongation rate of shoot and

decreased leaf size [15]. To improve crop yield in agricultural production, a
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large quantity of P fertilizers is often applied to solve the

problem of P deficiency. However, this approach can cause

not only water eutrophication but also overexploitation and

consumption of phosphate ore, which is non-renewable.

Solving this problem is critical to environmental protection

and sustainable development. To adapt to P-deficient

environments, plants undergo phenotypic changes in the

root system to increase the absorption of P from the soil

[16–19]. A series of P transport mechanisms at the molecular

level are gradually established to overcome P starvation and

to maintain P homeostasis, in which phosphate transporter

is the basic effector involved in P uptake, transfer and stor-

age [20,21]. These mechanisms are controlled by complex

and sophisticated molecular regulatory networks. Recently,

many genes have been identified and functionally linked to

these molecular regulatory networks, including various

protein-encoding genes and non-coding RNA genes [22].

Hence, the discovery of genes conferring low P tolerance

has great importance.

In this study, the structural and evolutionary characteristics

of the SPX gene family in plants were systematically analysed,

the latest research progress on SPX gene functions was

summarized and the mode of action of these genes in the

P regulatory signalling network was discussed.
2. Structural characteristics of SPX genes
and proteins in plants and their
relationships with phosphorus
metabolism

The SPX domain found in eukaryotic proteins is rather

conserved and has hydrophilic properties [23]. It is often

located at the N-terminus of eukaryotic proteins [23]. SPX

domain has an average length of 165 amino acids and can

be divided into three subdomains with 30–40 amino acids in

each (figure 1). They are separated from each other by low

similarity regions [24]. In plants, SPX domains can be grouped

into several distinct subfamilies: SPX proteins carrying only

SPX domain, SPX–EXS proteins containing SPX and an EXS

(ERD1, XPR1 and SYG1) domain, SPX–MFS proteins with

SPX and the major facility superfamily (MFS) domain and

SPX–RING proteins containing SPX and the RING-type zinc

finger domain [25]. Many studies have shown that the SPX

domain is closely related to P signalling and plays an important

role in maintaining P homeostasis [22,26–28].

The SPX domain can indicate the phosphate status in

fungal, plant and human cells. SPX domain-containing pro-

teins are indispensable for the absorption, transport, storage

and signal transduction of inorganic P in eukaryotes. Wild

et al. [2] studied the ligand of the SPX domain and suggested

that the domain provided a binding surface for small mol-

ecules (inositol polyphosphate signalling molecules, InsPs).

In this way, the balance of P in plant cells can be regulated

by the binding of different InsPs to SPX. In phosphate-

deficient plant cells, InsPs bind to SPX domains, being able

to interact with several other proteins involved in the regu-

lation of P signalling in plants [2,29]. If the SPX domain is

mutated, then phosphate transport capacity is impaired [2],

highlighting the unique importance of the SPX domain in

P metabolism.
P exists in different molecular forms in plants to serve

their needs at different times [30]. One form is inorganic

polyphosphate (polyP). PolyP includes hundreds of types

of phosphoric anhydrides, which can be hydrolysed to meet

the needs of various molecular processes [31–33]. In yeast,

the vacuolar transporter chaperone (VTC) complex can

synthesize polyP [34]. The VTC is a fairly large protein

complex (Vtc1–5) located on the vacuole membrane [35,36].

Approximately 80% of VTC proteins contain an SPX domain,

which may contribute to P homeostasis in the cells [5].

Additionally, an important role for the phosphate starvation

response 1 (PHR1) protein has been identified in the P signal-

ling network. This MYB-like transcription factor is

homologous to phosphorus starvation response 1 (PSR1),

which participates in the P sensing process in Chlamydomonas
reinhardtii [37,38]. PHR1 regulates the expression of AtACP5,

AtIPS1, PHT1.1 and RNS1 [39,40], as well as the expression

of several PSR genes, including microRNA399 and the SPX
genes [38], by binding to their promoters through the cis-
element PHR1-binding sequence (P1BS; GNATATNC) [40–42].
3. Evolutionary analysis of SPX gene family
in plants

Through analysis of existing plant genomic sequences, 20

SPX gene family members have been identified in Arabidop-
sis, including four SPX genes whose deduced proteins

contain only the SPX domain [26]. Meanwhile, 15 SPX gene

family members are identified in rice, including six SPX genes

whose products carry only the SPX domain [24]. Numerous

SPX gene family members also exist in the genomes of

legumes and other important crops [43,44]. A phylogenetic

tree was constructed for some of the important SPX genes

using the multi-sequence alignment generated by CLUSTALW

and the neighbour-joining method with 1000 bootstrap repli-

cates in MEGA software (figure 2). The results showed

evolutionary divergence in SPX genes, and the compared

genes were clustered into five types of sub-structures (num-

bered I, II, III, IV and V). Most of the SPX genes fell into

types I and IV, whereas no more than five genes fell into

each of the other three types. GmSPX8, GmSPX5, OsSPX4,

OsSPX6 and TaSPX129 genes exhibited the most rapid

evolution for each type. The paralogues of these genes

included AtSPX1/AtSPX2, GmSPX2/GmSPX4, GmSPX5/

GmSPX9, OsSPX1/OsSPX2, GmSPX1/GmSPX10 and

OsSPX5/OsSPX6. Each gene may evolve under different

evolutionary pressure and may possibly acquire new function

during the course of evolution.

A multiple sequence alignment of the SPX domains was

analysed (figure 3). The result showed a high degree of simi-

larity in the SPX domains in Arabidopsis, rice, common beans,

soya beans, wheat and Brachypodium. The SPX domains in

TaSPX129 and BdSPX129 were of SPX–MFS type, and have

an increased length, whereas the remaining SPX domains

ranged from 200 to 400 amino acids. Amino acid point

mutations are the main sources of variation, which may affect

the role of SPX genes in P regulatory networks in plants.

Notably, the SPX domains in TaSPX129 and BdSPX129 had

many insertions (figure 3); whether this is caused by the pres-

ence of an additional MFS domain is a matter for further

study.



average SPX domain-containing protein length: 640 aa (240–1220 aa)
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Figure 1. Main structural features of SPX proteins. (a) The N-terminal SPX domain can be divided into three well-conserved subdomains separated by low similarity
regions, with 30 – 40 amino acids in each subdomain (Secco et al. [24]). (b) Crystal structure of the SPX domain in the Vtc4 protein of Chaetomium thermophilum in
complex with inositol hexakisphosphate (InsP6). Classification: inositol phosphate-binding protein. SPX helical bundles provide a positively charged ligand-binding
surface (Wild et al. [2]; http://www.rcsb.org/pdb/explore.do?structureId=5IJP).
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4. Research progress on the functional
analysis of SPX genes in plants

A large number of SPX domain-containing proteins have

been identified in plants [11]. Here, SPX proteins refer to

the proteins that contain only the SPX domain. Owing to

their presence in different subcellular structures, they may

have different functions in the P signalling network. Here,

we summarize the studies on the genes whose proteins con-

tain only the SPX domain, including SPX1–4 in Arabidopsis,

SPX1–6 in rice, SPX1–10 in soya beans, SPX1–3 in

common bean and TaSPX129 in wheat (table 1).
4.1. Functional analysis of SPX genes in Arabidopsis
Twenty SPX domain-containing proteins were found in

Arabidopsis, among which four proteins contained only the

SPX domain (AtSPX1–AtSPX4) [26]. AtSPX1, localized in

the nucleus, is a P-dependent suppressor of AtPHR1 in

Arabidopsis [53]. AtPHR1 overexpression results in an increase

in P concentration in the shoot and induces the expression of

a series of Pi starvation-induced (PSI) genes that encode

phosphate transporter, phosphatase or RNase [54,55]. Co-

immunoprecipitation experiment showed that the AtSPX1/

AtPHR1 interaction was strongly dependent on P level.

AtSPX1 is a competitive suppressor that binds AtPHR1 through

its recognition sequence. The working model in figure 4

depicts the interactions of AtSPX with AtPHR1 in response

to cellular Pi concentration for PSI transcription. Under

high P conditions, AtSPX1 has a high binding affinity for

AtPHR1, and thus the process by which AtPHR1 regulates

PSI genes through the P1BS is inhibited, resulting in a

decrease in PSR gene expression. Under P deficiency con-

ditions, the AtSPX1/AtPHR1 interaction weakens, thus

facilitating the binding of AtPHR1 to the P1BS to regulate

PSR gene expression [49].

In Arabidopsis, no significant phenotypic differences have

been found among the single-gene knockout mutants of

Atspx1, Atspx2 and Atspx4 under P-sufficient or -starvation

conditions. However, in plants with AtSPX1 overexpression,

the expression levels of some PSI genes (i.e. ACP5, PAP2 and

RNS1) are significantly increased regardless of P concen-

tration, thus suggesting that AtSPX1 may function in the

transcriptional regulation of P starvation. Additionally,
inhibition of AtSPX3 through RNAi can change the pheno-

types and gene expression levels under P-starvation

conditions, rendering an increase in P concentration in the

shoot tissues and a reduced P concentration in the roots

[26,43]. The expression levels of AtPHT1–4, AtPHT1–5,

AtACP5, AtRNS and AtAT4 in spx3 deletion mutants are

increased irrespective of P concentration [43], indicating

that AtSPX3 is a negative regulator of the signalling process

of P starvation. Collectively, these results indicate that SPX

proteins have functional redundancy with one another and

can serve as an important role in regulating Pi signalling

and homeostasis in plants.
4.2. Functional analysis of SPX genes in rice
P is an important nutrient element that limits the yield of rice.

Studies of P relevant genes in rice, especially SPX genes, can

potentially aid rice yield improvement. A total of 15 SPX

domain-containing proteins have been identified in rice, of

which only six are SPX proteins (OsSPX1–OsSPX6) [5].

OsSPX1 inhibits P uptake and P-starvation signalling through

negative feedback regulation [27,55]. OsSPX1 is induced

by P starvation in the roots, and inhibition of OsSPX1 by

RNAi leads to an excessive accumulation of P and thus

induces severe toxicity. This phenotype is similar to that

observed in the plants overexpressing OsPHR2 and the pho2
mutant. OsPHR2 overexpression leads to increased PSI gene

expression, including IPS1 and PT2, which promotes exces-

sive P absorption and accumulation and results in leaf

necrosis. Quantitative polymerase chain reaction (qRT-PCR)

assay showed that OsSPX1 expression was strongly induced

in the plants with OsPHR2 overexpression and the pho2
mutant, suggesting that OsSPX1 may function downstream

from PHO2 and OsPHR2. Wang et al. [27] analysed the

expression levels of 10 genes involved in the rice P-starvation

signalling pathway. OsPT2 and OsPT8 were significantly

induced in OsSPX1 RNAi plants, pointing to increased P

transport and accumulation. By contrast, OsSPX1 overexpres-

sion inhibited the expression of 10 phosphate starvation-

mediated genes, including IPS1, IPS2, OsPAP1, OsSQD2
(sulfo quinovosyl diacylglycerol 2), miR399d, miR399j, OsPT2,

OsPT3, OsPT6 and OsPT8. However, in the double mutant

plants with overexpression of OsPHR2 and OsSPX1, P con-

centration and PSR gene expression levels were basically

the same as those in wild-type plants, which indicated that

http://www.rcsb.org/pdb/explore.do?structureId=5IJP
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Figure 2. Phylogenetic tree of SPX domain-containing proteins from different plant species. The tree was constructed with the neighbour-joining method by MEGA
with 1000 bootstrap replicates. At, Arabidopsis thaliana; Os, Oryza sativa; Pv, Phaseolus vulgaris; Gm, Glycine max; Ta, Triticum aestivum; Bd, Brachypodium
distachyon.
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OsSPX1 was a negative regulator of OsPHR2-mediated signal

transduction. Previous studies found that overexpression of

OsSPX1, OsSPX2, OsSPX3, OsSPX4 and OsSPX5 attenuated

the phenotype of OsPHR2 overexpression [45–47,53]. Thus,

OsSPX1, OsSPX2 and OsSPX4 may interact with OsPHR2

and inhibit its binding to the P1BS cis-acting element

(figure 4). The interaction between SPX proteins and

PHR1/2 was strongly dependent on P concentration [45,47].

Knockout of OsSPX1, OsSPX2 and OsSPX4 results in P

accumulation in the shoot and significant leaf tip necrosis

[45,47]. P accumulation and leaf necrosis also occurred in

the Osspx3 and Osspx5 double mutant, and the expression

levels of PSI genes, including IPS1, miR399, PT2, miR827,

PAP10 and SQD2, were significantly upregulated [46]. This

observation indicated that OsSPX3 and OsSPX5 were hom-

ologous and that they responded to P stress at the
transcriptional and post-transcriptional levels. Collectively,

the data gathered so far support the function of the studied

OsSPX genes in rice tolerance to P deficiency by regulating

P acquisition and its transport from roots to leaves.

4.3. Functional analysis of SPX genes in legumes
Phylogenetic analysis demonstrated that GmSPXs 1–10 can be

divided into three groups [43]. Quantitative PCR assay showed

that the expression of these genes was significantly increased

under low P conditions and decreased rapidly one day after

P supplementation [43]. The expression of these genes was

highly sensitive to low P conditions. Overexpression of

GmSPX3 led to increased P concentration in both leaf and

root tissues, and increased transcriptional levels of seven PSI

genes in the root hairs, under high P conditions [44]. Analysis



subdomain 1 subdomain 2 subdomain 3

Figure 3. Multiple alignment of the SPX domains in different SPX proteins. The multiple alignment was generated using DNAMAN with different colours repre-
senting different homology of amino acids. The three subdomains are distinguished by coloured brackets. At, Arabidopsis thaliana; Os, Oryza sativa; Pv, Phaseolus
vulgaris; Gm, Glycine max; Ta, Triticum aestivum; Bd, Brachypodium distachyon.
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of GmSPX1 overexpression in Arabidopsis spx3 mutant showed

that GmSPX1 negatively regulated many PSR genes, including

AtPHT1–4, AtPHT1–5, AtACP5, AtRNS and AtAT4, in a P level-

dependent manner [43]. Furthermore, GmSPX1 interacted with

a newly identified P starvation-induced transcription factor

GmMYB48, and this interaction may represent a potential sup-

pressor module of the P signalling network in soya bean [43].

Three SPX proteins (PvSPX1–PvSPX3) have been found in

common bean (Phaseolus vulgaris), and their expression levels

were significantly increased in roots and leaves under P-star-

vation conditions [44]. PvSPX1 is localized in the nucleus and

exhibits a more sensitive and rapid response to P starvation.

Overexpression of PvSPX1 resulted in an increase in P concen-

tration in root tissues, a configuration change of root hairs,

growth inhibition of the main root and an increase in the

number of lateral roots, accompanied by upregulated transcrip-

tion of 10 PSR genes [44]. Further studies showed that PvPHR1
overexpression increased PvSPX1 transcription level, and thus

PvSPX1 may act downstream from PvPHR1 [44,50].
4.4. Functional analysis of SPX genes in wheat
P deficiency is also a primary factor constraining the yield of

wheat [15]. Therefore, identification of P-regulated genes and

breeding of low P-tolerant cultivars are of prime importance

to increasing global wheat productivity without excessive use

of P fertilizers. Owing to the possession of a complex hexaploid
genome, functional analysis of P-regulated genes (including

SPX members) in common wheat (2n ¼ 6x¼ 42) is lagging

behind that in Arabidopsis and rice. Shang et al. [56] found

that TaSPX3 was strongly induced by low P stress, but

became significantly downregulated when P supply was

restored; the expression profile of TaSPX3 differed among cul-

tivars, indicating that the mechanism of low P stress response

may vary among different wheat genotypes. Shukla et al. [57]

demonstrated that the relative transcriptional level of TaSPX1
was higher in the aleurone than in the endosperm in develop-

ing wheat grains, which paralleled the accumulation of more P

in aleurone tissues.
4.5. Functional analysis of SPX genes in rapeseed
Du et al. [11] analysed 69 SPX gene family members in rape-

seed (Brassica napus) and found that the expression levels

of different BnaSPX genes differed under P-starvation

conditions. The expression levels of nine genes in the SPX
subfamilies were significantly induced by P starvation and

rapidly declined upon P supplementation. Analysis of two

BnaSPX1 genes (i.e. BnaA2.SPX1 and BnaC3.SPX1) in trans-

genic Arabidopsis revealed functional difference between

them: the transgenic lines of BnaA2.SPX1, but not those of

BnaC3.SPX1, showed retarded growth and higher sensitivity

to P deficiency when compared with wild-type control [11].

In two other studies, BnSPX3;1 and BnSPX3;2 were found
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Figure 4. Interaction of SPX1, SPX2 and SPX4 with PHR under high or low P conditions. Under high P conditions, SPX1 and SPX2 in the nucleus and SPX4 in the
cytoplasm bind PHR with high affinity, thus inhibiting PHR binding to the P1BS motif in the promoters of PSI genes and leading to repression of the transcription of
PSI genes, including SPX1 and SPX2. Under low P conditions, SPX4 in the cytoplasm is degraded via the 26S proteasome pathway, which promotes the targeting of
PHR to the nucleus, thereby releasing PHR to activate downstream PSI gene expression. Meanwhile, SPX1 and SPX2 in the nucleus interact with PHR at a low
affinity, which facilitates PHR to bind to the P1BS motif in the promoters of PSI genes, further enhancing the expression of PSI genes, including SPX1 and SPX2.
The thick arrow denotes enhancement. The dotted lines represent reduced effects. This working model is drawn based on the studies of SPX1, SPX2 and SPX4 genes
in Arabidopsis and rice (Lv et al. [47]; Wang et al. [27,28]; Zhou et al. [53]; Puga et al. [49]).
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specifically induced by P deficiency and that the induction

was rapid and reversible [58,59]. Unlike P deficiency, the

deprivation of other nutrients (N, K, S or Fe) did not affect

the transcription of BnSPX3;1 and BnSPX3;2, and thus the

two genes may be used as markers for assessing P-starvation

status in plants [58,59].
5. Discussion and prospects
The available studies clearly suggest that SPX proteins

occupy a very important position in the P signalling network,

which is tightly related to P uptake, transport, storage and

homeostasis. Most of the studied SPX genes are low P indu-

cible and can influence the transcription of downstream PSI

(PSR) genes by regulating PHR activity, likely via controlling

the movement of PHR from the cytoplasm to the nucleus and

by decreasing the binding of PHR to the P1BS cis-element

[45,47,49]. Not surprisingly, current understandings on SPX
genes are largely based on the data from model plants (i.e.

Arabidopsis and rice). The results from complex crop plants

(e.g. legumes, common wheat and rapeseed) are much less.

Nevertheless, they complemented and expanded the insights

obtained from model species, and yielded potential clues and

targets for enhancing crop tolerance to low P stress. Consid-

ering the urgent need in developing P-efficient cultivars

[60], more efforts should be devoted to studying SPX gene

functions in crop plants. The accumulation of ever more

genomic resources [61], as well as the rapid development of

gene-editing technologies for diverse plant species [62], will

facilitate such efforts.
Past investigations have mainly concerned relatively

simple SPX proteins, i.e. those with only one SPX domain.

Future studies should cover more complex SPX proteins

that carry extra domains in addition to SPX. The presence

of extra domains may confer multiple functions to SPX pro-

teins. This possibility may be illustrated by the analysis of

Arabidopsis PHO1 (AtPHO1), which carries the EXS domain

in addition to SPX. Although originally found required for

xylem loading of inorganic phosphate [63,64], recent investi-

gations have indicated the likely involvement of AtPHO1 in

the cross talk among P, sucrose and phytohormone signalling

pathways [65].

Future studies will also shed new light on the involve-

ment of SPX proteins in other vital plant processes. There is

emerging evidence for the participation of SPX domain-con-

taining proteins in disease resistance [52], iron deficiency

response [66], low oxygen response [67] and phytochrome-

mediated light signalling [68]. Considering the diverse and

fundamental roles of P in cellular organisms, it may not be

surprising to find that SPX proteins act as important regulat-

ory hubs for multiple processes including the fine tuning of

P signalling and homeostasis in plants.
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