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Molecular and genomic studies have shown the presence of a large number
of SPX gene family members in plants, some of which have been proved to
act in P signalling and homeostasis. In this study, the molecular and
evolutionary characteristics of the SPX gene family in plants were compre-
hensively analysed, and the mechanisms underlying the function of SPX
genes in P signalling and homeostasis in the model plant species Arabidopsis
(Arabidopsis thaliana) and rice (Oryza sativa), and in important crops, includ-
ing wheat (Triticum aestivum), soya beans (Glycine max) and rapeseed
(Brassica napus), were described. Emerging findings on the involvement
of SPX genes in other important processes (i.e. disease resistance, iron
deficiency response, low oxygen response and phytochrome-mediated
light signalling) were also highlighted. The available data suggest that
SPX genes are important regulators in the P signalling network, and may
be valuable targets for enhancing crop tolerance to low P stress. Further
studies on SPX proteins should include more diverse members, which
may reveal SPX proteins as important regulatory hubs for multiple processes
including P signalling and homeostasis in plants.

1. Introduction

The SPX family was named after SYGI, PHO81 and Xpr1, the first three SPX
gene members identified [1]. SYGI and PHOS81 encode yeast gpal suppressor
and cyclin-dependent kinase, respectively, while Xpr1 codes for the xenotropic
and polytropic retrovirus receptor 1 in humans. More and more studies have
shown that SPX genes are involved in phosphorus (P) signalling and homeosta-
sis and are prevalent in plants, and phosphate transport is impaired if the SPX
domain is mutated [2]. P is an indispensable macroelement required for normal
plant growth and development, and P content is quite high in plant tissues. P is
not only an important component of membranes and nucleic acids, but also plays
important roles in diverse physiological processes, including photosynthesis,
enzyme activity regulation, respiration, signal transduction, oxidation—
reduction reactions, energy metabolism and carbon metabolism [3-6]. Plants
absorb P mainly from the soil through their roots [7,8]. Soil P exists primarily
in the forms of calcium, iron and aluminium salts, and organic molecules,
which are difficult for the roots to absorb [9]. This decreases the bioavailability
of P, leading to an available P content in the soil that is far lower than that
required for normal plant growth [10-12]. In plant cells, P concentration in
the cytosol is approximately 60—-80 pM [13], which is much higher than the
concentration of available P in the soil (less than 10 M) [14]. Thus, plants
are usually under low P conditions. The phenotypic symptoms of P deficiency
are mainly dark-green leaf colour, reduced elongation rate of shoot and
decreased leaf size [15]. To improve crop yield in agricultural production, a
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large quantity of P fertilizers is often applied to solve the
problem of P deficiency. However, this approach can cause
not only water eutrophication but also overexploitation and
consumption of phosphate ore, which is non-renewable.
Solving this problem is critical to environmental protection
and sustainable development. To adapt to P-deficient
environments, plants undergo phenotypic changes in the
root system to increase the absorption of P from the soil
[16—-19]. A series of P transport mechanisms at the molecular
level are gradually established to overcome P starvation and
to maintain P homeostasis, in which phosphate transporter
is the basic effector involved in P uptake, transfer and stor-
age [20,21]. These mechanisms are controlled by complex
and sophisticated molecular regulatory networks. Recently,
many genes have been identified and functionally linked to
these molecular regulatory networks, including various
protein-encoding genes and non-coding RNA genes [22].
Hence, the discovery of genes conferring low P tolerance
has great importance.

In this study, the structural and evolutionary characteristics
of the SPX gene family in plants were systematically analysed,
the latest research progress on SPX gene functions was
summarized and the mode of action of these genes in the
P regulatory signalling network was discussed.

2. Structural characteristics of SPX genes
and proteins in plants and their
relationships with phosphorus
metabolism

The SPX domain found in eukaryotic proteins is rather
conserved and has hydrophilic properties [23]. It is often
located at the N-terminus of eukaryotic proteins [23]. SPX
domain has an average length of 165 amino acids and can
be divided into three subdomains with 30—40 amino acids in
each (figure 1). They are separated from each other by low
similarity regions [24]. In plants, SPX domains can be grouped
into several distinct subfamilies: SPX proteins carrying only
SPX domain, SPX-EXS proteins containing SPX and an EXS
(ERD1, XPR1 and SYG1) domain, SPX-MFS proteins with
SPX and the major facility superfamily (MFS) domain and
SPX-RING proteins containing SPX and the RING-type zinc
finger domain [25]. Many studies have shown that the SPX
domain is closely related to P signalling and plays an important
role in maintaining P homeostasis [22,26-28].

The SPX domain can indicate the phosphate status in
fungal, plant and human cells. SPX domain-containing pro-
teins are indispensable for the absorption, transport, storage
and signal transduction of inorganic P in eukaryotes. Wild
et al. [2] studied the ligand of the SPX domain and suggested
that the domain provided a binding surface for small mol-
ecules (inositol polyphosphate signalling molecules, InsPs).
In this way, the balance of P in plant cells can be regulated
by the binding of different InsPs to SPX. In phosphate-
deficient plant cells, InsPs bind to SPX domains, being able
to interact with several other proteins involved in the regu-
lation of P signalling in plants [2,29]. If the SPX domain is
mutated, then phosphate transport capacity is impaired [2],
highlighting the unique importance of the SPX domain in
P metabolism.

P exists in different molecular forms in plants to serve n

their needs at different times [30]. One form is inorganic
polyphosphate (polyP). PolyP includes hundreds of types
of phosphoric anhydrides, which can be hydrolysed to meet
the needs of various molecular processes [31-33]. In yeast,
the vacuolar transporter chaperone (VTC) complex can
synthesize polyP [34]. The VIC is a fairly large protein
complex (Vtcl-5) located on the vacuole membrane [35,36].
Approximately 80% of VIC proteins contain an SPX domain,
which may contribute to P homeostasis in the cells [5].
Additionally, an important role for the phosphate starvation
response 1 (PHR1) protein has been identified in the P signal-
ling network. This MYB-like
homologous to phosphorus starvation response 1 (PSRI),

transcription  factor is

which participates in the P sensing process in Chlamydomonas
reinhardtii [37,38]. PHR1 regulates the expression of AtACPS5,
AtIPS1, PHT1.1 and RNS1 [39,40], as well as the expression
of several PSR genes, including microRNA399 and the SPX
genes [38], by binding to their promoters through the cis-
element PHR1-binding sequence (P1BS; GNATATNC) [40-42].

3. Evolutionary analysis of SPX gene family
in plants

Through analysis of existing plant genomic sequences, 20
SPX gene family members have been identified in Arabidop-
sis, including four SPX genes whose deduced proteins
contain only the SPX domain [26]. Meanwhile, 15 SPX gene
family members are identified in rice, including six SPX genes
whose products carry only the SPX domain [24]. Numerous
SPX gene family members also exist in the genomes of
legumes and other important crops [43,44]. A phylogenetic
tree was constructed for some of the important SPX genes
using the multi-sequence alignment generated by CLustaALW
and the neighbour-joining method with 1000 bootstrap repli-
cates in MEGA software (figure 2). The results showed
evolutionary divergence in SPX genes, and the compared
genes were clustered into five types of sub-structures (num-
bered I, II, III, IV and V). Most of the SPX genes fell into
types I and IV, whereas no more than five genes fell into
each of the other three types. GmSPX8, GmSPX5, OsSPX4,
OsSPX6 and TaSPX129 genes exhibited the most rapid
evolution for each type. The paralogues of these genes
included AtSPX1/AtSPX2, GmSPX2/GmSPX4, GmSPX5/
GmSPX9, 0OsSPX1/0sSPX2, GmSPX1/GmSPX10 and
OsSPX5/0sSPX6. Each gene may evolve under different
evolutionary pressure and may possibly acquire new function
during the course of evolution.

A multiple sequence alignment of the SPX domains was
analysed (figure 3). The result showed a high degree of simi-
larity in the SPX domains in Arabidopsis, rice, common beans,
soya beans, wheat and Brachypodium. The SPX domains in
TaSPX129 and BdSPX129 were of SPX-MFS type, and have
an increased length, whereas the remaining SPX domains
ranged from 200 to 400 amino acids. Amino acid point
mutations are the main sources of variation, which may affect
the role of SPX genes in P regulatory networks in plants.
Notably, the SPX domains in TaSPX129 and BASPX129 had
many insertions (figure 3); whether this is caused by the pres-
ence of an additional MFS domain is a matter for further
study.
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Figure 1. Main structural features of SPX proteins. (a) The N-terminal SPX domain can be divided into three well-conserved subdomains separated by low similarity
regions, with 30—40 amino acids in each subdomain (Secco et al. [24]). (b) Crystal structure of the SPX domain in the Vtc4 protein of Chaetomium thermophilum in
complex with inositol hexakisphosphate (InsP6). Classification: inositol phosphate-binding protein. SPX helical bundles provide a positively charged ligand-binding

surface (Wild et al. [2]; http:/www.rcsh.org/pdb/explore.do?structureld=51JP).

4. Research progress on the functional
analysis of SPX genes in plants

A large number of SPX domain-containing proteins have
been identified in plants [11]. Here, SPX proteins refer to
the proteins that contain only the SPX domain. Owing to
their presence in different subcellular structures, they may
have different functions in the P signalling network. Here,
we summarize the studies on the genes whose proteins con-
tain only the SPX domain, including SPX1-4 in Arabidopsis,
SPX1-6 in rice, SPX1-10 in soya beans, SPXI-3 in
common bean and TaSPX129 in wheat (table 1).

4.1. Functional analysis of SPX genes in Arabidopsis

Twenty SPX domain-containing proteins were found in
Arabidopsis, among which four proteins contained only the
SPX domain (AtSPX1-AtSPX4) [26]. AtSPX1, localized in
the nucleus, is a P-dependent suppressor of AtPHRI in
Arabidopsis [53]. AtPHR1 overexpression results in an increase
in P concentration in the shoot and induces the expression of
a series of Pi starvation-induced (PSI) genes that encode
phosphate transporter, phosphatase or RNase [54,55]. Co-
immunoprecipitation experiment showed that the AtSPX1/
AtPHRI1 interaction was strongly dependent on P level.
AtSPX1 is a competitive suppressor that binds AtPHR1 through
its recognition sequence. The working model in figure 4
depicts the interactions of AtSPX with AtPHR1 in response
to cellular Pi concentration for PSI transcription. Under
high P conditions, AtSPX1 has a high binding affinity for
AtPHRI, and thus the process by which AtPHR1 regulates
PSI genes through the P1BS is inhibited, resulting in a
decrease in PSR gene expression. Under P deficiency con-
ditions, the AtSPX1/AtPHR1 interaction weakens, thus
facilitating the binding of AtPHRI1 to the P1BS to regulate
PSR gene expression [49].

In Arabidopsis, no significant phenotypic differences have
been found among the single-gene knockout mutants of
Atspx1, Atspx2 and Atspx4 under P-sufficient or -starvation
conditions. However, in plants with AtSPX1 overexpression,
the expression levels of some PSI genes (i.e. ACP5, PAP2 and
RNS1) are significantly increased regardless of P concen-
tration, thus suggesting that AtSPXI1 may function in the
transcriptional regulation of P starvation. Additionally,

inhibition of AtSPX3 through RNAi can change the pheno-
types and gene expression levels under P-starvation
conditions, rendering an increase in P concentration in the
shoot tissues and a reduced P concentration in the roots
[26,43]. The expression levels of AtPHT1-4, AtPHTI1-5,
AtACP5, AtRNS and AtAT4 in spx3 deletion mutants are
increased irrespective of P concentration [43], indicating
that AtSPX3 is a negative regulator of the signalling process
of P starvation. Collectively, these results indicate that SPX
proteins have functional redundancy with one another and
can serve as an important role in regulating Pi signalling
and homeostasis in plants.

4.2. Functional analysis of SPX genes in rice

P is an important nutrient element that limits the yield of rice.
Studies of P relevant genes in rice, especially SPX genes, can
potentially aid rice yield improvement. A total of 15 SPX
domain-containing proteins have been identified in rice, of
which only six are SPX proteins (OsSPX1-OsSPX6) [5].
OsSPX1 inhibits P uptake and P-starvation signalling through
negative feedback regulation [27,55]. OsSPX1 is induced
by P starvation in the roots, and inhibition of OsSPX1 by
RNAi leads to an excessive accumulation of P and thus
induces severe toxicity. This phenotype is similar to that
observed in the plants overexpressing OsPHR2 and the pho2
mutant. OsPHR2 overexpression leads to increased PSI gene
expression, including IPS1 and PT2, which promotes exces-
sive P absorption and accumulation and results in leaf
necrosis. Quantitative polymerase chain reaction (qQRT-PCR)
assay showed that OsSPX1 expression was strongly induced
in the plants with OsPHR2 overexpression and the pho2
mutant, suggesting that OsSPX1 may function downstream
from PHO2 and OsPHR2. Wang et al. [27] analysed the
expression levels of 10 genes involved in the rice P-starvation
signalling pathway. OsPT2 and OsPT8 were significantly
induced in OsSPX1 RNAI plants, pointing to increased P
transport and accumulation. By contrast, OsSPX1 overexpres-
sion inhibited the expression of 10 phosphate starvation-
mediated genes, including IPSI, IPS2, OsPAP1, OsSQD2
(sulfo quinovosyl diacylglycerol 2), miR399d, miR399j, OsPT2,
OsPT3, OsPT6 and OsPT8. However, in the double mutant
plants with overexpression of OsPHR2 and OsSPX1, P con-
centration and PSR gene expression levels were basically
the same as those in wild-type plants, which indicated that
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Figure 2. Phylogenetic tree of SPX domain-containing proteins from different plant species. The tree was constructed with the neighbour-joining method by MEGA
with 1000 bootstrap replicates. At, Arabidopsis thaliana; Os, Oryza sativa; Pv, Phaseolus vulgaris; Gm, Glycine max; Ta, Triticum aestivum; Bd, Brachypodium

distachyon.

OsSPX1 was a negative regulator of OsPHR2-mediated signal
transduction. Previous studies found that overexpression of
OsSPX1, OsSPX2, OsSPX3, OsSPX4 and OsSPX5 attenuated
the phenotype of OsPHR2 overexpression [45—-47,53]. Thus,
OsSPX1, OsSPX2 and OsSPX4 may interact with OsPHR2
and inhibit its binding to the PI1BS cis-acting element
(figure 4). The interaction between SPX proteins and
PHR1/2 was strongly dependent on P concentration [45,47].
Knockout of OsSPX1, OsSPX2 and OsSPX4 results in P
accumulation in the shoot and significant leaf tip necrosis
[45,47]. P accumulation and leaf necrosis also occurred in
the Osspx3 and Osspx5 double mutant, and the expression
levels of PSI genes, including IPS1, miR399, PT2, miR827,
PAP10 and SQD?2, were significantly upregulated [46]. This
observation indicated that OsSPX3 and OsSPX5 were hom-
ologous and that they responded to P stress at the

transcriptional and post-transcriptional levels. Collectively,
the data gathered so far support the function of the studied
OsSPX genes in rice tolerance to P deficiency by regulating
P acquisition and its transport from roots to leaves.

4.3. Functional analysis of SPX genes in leqgumes

Phylogenetic analysis demonstrated that GmSPXs 1-10 can be
divided into three groups [43]. Quantitative PCR assay showed
that the expression of these genes was significantly increased
under low P conditions and decreased rapidly one day after
P supplementation [43]. The expression of these genes was
highly sensitive to low P conditions. Overexpression of
GmSPX3 led to increased P concentration in both leaf and
root tissues, and increased transcriptional levels of seven PSI
genes in the root hairs, under high P conditions [44]. Analysis
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vulgaris; Gm, Glycine max; Ta, Triticum aestivum; Bd, Brachypodium distachyon.

of GmSPX1 overexpression in Arabidopsis spx3 mutant showed
that GmSPX1 negatively regulated many PSR genes, including
AtPHT1-4, AtPHT1-5, AtACP5, AtRNS and AtAT4,in a P level-
dependent manner [43]. Furthermore, GmSPX1 interacted with
a newly identified P starvation-induced transcription factor
GmMYB48, and this interaction may represent a potential sup-
pressor module of the P signalling network in soya bean [43].
Three SPX proteins (PvSPX1-PvSPX3) have been found in
common bean (Phaseolus vulgaris), and their expression levels
were significantly increased in roots and leaves under P-star-
vation conditions [44]. PvSPX1 is localized in the nucleus and
exhibits a more sensitive and rapid response to P starvation.
Overexpression of PuSPX1 resulted in an increase in P concen-
tration in root tissues, a configuration change of root hairs,
growth inhibition of the main root and an increase in the
number of lateral roots, accompanied by upregulated transcrip-
tion of 10 PSR genes [44]. Further studies showed that PuPHR1
overexpression increased PvSPX1 transcription level, and thus
PvSPX1 may act downstream from PvPHR1 [44,50].

4.4, Functional analysis of SPX genes in wheat

P deficiency is also a primary factor constraining the yield of
wheat [15]. Therefore, identification of P-regulated genes and
breeding of low P-tolerant cultivars are of prime importance
to increasing global wheat productivity without excessive use
of P fertilizers. Owing to the possession of a complex hexaploid

genome, functional analysis of P-regulated genes (including
SPX members) in common wheat (2n = 6x = 42) is lagging
behind that in Arabidopsis and rice. Shang et al. [56] found
that TaSPX3 was strongly induced by low P stress, but
became significantly downregulated when P supply was
restored; the expression profile of TaSPX3 differed among cul-
tivars, indicating that the mechanism of low P stress response
may vary among different wheat genotypes. Shukla ef al. [57]
demonstrated that the relative transcriptional level of TaSPX1
was higher in the aleurone than in the endosperm in develop-
ing wheat grains, which paralleled the accumulation of more P
in aleurone tissues.

4.5. Functional analysis of SPX genes in rapeseed

Du et al. [11] analysed 69 SPX gene family members in rape-
seed (Brassica napus) and found that the expression levels
of different BnaSPX genes differed under P-starvation
conditions. The expression levels of nine genes in the SPX
subfamilies were significantly induced by P starvation and
rapidly declined upon P supplementation. Analysis of two
BnaSPX1 genes (i.e. BnaA2.SPX1 and BnaC3.SPX1) in trans-
genic Arabidopsis revealed functional difference between
them: the transgenic lines of BnaA2.SPX1, but not those of
BnaC3.SPX1, showed retarded growth and higher sensitivity
to P deficiency when compared with wild-type control [11].
In two other studies, BnSPX3;1 and BnSPX3,;2 were found
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Figure 4. Interaction of SPX1, SPX2 and SPX4 with PHR under high or low P conditions. Under high P conditions, SPX1 and SPX2 in the nucleus and SPX4 in the
cytoplasm bind PHR with high affinity, thus inhibiting PHR binding to the P1BS motif in the promoters of PSI genes and leading to repression of the transcription of
PSI genes, including SPX7 and SPX2. Under low P conditions, SPX4 in the cytoplasm is degraded via the 26S proteasome pathway, which promotes the targeting of
PHR to the nudleus, thereby releasing PHR to activate downstream PSI gene expression. Meanwhile, SPX1 and SPX2 in the nucleus interact with PHR at a low
affinity, which facilitates PHR to bind to the P1BS motif in the promoters of PSI genes, further enhancing the expression of PSI genes, including SPX7 and SPX2.
The thick arrow denotes enhancement. The dotted lines represent reduced effects. This working model is drawn based on the studies of SPX7, SPX2 and SPX4 genes
in Arabidopsis and rice (Lv et al. [47]; Wang et al. [27,28]; Zhou et al. [53]; Puga et al. [49]).

specifically induced by P deficiency and that the induction
was rapid and reversible [58,59]. Unlike P deficiency, the
deprivation of other nutrients (N, K, S or Fe) did not affect
the transcription of BnSPX3,;1 and BnSPX3;2, and thus the
two genes may be used as markers for assessing P-starvation
status in plants [58,59].

5. Discussion and prospects

The available studies clearly suggest that SPX proteins
occupy a very important position in the P signalling network,
which is tightly related to P uptake, transport, storage and
homeostasis. Most of the studied SPX genes are low P indu-
cible and can influence the transcription of downstream PSI
(PSR) genes by regulating PHR activity, likely via controlling
the movement of PHR from the cytoplasm to the nucleus and
by decreasing the binding of PHR to the P1BS cis-element
[45,47,49]. Not surprisingly, current understandings on SPX
genes are largely based on the data from model plants (i.e.
Arabidopsis and rice). The results from complex crop plants
(e.g. legumes, common wheat and rapeseed) are much less.
Nevertheless, they complemented and expanded the insights
obtained from model species, and yielded potential clues and
targets for enhancing crop tolerance to low P stress. Consid-
ering the urgent need in developing P-efficient cultivars
[60], more efforts should be devoted to studying SPX gene
functions in crop plants. The accumulation of ever more
genomic resources [61], as well as the rapid development of
gene-editing technologies for diverse plant species [62], will
facilitate such efforts.
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