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ABSTRACT For decades, bacterial taxonomy has been based on in vitro molecular
biology techniques and comparison of molecular marker sequences to measure the
degree of genetic similarity and deduce phylogenetic relatedness of novel bacterial
species to reference microbial taxa. Due to the advent of the genomic era, access to
complete bacterial genome contents has become easier, thereby presenting the op-
portunity to precisely investigate the overall genetic diversity of microorganisms.
Here, we describe a high-accuracy phylogenomic approach to assess the taxonomy
of members of the genus Bifidobacterium and identify apparent misclassifications in
current bifidobacterial taxonomy. The developed method was validated by the clas-
sification of seven novel taxa belonging to the genus Bifidobacterium by employing
their overall genetic content. The results of this study demonstrate the potential of this
whole-genome approach to become the gold standard for phylogenomics-based taxo-
nomic classification of bacteria.

IMPORTANCE Nowadays, next-generation sequencing has given access to genome
sequences of the currently known bacterial taxa. The public databases constructed
by means of these new technologies allowed comparison of genome sequences be-
tween microorganisms, providing information to perform genomic, phylogenomic,
and evolutionary analyses. In order to avoid misclassifications in the taxonomy of
novel bacterial isolates, new (bifido)bacterial taxons should be validated with a phy-
logenomic assessment like the approach presented here.
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bifidobacteria, Bifidobacterium

Since the 1960s, bacterial taxonomy has been determined by using the DNA-DNA
hybridization approach in order to measure the degree of genetic similarity be-

tween two microbial genomes (1). Another accepted method that was and is still widely
used in bacterial taxonomy is comparative analysis of 16S rRNA gene-based sequences
(2). Unfortunately, the DNA-DNA hybridization method suffers from reproducibility
issues and does not provide an accurate measure of actual sequence identity between
genomes (3). Similar limitations affect the 16S rRNA gene approach; for example, very
recently diverged species that have undergone intense evolutionary pressures may
possess highly similar 16S rRNA gene sequences that may nonetheless ignore a wide
phylogenetic gap between such taxa (4, 5). To overcome the limitations of these
techniques, a multigenic approach that relies on multiple conserved molecular markers,
such as the clpC, dnaB, dnaG, dnaJ1, purF, and rpoC genes, was shown to be more
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reliable for species discrimination compared to single-gene phylogeny (5, 6). Having
easy access to next-generation sequencers (NGS) has in recent times allowed the
development of a new bioinformatics approach for phylogeny that is based on whole-
genome sequencing followed by comparative genomics. Comparative genomics has
proven to be accurate in strain discrimination and has been applied extensively for
phylogenetic characterization of novel bacterial species, in particular those residing in
complex communities, e.g., gut microbiota members (7–9).

Members of the genus Bifidobacterium are among the main representatives of the
mammalian gut microbiota, particularly during the first six to 12 months following birth
(10, 11). This group of microorganisms is known for a claimed ability to confer a range
of health benefits to the host (12, 13, 61), although the associated genetic attributes for
such beneficial or probiotic activities remain largely obscure. Bifidobacteria are wide-
spread inhabitants of the mammalian, avian, and insect intestinal tracts (11, 13, 14, 62),
yet a large part of the currently recognized bifidobacterial taxa, i.e., 49 species and 9
subspecies, has been isolated from the human gut (15, 16). Nonetheless, various
ecological attempts have recently been made to survey bifidobacterial populations in
other mammals (10, 17–21), which has resulted in the identification of several scien-
tifically accepted and putative novel bifidobacterial species.

The majority of the currently proposed novel (bifido)bacterial taxa are identified
through partial sequencing of several molecular marker genes and comparison to the
currently recognized type strains (19–21). In the current study, we describe a method-
ology that is based on whole-genome comparisons and is aimed at unambiguously
redefining the taxonomy of members of the genus Bifidobacterium. Notably, similar
approaches based on whole-genome comparisons have been employed in the reclas-
sification of members of the genus Bacillus (22, 23). Applying this approach, we were
also able to phylogenetically characterize and position seven novel bifidobacterial
strains which were isolated from animal feces, i.e., those of goose, hamster, rabbit, and
monkey, and which are related to Bifidobacterium choerinum, Bifidobacterium hapali,
Bifidobacterium saguini, Bifidobacterium stellenboschense, and Bifidobacterium tissieri.

RESULTS AND DISCUSSION
Pangenome reconstruction among members of the genus Bifidobacterium.

Recently, species- and genus-level comparative genomic analyses based on pange-
nome reconstruction have been shown to be crucial in providing information regarding
the overall gene content, while also generating information on the resistome, meta-
bolic capabilities, and mobilome of such taxonomic ranks (9, 24–28). In recent years, the
number of sequenced bifidobacterial strains has increased from a few dozen to several
hundred, and thus we felt it was opportune to explore the genomic biodiversity within
different species of the genus Bifidobacterium (12, 15, 16, 29). Currently, the number of
sequenced bifidobacterial strains for each species ranges from just one to 83 (see Table
S1 in the supplemental material). In order to increase the amount of genetic data
available for those bifidobacterial species for which only one or a few strains have been
sequenced, we decided to decode the genomes of 13 additional bifidobacterial strains
belonging to the species Bifidobacterium asteroides, Bifidobacterium pseudolongum, and
Bifidobacterium thermophilum (Table 1). Furthermore, the public NCBI genomic data-
base contains 55 type strain genomes corresponding to each known bifidobacterial
(sub)species, as well as complete or draft genome sequences of 233 additional strains
belonging to the species Bifidobacterium adolescentis, Bifidobacterium animalis, B. as-
teroides, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium dentium, Bifido-
bacterium longum, Bifidobacterium pseudocatenulatum, B. pseudolongum, and B. ther-
mophilum (see Table S1).

These gathered data sets were then employed for the genomic approach to study
of the phylogeny of the genus Bifidobacterium. Thus, a pangenome analysis of available
type strains was undertaken to determine putative orthologous genes between the 55
(sub)species of the genus Bifidobacterium sequenced to date. The analysis resulted in
the identification of 26,201 clusters of orthologous genes (COGs), representing the
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pangenome of the Bifidobacterium genus. The collected COGs allowed the identifica-
tion of genes that are shared between the genomes of the 55 bifidobacterial type
strains, i.e., the core genome of the Bifidobacterium genus (Fig. 1). Furthermore,
dispensable genes present in two or more strains and unique genes retrieved in a single
type strain were unveiled (Fig. 1). The pangenome size, when plotted versus the
number of included bifidobacterial genomes, shows that the power trendline has yet

TABLE 1 General features of sequenced bifidobacterial strains

Species Strain

Average
coverage
(fold)

No. of
contigs

Genome
length
(bp)

Average GC
content (%)

No. of
predicted
ORFs

No. of
tRNAs

No of
rRNAsa Biological origin

GenBank
accession no.

B. asteroides 1460B 104.83 38 2,121,817 60.46 1,653 45 2 Honeybee hindgut PCHJ00000000
B. pseudolongum 1370B 89.46 17 1,902,036 62.97 1,571 52 4 Feces of pig PCHI00000000
B. pseudolongum 1520B 115.03 17 2,008,481 63.12 1,632 52 4 Feces of hamster PCHH00000000
B. pseudolongum 1549B 118.25 48 1,990,203 63.19 1,686 55 4 Feces of Brahma chicken PCHG00000000
B. pseudolongum 1595B 147.96 16 1,936,418 63.02 1,593 53 4 Feces of pig PCHF00000000
B. pseudolongum 1691B 65.49 59 2,148,724 63.06 1,810 52 4 Feces of hippopotamus PCHE00000000
B. pseudolongum 1734B 84.15 25 2,111,856 63.27 1,778 62 4 Feces of wallaby PCHD00000000
B. pseudolongum 1619B 235.22 31 2,050,408 63.27 1,722 53 3 Feces of llama PCHC00000000
B. pseudolongum 1744B 101.65 51 2,143,581 63.05 1,801 55 4 Feces of bear PCHB00000000
B. pseudolongum 1747B 56.17 52 2,143,079 63.18 1,830 60 4 Feces of giraffe PCHA00000000
B. pseudolongum 1524B 99.95 23 2,062,414 63.15 1,700 52 4 Feces of hamster PCGZ00000000
B. thermophilum 1542B 89.45 36 2,359,132 60.28 1,820 47 3 Feces of pig PCGY00000000
B. thermophilum 1543B 115.32 16 2,316,133 60.41 1,751 50 3 Feces of pig PCGX00000000
aPredicted number of rRNA loci.

FIG 1 Pangenome of the genus Bifidobacterium. (a) Number of core genes (gray), unique genes (blue), and dispensable genes (orange) identified in the
pangenome analysis (internal pie chart). The number of unique genes of each type strain of the genus sequenced to date is highlighted in different colors
(external pie chart). (b) Representation of the pangenome size based on sequential addition of the 55 type strains genomes. (c) Average of new genes upon
sequential addition of the bifidobacterial type strain genomes.
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to reach a plateau and data sets from the last strains added to the analysis still
substantially expand the total gene pool by circa 330 genes per added genome (Fig. 1).
Therefore, according to these data, the pangenome of the genus Bifidobacterium can be
considered open (25) (Fig. 1). This open pangenome profile is typically associated with
genera in which the constituent species occupy multiple environments with mixed
microbial communities and have extended their total set of genes through horizontal
gene transfer events, e.g., Escherichia (9, 30).

In order to assess intraspecies variability, we selected bifidobacterial species for
which at least five sequenced genomes are available in the NCBI databases, or which
were decoded as part of the current study. Specifically, a total of 256 different strains
were employed for the reconstruction of 10 species-specific bifidobacterial pange-
nomes (see Fig. S1 and S2 in the supplemental material). Notably, and similar to those
of the pangenome of the overall Bifidobacterium genus (Fig. 1), the power trendlines do
not reach a plateau when species-specific pangenome sizes are plotted versus the
number of included genomes (see Fig. S1 and S2). Furthermore, the species-specific
pangenome analyses also revealed that the average number of new genes added by
inclusion of additional genomes tend to decrease for 7 out of 10 analyzed species. In
contrast, the comparative genomics analysis of B. animalis, B. breve, and B. longum
revealed that the pangenome expansion seems to remain stable at a minimum of circa
43, 75, and 101 new genes added for each further iteration, respectively (see Fig. S1),
suggesting that the biodiversity of these species has been extensively explored. In this
regard, it is worth mentioning that a portion of these “new” genes corresponds to
truncated genes predicted at the edges of contigs within partially sequenced genomes.
In this context, the pangenome’s expansion trend in B. breve and B. longum reflects the
high number of strains sequenced for both these two species (12, 16), whereas the
limited pangenome expansion of B. animalis is probably due to the monophyletic origin
of the subspecies B. animalis subsp. lactis, as previously suggested (29).

Overall, these data indicate that availability of a very large number, perhaps as many
as thousands, of strains representing populations residing in a wide range of different
hosts will be pivotal to obtain a comprehensive overview of the biodiversity that
characterizes these common gut commensals.

Phylogenetic and phylogenomic analyses of bifidobacterial type strains. While

16S rRNA gene-based comparative analysis has for many years been considered to
represent the gold standard for phylogenetic investigations, the recent advent of NGS
and associated bioinformatic tools has led to the introduction of novel genome-wide
approaches, such as the core-genome-based supertree (31, 32). We therefore decided
to compare the phylogeny of the type strains of the genus Bifidobacterium recon-
structed through alignment of the 16S rRNA gene and concatenated alignment of the
bifidobacterial core genome. The 16S rRNA genes were retrieved from the 55 type
strains of each taxon belonging to the genus Bifidobacterium and were used to
construct a phylogenetic tree (Fig. 2). Moreover, the predicted 26,201 clusters of
orthologous genes identified by comparative genomics analysis of the bifidobacterial
type strains allowed the identification of 262 shared COGs, representing the core
bifidobacterial genome coding sequences (Fig. 2). After exclusion of paralogs, concat-
enation of the remaining 236 core protein sequences was used to build a Bifidobacte-
rium phylogenomic tree (Fig. 2). These analyses showed that 34 and 52 nodes were
supported by bootstrap values greater than 50 for the 16S rRNA gene- and core
gene-based trees, respectively (Fig. 2). These data clearly support the notion that
increasing sequence lengths used in the phylogenomic tree leads to improved robust-
ness of the results. Furthermore, the phylogenomic analyses are based on a core
genome, which is represented by amino acid sequences. Remarkably, these protein
sequences involve a variation of 20 amino acids, while the sequence of the 16S rRNA
gene is based on only four bases. The use of amino acid sequences clearly enhances the
robustness of the resulting phylogenomic tree.
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The bifidobacterial phylogenomic tree clearly delineates the presence of seven
previously described bifidobacterial phylogenetic groups, i.e., the B. adolescentis, B.
asteroides, B. bifidum, Bifidobacterium boum, B. longum, B. pseudolongum, and Bifido-
bacterium pullorum groups (33, 34). Notably, the number of bifidobacterial taxa in-
cluded does not affect the consistency of the core gene-based tree (Fig. 2) (9, 33).
Comparison of the phylogenomic and 16S rRNA gene-based trees revealed discrepan-
cies for the B. bifidum and B. longum groups (Fig. 2), while the phylogeny of the B.
adolescentis, B. asteroides, B. boum, B. pseudolongum, and B. pullorum groups is con-
served in both trees. In detail, the four members of the B. bifidum group cluster
together only in the core gene-based tree, while they are scattered across the 16S rRNA
gene-based tree. In contrast, the core of the B. longum group is consistent in both trees,
represented by B. longum subsp. suis LMG 21814, B. longum subsp. longum LMG 13197,
B. longum subsp. infantis ATCC 15697, Bifidobacterium saguini DSM 23967, B. breve LMG
13208, Bifidobacterium eulemuris DSM 100216, and Bifidobacterium lemurum DSM 28807
(Fig. 2). Nevertheless, the B. longum group identified in the core gene-based tree
includes six additional taxa compared to that in the 16S rRNA gene-based tree.

The presented comparison between the phylogenetic reconstruction based on
alignment of the 16S rRNA gene and the concatenated alignment of the bifidobacterial
core genome suggests that the latter permits the reconstruction of a more robust and
consistent overview of bifidobacterial evolution and may for this reason be considered
the preferential approach for genus- and species-wide phylogenetic investigations.

FIG 2 Phylogenetic and phylogenomic trees of the genus Bifidobacterium. (a) Proteomic tree based on the concatenation of 262 bifidobacterial core genes
identified in the pangenome analysis of the 55 type strains. Phylogenetic groups are highlighted in different colors. (b) 16S rRNA gene-based tree of the 55
type strains of the genus. Bifidobacterial species are colored according to their phylogenetic membership group. Each tree was constructed by the
neighbor-joining method, and the genome sequence of Scardovia inopinata JCM 12537 was used as outgroup. Bootstrap percentages above 50 are shown at
node points, based on 1,000 replicates of each phylogenetic tree.
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Evaluation of intraspecies variability between bifidobacterial genomes. The
256 bifidobacterial genomes collected above were also used to perform whole-genome
comparisons, focusing specifically on the species B. adolescentis, B. animalis, B. aster-
oides, B. bifidum, B. breve, B. dentium, B. longum, B. pseudocatenulatum, B. pseudolongum,
and B. thermophilum. The genomes of bifidobacterial taxa belonging to the same
species were subjected to average nucleotide identity (ANI) evaluation. These analyses
revealed consistent species classification in seven out of 10 phylogenetic groups,
highlighting ANI values ranging from 95.31% to 99.98% (see Table S2 and Fig. S3–S6 in
the supplemental material). In this regard, it should be noted that two strains displaying
an ANI value of �95% are considered to belong to two distinct species (35, 36). Thus,
all the strain pairs that belong to the species B. adolescentis, B. animalis, B. bifidum, B.
breve, B. dentium, B. longum, and B. pseudocatenulatum possess ANI values higher than
95%, confirming taxonomic assignment to the same species (35, 36). Conversely, the
genomes belonging to the species B. asteroides, B. pseudolongum, and B. thermophilum
exhibit cases of ANI values lower than 93.3%, which would cast doubt on the correct
taxonomic classification of several strains previously assigned to these species (see
Table S2).

More specifically, within the species B. thermophilum, the chromosomal sequence of
strain JCM 1207 generates ANI values of 90.16% and 90.28% compared to the genome
sequences of B. thermophilum DSM 20210 and B. thermophilum DSM 20212, respec-
tively (see Table S2). These values are the lowest retrieved between strains of the same
species in this intraspecies analysis, highlighting that the JCM 1207 strain should not be
classified as a B. thermophilum species (see Fig. S6 in the supplemental material).
Further ANI analyses encompassing all bifidobacterial type strains showed that B.
thermophilum JCM 1207 possesses a higher genome sequence identity with B. boum
LMG 10736, sharing an ANI value of 94.9% (33), which is very close to the threshold for
species discrimination (35, 36).

Besides, different clusters were detected within the species B. pseudolongum (see
Fig. S6). In particular, the genome sequence of B. pseudolongum subsp. pseudolongum
LMG 11571 displays high ANI values compared to strains 1370B (99.21%) and 1595B
(99.21%), both sequenced in the current study. Nonetheless, the chromosomal se-
quences of these three strains generate corresponding ANI values lower than 93.99%
compared to 11 other B. pseudolongum strains, which among each other display ANI
values above 95.81% (see Table S2). These data suggest that B. pseudolongum subsp.
pseudolongum LMG 11571, along with strains 1370B and 1595B, may represent a
distinct bifidobacterial species.

The most intriguing data, due to the high genomic diversity observed for the six
analyzed strains, were retrieved for members of the species B. asteroides. In fact, the
genomes belonging to 1460B, Bin2, Hma3, and Bin7 strains produced ANI values that
are below the species threshold level compared to the genome of the type strain B.
asteroides DSM 20089 (see Table S2) and resulted in four clusters, i.e., four putative
distinct bifidobacterial species (as reported in Fig. S3).

Further inspection of genomic sequence identity at subspecies level revealed that
the chromosomes of the 30 B. animalis strains analyzed constitute two clear clusters,
encompassing seven B. animalis subsp. animalis and 23 B. animalis subsp. lactis, with
strains A6, 08, 11, and RH without a (stated) subspecies classification falling in the latter
group (see Fig. S3). Moreover, the low genome variability observed in the B. animalis
subsp. lactis strains confirms the previously reported observation that this subspecies
is a strict monophyletic taxon (29, 37, 38).

Interestingly, the intraspecies analysis performed on B. longum highlights several
inconsistencies in the subspecies classifications (see Fig. S5). In this context, a clear
cluster composed of 19 B. longum subsp. infantis strains was identified, as well as a
smaller cluster representative of B. longum subsp. suis. Notably, the latter cluster
includes the genomes of AGR2137, Su859, CMCC P0001, BXY01, and JDM301 strains
previously classified as B. longum subsp. longum. Remarkably, strains named CMCC
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P0001, BXY01, and JDM301 displayed ANI values above 99.89% compared to each
other, confirming their previously described association (12). Nonetheless, genome
comparisons between the seven identified B. longum subsp. suis generated ANI values
above 98%, and for this reason no distinct phylogenetic groups could be identified
based on genomic identity approaches (see Table S2). The largest B. longum cluster
contains 57 B. longum subsp. longum strains, of which three strains, named 157F, CCUG
52486, and CECT 7210, had erroneously been classified as B. longum subsp. infantis
strains.

Overall, ANI evaluation of all 258 available bifidobacterial genomes indicated that 16
strains should be taxonomically reclassified, while it also revealed the putative exis-
tence of six novel bifidobacterial species.

Genome sequencing as the most current standard for taxonomic classification
of bifidobacteria. The pipeline for accurate bifidobacterial taxonomic classification
described here was also exploited to precisely taxonomically classify putative novel
bifidobacterial taxa isolated as part of a recently published study aimed at the explo-
ration of the biodiversity of bifidobacterial communities of 291 animals, including
goose, hamster, rabbit, and monkeys (10) (Table 2). Subsequent selection on mupirocin
medium (39) allowed the isolation of strains belonging to members of the genus
Bifidobacterium, which were further characterized by amplification and sequencing of
the 16S rRNA gene and internal transcribed spacer (ITS). While 16S rRNA gene sequence
comparisons have been used in (bifido)bacterial taxonomy for decades, the ability to
distinguish closely related bifidobacterial taxa using ITS sequences has recently been
described (40). 16S rRNA gene sequence analysis revealed that seven isolated strains,
named Rab10A, Ham19E, Goo31D, Tam1G, Tam10B, Uis4E, and Uis1B, showed 16S rRNA
sequence-based identity values that ranged from 96.2% to 98.6% with respect to
known bifidobacterial type strains listed in Table 2, while the hypervariable ITS se-
quence displayed values ranging from 65.7% to 89% (Table 2). Notably, these data
highlight a high degree of sequence diversity between these seven isolates and the
known bifidobacterial species, especially for the hypervariable ITS sequence, thus
suggesting that they present novel bifidobacterial species.

In order to get insights into genome-wide genetic relatedness between the putative
novel species and currently known taxa of the genus Bifidobacterium, the genomes of
these seven isolates were sequenced. The reconstructed genome length ranged from
2,155,882 to 3,111,005 bp, with an average fold coverage ranging from 55.52 to 139.27
(Table 2). Using the ANI system based on whole genome sequence comparisons, the
seven sequenced strains were compared with the currently recognized bifidobacterial
type strains (9, 41). Interestingly, the seven isolates exhibited ANI values below the
threshold for species recognition compared to all 55 available type strains, with the
highest ANI value obtained against B. saguini DSM 23967 (94.55%) (Fig. 3) (36, 42).
Furthermore, an ANI analysis involving only these seven strains revealed that the
highest ANI value (91.76%) was obtained between the genomes of Rab10A and
Ham19E (Fig. 3). Genome-to-Genome Distance Calculator (GGDC) analysis, which is
based on in silico DNA-DNA hybridization (DDH) of genome-to-genome comparison
(43), was employed to validate the ANI results based on the genomic relatedness
between bifidobacterial taxa. The seven sequenced strains’ genomes compared with
the closest related type strains’ genomes exhibited estimated DDH values below 70%,
ranging from 28.5% to 55.2% between pairs Uis1B/B. hapali DSM 100202 and Tam1G/B.
saguini DSM 23967, respectively (Table 2).

Taken together, ANI and GGDC analyses clearly indicate that Rab10A, Ham19E,
Goo31D, Tam1G, Tam10B, Uis4E, and Uis1B belong to novel bifidobacterial species (Fig.
3). Recently, based on this genomic approach, Tam10B was formally accepted by the
International Committee on Systematic Bacteriology (ICSB) as a novel species of the
genus Bifidobacterium, and was accordingly named Bifidobacterium vansinderenii (44).

Phylogenomic approach for the evaluation of novel bifidobacterial taxa. The
availability of genome sequences of the seven putative novel bifidobacterial species
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also allowed updating of the phylogeny of the genus Bifidobacterium. A comparative
genomics analysis was undertaken to determine putative orthologous genes between
the 55 sequenced type strains of the genus Bifidobacterium and the seven putative
novel taxa, resulting in the identification of 27,868 BifCOGs (Bifidobacterium-specific
clusters of orthologous genes). Analysis of the predicted BifCOGs identified 259 COGs
that were shared among all these genomes, representing the core bifidobacterial
genome coding sequences (core BifCOGs). This core BifCOG collection represents an
updated version of a previously published core genome of the genus Bifidobacterium
(9, 33). The concatenation of 232 core BifCOG protein sequences (note that 27 core
BifCOGs were excluded, as they constitute paralogs within the bifidobacterial pange-
nome) was used to build a Bifidobacterium phylogenomic tree (Fig. 4).

The updated bifidobacterial phylogenomic tree confirmed the seven bifidobacterial
phylogenetic groups previously described (33, 34). Moreover, the seven putative novel
species appear to be distributed across the whole tree. As expected through the ANI
analysis, Rab10A, Ham19E, and Goo31D cluster in the proximity of B. choerinum LMG
10510 and fall within the B. pseudolongum group. Interestingly, Rab10A, Ham19E, and
Goo31D were isolated from three different animals, i.e., rabbit, hamster, and goose,
respectively, while B. choerinum LMG 10510 is an isolate from piglet feces. Thus, these
data indicate that the B. pseudolongum group is currently the most variable phyloge-
netic bifidobacterial group in terms of ecological niches represented by animal species,
in which group strains were isolated from chickens, geese, hamsters, oxen, pigs, rabbits
and rats. Nonetheless, one has to keep in mind that related bifidobacterial species

FIG 3 Graphical representation in three-dimensional columns of the average nucleotide identity (ANI) between novel bifidobacterial taxa. The x axis displays
the 62 bifidobacterial taxa used in the comparison (55 type strains and seven novel taxa), the y axis reflects the ANI percentages between strains, and the z
axis displays the seven novel taxa. Thus, each column represents the ANI value observed between a given bifidobacterial species pair. The higher ANI values,
involving Rab10A, Ham19E, Goo31D, Tam1G, Tam10B, Uis4E, and Uis1B, are highlighted with different colors, showing ANI values below 95%.
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appear to be widespread among mammals (10). Moreover, strains Tam1G and Uis4E are
included in the B. longum group and show high phylogenetic relatedness with B.
saguini DSM 23967 and B. stellenboschense DSM 23968, respectively (Fig. 4). Further-
more, Tam10B and Uis1B cluster together with B. tissieri DSM 100201.

Phylogenomic analysis indicates that 13 bifidobacterial taxa do not belong to any
previously described phylogenetic group (Fig. 4). Nevertheless, based on the related-
ness among these bifidobacterial type strains, two new phylogenetic clusters are
proposed, namely, the Bifidobacterium psychraerophilum group and the Bifidobacterium
bombi group (Fig. 4). The results presented highlight once again the potential of the
phylogenomic approach to establish detailed phylogenetic reconstruction of the
entire Bifidobacterium genus and detailed taxonomic characterization of novel
bacterial species.

Conclusions. Next-generation sequencing has significantly influenced microbial
taxonomy by giving access to genome sequences of essentially all known bacterial taxa.
In fact, the deciphered genome sequences of bifidobacterial type strains now provide
genetic information for genomic, phylogenomic, and evolutionary analyses, and facil-
itate the determination of the gene contribution of each isolated microorganism. Here,

FIG 4 Phylogenomic tree of the genus Bifidobacterium based on the concatenation of the deduced amino acid sequences of 232 core genes of Goo31D,
Ham19E, Rab10A, Tam1G, Uis4E, and Uis1B and members of the genus Bifidobacterium. The amino-acid-deduced core gene-based tree shows the division
intoseven phylogenetic groups of the Bifidobacterium genus as represented by different colors. The phylogenetic tree was constructed by the neighbor-joining
method, with genome sequence of Scardovia inopinata JCM 12537 as outgroup. Bootstrap percentages above 50 are shown at node points, based on 1,000
replicates of the phylogenetic tree.
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301 sequenced strains belonging to the genus Bifidobacterium were compared to
perform inter- and intraspecies analyses aimed at redefining bifidobacterial taxonomy
and unveiling discrepancies in species assignment. Overall, ANI analyses identified
inconsistencies in classification of a total of 16 strains within the B. asteroides, B.
pseudolongum, and B. thermophilum species, unveiling the existence of six additional
clusters of strains that may represent novel putative bifidobacterial species. Further-
more, we validated the potential of the phylogenomics approach in the identification
of novel species through the sequencing of new bifidobacterial isolates. Seven of these
strains may be characterized as novel bifidobacterial species, showing genomic com-
positions related to those of B. choerinum LMG 10510, B. hapali DSM 100202, B. saguini
DSM 23967, B. stellenboschense DSM 23968, and B. tissieri DSM 100201, while maintain-
ing ANI values below the threshold for species assignment. The phylogenomic analysis
of these seven putative novel species also revealed their localization into the updated
phylogeny of the genus Bifidobacterium, with three strains belonging to the B. pseu-
dolongum group and two novel taxa falling into the B. longum group. In light of these
results, we propose to implement the current taxonomic scheme for the classification
of novel bifidobacterial taxa through a (phylo)genomic assessment of a proposed new
taxon.

MATERIALS AND METHODS
Bifidobacterial genome sequences. We retrieved complete and partial genome sequences of 55

Bifidobacterium type strains from the National Center for Biotechnology Information (NCBI) public database,
in additional to genomes of a further 233 taxa that belong to this genus (see Table S1). Furthermore, 13
bifidobacterial genomes were sequenced to perform intraspecies analyses, creating a pool of 301 bifidobac-
terial genomes. We also analyzed the genome sequences of seven novel bifidobacterial taxa deposited
at DDBJ/ENA/GenBank, available under accession numbers MVOG00000000, MVOH00000000,
NEWD00000000, NMWT00000000, NMWU00000000, NMWV00000000, and NMYC00000000 (Table 2).

Isolation of bifidobacterial species. Fecal samples were collected from several zoological parks as
described previously (10). In order to acquire the fecal material as fresh as possible and to be sure of its
origin, it was collected immediately following defecation. Fecal samples consisted of 6 to 10 g of fresh
material, which was cooled to 4°C immediately after collection and transferred to the Laboratory of
Probiogenomics of Parma University (Parma, Italy). Bifidobacterial isolation from stool samples was
performed starting from 1 g of fecal sample mixed with 9 ml of phosphate-buffered saline (PBS) solution.
Serial dilutions and subsequent plating were performed using the de Man-Rogosa-Sharpe (MRS) agar,
supplemented with 50 �g/ml mupirocin (Delchimica, Italy) and 0.05% (wt/vol) L-cysteine hydrochloride.
Bifidobacterial cultures were incubated for 48 h at 37°C in a chamber (Concept 400; Ruskin) with
anaerobic atmosphere (composed of 2.99% H2, 17.01% CO2, and 80% N2). Colonies were randomly
picked and restreaked to isolate purified bacterial strains. All colonies were subjected to DNA isolation
and characterized as previously described by Turroni et al. (45) and Ventura et al. (46).

DNA extraction and amplification of 16S rRNA and ITS sequences. Fecal samples maintained at
�80°C were subjected to DNA extraction using the QIAamp DNA Stool minikit following the manufac-
turer’s instructions (Qiagen). Partial 16S rRNA gene sequences were amplified from extracted DNA using
the primer pair Probio_Uni/Probio_Rev, which targets the V3 region of the 16S rRNA gene sequence (47),
while partial ITS sequences were amplified using the Probio-bif_Uni/Probiobif_Rev primer pair, which
targets the hypervariable region of the bifidobacterial ITS sequences (40). Results were then subjected to
a BLAST search against the GenBank database.

Genome sequencing and assemblies. DNA extracted from the bifidobacterial isolates was sub-
jected to whole-genome sequencing using a MiSeq system (Illumina, UK) at GenProbio srl (Parma, Italy)
following the supplier’s protocol (Illumina, UK). Fastq files of the paired-end reads obtained from
targeted genome sequencing of the isolated strains were used as input for the genome assemblies
through the MEGAnnotator pipeline (48). The MIRA program (version 4.0.2) was used for de novo
assembly of each bifidobacterial genome sequence (49).

Genome annotation. Protein-encoding open reading frames (ORFs) were predicted using Prodigal
(50). tRNA genes were identified using tRNAscan-SE v1.4 (51), while rRNA genes were detected using
RNAmmer v1.2 (52). Gene annotation was defined by means of RAPSearch2 (Reduced Alphabet based
Protein similarity Search 2) (53) in a nonredundant protein database provided by the National Center for
Biotechnology Information (NCBI) and a hidden Markov model (HMM) search (http://hmmer.org/) of the
manually curated Pfam-A protein family database (54). Results were inspected by Artemis (55), which was
used for genome analyses of predicted genes and for manual editing where necessary.

Pangenome and identification of shared and unique genes. Genomes of bifidobacterial type
strains (see Table S1), together with bifidobacterial taxa that belong to the same species (Table 1; see also
S1), as well as the seven sequenced genomes of novel strains (Table 2) were subjected to a pangenome
calculation using PGAP (Pan-Genomes Analysis Pipeline) (56). In order to reduce genome content
redundancy, all analyses included a single type strain of each (sub)species. The ORF content of all
assessed genomes was organized into functional gene clusters using the GF (gene family) method, which
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involves comparison of each protein to all other proteins using BLAST analysis, followed by clustering
into protein families named as Bifidobacterium-specific clusters of orthologous genes (BifCOGs; cutoff E
value of 1 � 10�5 and 50% identity across at least 80% of both protein sequences), using MCL (a
graph-theory-based Markov cluster algorithm) (57). Pangenome profiles were built using an optimized
algorithm incorporated into PGAP software, based on a presence/absence matrix that included all
identified BifCOGs in the analyzed genomes. Consequently, the unique protein families for each
bifidobacterial genome were classified. Protein families shared between all genomes, named core
BifCOGs, were defined by selecting the families that contained at least one single protein member for
each genome.

Phylogenomic comparison between strains. The concatenated core genome sequences of the
genus Bifidobacterium were aligned using MAFFT (Multiple Alignment using Fast Fourier Transform) (58),
and the corresponding phylogenomic tree was constructed using the neighbor-joining method in Clustal
W version 2.1 (59). The core genome tree was built using FigTree (http://tree.bio.ed.ac.uk/software/
figtree/). For each genome pair, a value for the average nucleotide identity (ANI) was calculated using
the program JSpecies version 1.2.1 (35). Clusters based on ANI values between bacterial strains were
constructed using Multiple Experiment Viewer (MeV) software (60). The Genome-to-Genome Distance
Calculator (GGDC) version 2.1 was employed to estimate the DNA-DNA hybridization (DDH) between
bifidobacterial taxa using the recommended “Formula 2” (identities/high-scoring segment pairs length)
(43).

Accession number(s). The 13 bifidobacterial genome sequences have been deposited at DDBJ/ENA/
GenBank under the accession numbers reported in Table 1.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.02249-17.

SUPPLEMENTAL FILE 1, PDF file, 1.6 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
This work was funded by the EU Joint Programming Initiative—A Healthy Diet for a

Healthy Life (JPI HDHL, http://www.healthydietforhealthylife.eu/) to D.V.S. (in conjunc-
tion with Science Foundation Ireland [SFI], grant 15/JP-HDHL/3280) and to M.V. (in
conjunction with MIUR, Italy). We thank GenProbio srl for financial support of the
Laboratory of Probiogenomics. L.M. is supported by Fondazione Cariparma, Parma,
Italy. D.V.S. is a member of the APC Microbiome Institute, funded by Science Founda-
tion Ireland (SFI) through the Irish Government’s National Development Plan (grant
SFI/12/RC/2273).

Part of this research was conducted using the high performance computing (HPC)
facility of the University of Parma.

We declare that we have no competing interests.

REFERENCES
1. Wayne LG. 1988. International Committee on Systematic Bacteriology:

announcement of the report of the Ad Hoc Committee on Reconciliation
of Approaches to Bacterial Systematics. Zentralbl Bakteriol Mikrobiol
Hyg A 268:433– 434.

2. Stackebrandt E, Goebel BM. 1994. Taxonomic note: a place for DNA-DNA
reassociation and 16S rRNA sequence analysis in the present species
definition in bacteriology. Int J Syst Bacteriol 44:846 – 849. https://doi
.org/10.1099/00207713-44-4-846.

3. Rossello-Mora R, Amann R. 2001. The species concept for prokaryotes.
FEMS Microbiol Rev 25:39 – 67. https://doi.org/10.1111/j.1574-6976.2001
.tb00571.x.

4. Fox GE, Wisotzkey JD, Jurtshuk P, Jr. 1992. How close is close: 16S rRNA
sequence identity may not be sufficient to guarantee species identity. Int J
Syst Bacteriol 42:166–170. https://doi.org/10.1099/00207713-42-1-166.

5. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P,
Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin
L, Ward AC, Whitman WB. 2002. Report of the ad hoc committee for
the re-evaluation of the species definition in bacteriology. Int J Syst
Evol Microbiol 52:1043–1047. https://doi.org/10.1099/00207713-52-3
-1043.

6. Cooper JE, Feil EJ. 2004. Multilocus sequence typing—what is re-
solved? Trends Microbiol 12:373–377. https://doi.org/10.1016/j.tim
.2004.06.003.

7. Vernikos G, Medini D, Riley DR, Tettelin H. 2015. Ten years of pan-
genome analyses. Curr Opin Microbiol 23:148 –154. https://doi.org/10
.1016/j.mib.2014.11.016.

8. Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M, Sentausa E,
Raoult D, Fournier PE. 2014. A polyphasic strategy incorporating genomic
data for the taxonomic description of novel bacterial species. Int J Syst Evol
Microbiol 64:384–391. https://doi.org/10.1099/ijs.0.057091-0.

9. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M,
Sanchez B, Viappiani A, Mancabelli L, Taminiau B, Delcenserie V,
Barrangou R, Margolles A, van Sinderen D, Ventura M. 2014. Genomic
encyclopedia of type strains of the genus Bifidobacterium. Appl En-
viron Microbiol 80:6290 – 6302. https://doi.org/10.1128/AEM.02308
-14.

10. Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K, Duranti S, Turroni
F, Ferrario C, Ossiprandi MC, van Sinderen D, Ventura M. 2017. Unveiling
bifidobacterial biogeography across the mammalian branch of the tree of
life. ISME J 11:2834–2847. https://doi.org/10.1038/ismej.2017.138.

11. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF,
van Sinderen D. 2007. Genomics of Actinobacteria: tracing the evolution-
ary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548.
https://doi.org/10.1128/MMBR.00005-07.

12. O’Callaghan A, Bottacini F, O’Connell Motherway M, van Sinderen D.
2015. Pangenome analysis of Bifidobacterium longum and site-directed

Lugli et al. Applied and Environmental Microbiology

February 2018 Volume 84 Issue 4 e02249-17 aem.asm.org 12

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://doi.org/10.1128/AEM.02249-17
https://doi.org/10.1128/AEM.02249-17
http://www.healthydietforhealthylife.eu/
https://doi.org/10.1099/00207713-44-4-846
https://doi.org/10.1099/00207713-44-4-846
https://doi.org/10.1111/j.1574-6976.2001.tb00571.x
https://doi.org/10.1111/j.1574-6976.2001.tb00571.x
https://doi.org/10.1099/00207713-42-1-166
https://doi.org/10.1099/00207713-52-3-1043
https://doi.org/10.1099/00207713-52-3-1043
https://doi.org/10.1016/j.tim.2004.06.003
https://doi.org/10.1016/j.tim.2004.06.003
https://doi.org/10.1016/j.mib.2014.11.016
https://doi.org/10.1016/j.mib.2014.11.016
https://doi.org/10.1099/ijs.0.057091-0
https://doi.org/10.1128/AEM.02308-14
https://doi.org/10.1128/AEM.02308-14
https://doi.org/10.1038/ismej.2017.138
https://doi.org/10.1128/MMBR.00005-07
http://aem.asm.org


mutagenesis through by-pass of restriction-modification systems. BMC
Genomics 16:832. https://doi.org/10.1186/s12864-015-1968-4.

13. Ventura M, Turroni F, Lugli GA, van Sinderen D. 2014. Bifidobacteria and
humans: our special friends, from ecological to genomics perspectives. J
Sci Food Agric 94:163–168. https://doi.org/10.1002/jsfa.6356.

14. Whitman W, Goodfellow M, Kampfer P, Busse H-J, Trujillo M, Ludwig W,
Suzuki K-I, Parte A (ed). 2012. The actinobacteria. Bergey’s manual of
systematic bacteriology, vol. 5. Springer-Verlag, New York, NY.

15. Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L, Sanchez B, Ferrario
C, Viappiani A, Mangifesta M, Mancino W, Gueimonde M, Margolles A,
van Sinderen D, Ventura M. 2015. Insights from genomes of represen-
tatives of the human gut commensal Bifidobacterium bifidum. Environ
Microbiol 17:2515–2531. https://doi.org/10.1111/1462-2920.12743.

16. Bottacini F, O’Connell Motherway M, Kuczynski J, O’Connell KJ, Serafini
F, Duranti S, Milani C, Turroni F, Lugli GA, Zomer A, Zhurina D, Riedel C,
Ventura M, van Sinderen D. 2014. Comparative genomics of the Bifido-
bacterium breve taxon. BMC Genomics 15:170. https://doi.org/10.1186/
1471-2164-15-170.

17. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LM. 2012. Bifido-
bacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacte-
rium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifido-
bacterium biavatii sp. nov. isolated from faeces of common marmoset
(Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl
Microbiol 35:92–97. https://doi.org/10.1016/j.syapm.2011.11.006.

18. Tsuchida S, Takahashi S, Nguema PP, Fujita S, Kitahara M, Yamagiwa J,
Ngomanda A, Ohkuma M, Ushida K. 2014. Bifidobacterium moukalabense
sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla
gorilla gorilla). Int J Syst Evol Microbiol 64:449 – 455. https://doi.org/10
.1099/ijs.0.055186-0.

19. Modesto M, Michelini S, Stefanini I, Sandri C, Spiezio C, Pisi A, Filippini G,
Biavati B, Mattarelli P. 2015. Bifidobacterium lemurum sp. nov., from
faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol
65:1726 –1734. https://doi.org/10.1099/ijs.0.000162.

20. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M, Mattarelli P,
Biavati B, Watanabe K. 2016. Bifidobacterium myosotis sp. nov., Bifido-
bacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated
from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst
Evol Microbiol 66:255–265. https://doi.org/10.1099/ijsem.0.000708.

21. Michelini S, Modesto M, Pisi AM, Filippini G, Sandri C, Spiezio C, Biavati
B, Sgorbati B, Mattarelli P. 2016. Bifidobacterium eulemuris sp. nov.
isolated from the faeces of the black lemur (Eulemur macaco). Int J Syst
Evol Microbiol 66:1567–1576. https://doi.org/10.1099/ijsem.0.000924.

22. Stropko SJ, Pipes SE, Newman JD. 2014. Genome-based reclassification
of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and
emended description of Bacillus indicus. Int J Syst Evol Microbiol 64:
3804 –3809. https://doi.org/10.1099/ijs.0.068205-0.

23. Dunlap CA. 2015. Phylogenomic analysis shows that ‘Bacillus vanillea’ is
a later heterotypic synonym of Bacillus siamensis. Int J Syst Evol Micro-
biol 65:3507–3510. https://doi.org/10.1099/ijsem.0.000444.

24. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL,
Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM,
Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram
JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan
SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N,
Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S,
Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL,
Telford JL, Wessels MR, Rappuoli R, Fraser CM. 2005. Genome analysis of
multiple pathogenic isolates of Streptococcus agalactiae: implications for
the microbial “pan-genome.” Proc Natl Acad Sci U S A 102:13950 –13955.
https://doi.org/10.1073/pnas.0506758102.

25. Tettelin H, Riley D, Cattuto C, Medini D. 2008. Comparative genomics:
the bacterial pan-genome. Curr Opin Microbiol 11:472– 477. https://doi
.org/10.1016/j.mib.2008.09.006.

26. Jacobsen A, Hendriksen RS, Aaresturp FM, Ussery DW, Friis C. 2011. The
Salmonella enterica pan-genome. Microb Ecol 62:487–504. https://doi
.org/10.1007/s00248-011-9880-1.

27. Rouli L, Merhej V, Fournier PE, Raoult D. 2015. The bacterial pangenome
as a new tool for analysing pathogenic bacteria. New Microbes New
Infect 7:72– 85. https://doi.org/10.1016/j.nmni.2015.06.005.

28. Kweon O, Kim SJ, Blom J, Kim SK, Kim BS, Baek DH, Park SI, Sutherland
JB, Cerniglia CE. 2015. Comparative functional pan-genome analyses to
build connections between genomic dynamics and phenotypic evolu-
tion in polycyclic aromatic hydrocarbon metabolism in the genus My-

cobacterium. BMC Evol Biol 15:21. https://doi.org/10.1186/s12862-015
-0302-8.

29. Milani C, Duranti S, Lugli GA, Bottacini F, Strati F, Arioli S, Foroni E,
Turroni F, van Sinderen D, Ventura M. 2013. Comparative genomics of
Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifi-
dobacterial taxon. Appl Environ Microbiol 79:4304 – 4315. https://doi
.org/10.1128/AEM.00984-13.

30. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P,
Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Spe-
randio V, Ravel J. 2008. The pangenome structure of Escherichia coli:
comparative genomic analysis of E. coli commensal and pathogenic
isolates. J Bacteriol 190:6881– 6893. https://doi.org/10.1128/JB.00619-08.

31. Daubin V, Gouy M, Perriere G. 2002. A phylogenomic approach to
bacterial phylogeny: evidence of a core of genes sharing a common
history. Genome Res 12:1080 –1090. https://doi.org/10.1101/gr.187002.

32. Daubin V, Gouy M, Perriere G. 2001. Bacterial molecular phylogeny using
supertree approach. Genome Inform 12:155–164.

33. Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C, Viappiani A, Manca-
belli L, Mangifesta M, Taminiau B, Delcenserie V, van Sinderen D, Ventura
M. 2014. Investigation of the evolutionary development of the genus
Bifidobacterium by comparative genomics. Appl Environ Microbiol 80:
6383– 6394. https://doi.org/10.1128/AEM.02004-14.

34. Ventura M, Canchaya C, Del Casale A, Dellaglio F, Neviani E, Fitzgerald
GF, van Sinderen D. 2006. Analysis of bifidobacterial evolution using a
multilocus approach. Int J Syst Evol Microbiol 56:2783–2792. https://doi
.org/10.1099/ijs.0.64233-0.

35. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for
the prokaryotic species definition. Proc Natl Acad Sci U S A 106:
19126 –19131. https://doi.org/10.1073/pnas.0906412106.

36. Konstantinidis KT, Ramette A, Tiedje JM. 2006. The bacterial species
definition in the genomic era. Philos Trans R Soc Lond B Biol Sci
361:1929 –1940. https://doi.org/10.1098/rstb.2006.1920.

37. Briczinski EP, Loquasto JR, Barrangou R, Dudley EG, Roberts AM, Roberts
RF. 2009. Strain-specific genotyping of Bifidobacterium animalis subsp.
lactis by using single-nucleotide polymorphisms, insertions, and dele-
tions. Appl Environ Microbiol 75:7501–7508. https://doi.org/10.1128/
AEM.01430-09.

38. Ventura M, Reniero R, Zink R. 2001. Specific identification and targeted
characterization of Bifidobacterium lactis from different environmental
isolates by a combined multiplex-PCR approach. Appl Environ Microbiol
67:2760 –2765. https://doi.org/10.1128/AEM.67.6.2760-2765.2001.

39. Simpson PJ, Fitzgerald GF, Stanton C, Ross RP. 2004. The evaluation of a
mupirocin-based selective medium for the enumeration of bifidobacte-
ria from probiotic animal feed. J Microbiol Methods 57:9 –16. https://doi
.org/10.1016/j.mimet.2003.11.010.

40. Milani C, Lugli GA, Turroni F, Mancabelli L, Duranti S, Viappiani A,
Mangifesta M, Segata N, van Sinderen D, Ventura M. 2014. Evaluation of
bifidobacterial community composition in the human gut by means of
a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol Ecol
90:493–503. https://doi.org/10.1111/1574-6941.12410.

41. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L, Mangifesta M,
Ferrario C, Modesto M, Mattarelli P, Jiri K, van Sinderen D, Ventura M.
2017. Comparative genomic and phylogenomic analyses of the
Bifidobacteriaceae family. BMC Genomics 18:568. https://doi.org/10
.1186/s12864-017-3955-4.

42. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P,
Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to
whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91.
https://doi.org/10.1099/ijs.0.64483-0.

43. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-
based species delimitation with confidence intervals and improved
distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471
-2105-14-60.

44. Duranti S, Mangifesta M, Lugli GA, Turroni F, Anzalone R, Milani C,
Mancabelli L, Ossiprandi MC, Ventura M. 2017. Bifidobacterium vansin-
derenii sp. nov., isolated from faeces of emperor tamarin (Saguinus
imperator). Int J Syst Evol Microbiol 67:3987–3995. https://doi.org/10
.1099/ijsem.0.002243.

45. Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A,
van Sinderen D, Ventura M. 2009. Microbiomic analysis of the bifidobac-
terial population in the human distal gut. ISME J 3:745–751. https://doi
.org/10.1038/ismej.2009.19.

46. Ventura M, Zink R. 2002. Rapid identification, differentiation, and pro-
posed new taxonomic classification of Bifidobacterium lactis. Appl Envi-

Identification of Novel Bifidobacterial Species Applied and Environmental Microbiology

February 2018 Volume 84 Issue 4 e02249-17 aem.asm.org 13

https://doi.org/10.1186/s12864-015-1968-4
https://doi.org/10.1002/jsfa.6356
https://doi.org/10.1111/1462-2920.12743
https://doi.org/10.1186/1471-2164-15-170
https://doi.org/10.1186/1471-2164-15-170
https://doi.org/10.1016/j.syapm.2011.11.006
https://doi.org/10.1099/ijs.0.055186-0
https://doi.org/10.1099/ijs.0.055186-0
https://doi.org/10.1099/ijs.0.000162
https://doi.org/10.1099/ijsem.0.000708
https://doi.org/10.1099/ijsem.0.000924
https://doi.org/10.1099/ijs.0.068205-0
https://doi.org/10.1099/ijsem.0.000444
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1016/j.mib.2008.09.006
https://doi.org/10.1016/j.mib.2008.09.006
https://doi.org/10.1007/s00248-011-9880-1
https://doi.org/10.1007/s00248-011-9880-1
https://doi.org/10.1016/j.nmni.2015.06.005
https://doi.org/10.1186/s12862-015-0302-8
https://doi.org/10.1186/s12862-015-0302-8
https://doi.org/10.1128/AEM.00984-13
https://doi.org/10.1128/AEM.00984-13
https://doi.org/10.1128/JB.00619-08
https://doi.org/10.1101/gr.187002
https://doi.org/10.1128/AEM.02004-14
https://doi.org/10.1099/ijs.0.64233-0
https://doi.org/10.1099/ijs.0.64233-0
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1098/rstb.2006.1920
https://doi.org/10.1128/AEM.01430-09
https://doi.org/10.1128/AEM.01430-09
https://doi.org/10.1128/AEM.67.6.2760-2765.2001
https://doi.org/10.1016/j.mimet.2003.11.010
https://doi.org/10.1016/j.mimet.2003.11.010
https://doi.org/10.1111/1574-6941.12410
https://doi.org/10.1186/s12864-017-3955-4
https://doi.org/10.1186/s12864-017-3955-4
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1186/1471-2105-14-60
https://doi.org/10.1186/1471-2105-14-60
https://doi.org/10.1099/ijsem.0.002243
https://doi.org/10.1099/ijsem.0.002243
https://doi.org/10.1038/ismej.2009.19
https://doi.org/10.1038/ismej.2009.19
http://aem.asm.org


ron Microbiol 68:6429 – 6434. https://doi.org/10.1128/AEM.68.12.6429
-6434.2002.

47. Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B,
Martin R, Gueimonde M, van Sinderen D, Margolles A, Ventura M. 2013.
Assessing the fecal microbiota: an optimized ion torrent 16S rRNA
gene-based analysis protocol. PLoS One 8:e68739. https://doi.org/10
.1371/journal.pone.0068739.

48. Lugli GA, Milani C, Mancabelli L, van Sinderen D, Ventura M. 2016.
MEGAnnotator: a user-friendly pipeline for microbial genomes assembly
and annotation. FEMS Microbiol Lett 363:fnw049. https://doi.org/10
.1093/femsle/fnw049.

49. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai
S. 2004. Using the miraEST assembler for reliable and automated mRNA
transcript assembly and SNP detection in sequenced ESTs. Genome Res
14:1147–1159. https://doi.org/10.1101/gr.1917404.

50. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010.
Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471
-2105-11-119.

51. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detec-
tion of transfer RNA genes in genomic sequence. Nucleic Acids Res
25:955–964. https://doi.org/10.1093/nar/25.5.0955.

52. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW.
2007. RNAmmer: consistent and rapid annotation of ribosomal RNA
genes. Nucleic Acids Res 35:3100 –3108. https://doi.org/10.1093/nar/
gkm160.

53. Zhao Y, Tang H, Ye Y. 2012. RAPSearch2: a fast and memory-efficient
protein similarity search tool for next-generation sequencing data. Bioin-
formatics 28:125–126. https://doi.org/10.1093/bioinformatics/btr595.

54. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger
A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M.
2014. Pfam: the protein families database. Nucleic Acids Res 42:
D222–230. https://doi.org/10.1093/nar/gkt1223.

55. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA,
Barrell B. 2000. Artemis: sequence visualization and annotation. Bioin-
formatics 16:944 –945. https://doi.org/10.1093/bioinformatics/16.10.944.

56. Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. 2012. PGAP: pan-genomes
analysis pipeline. Bioinformatics 28:416 – 418. https://doi.org/10.1093/
bioinformatics/btr655.

57. Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res 30:
1575–1584. https://doi.org/10.1093/nar/30.7.1575.

58. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res 30:3059 –3066. https://doi.org/10.1093/nar/gkf436.

59. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam
H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins
DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.
https://doi.org/10.1093/bioinformatics/btm404.

60. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa
M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D,
Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V,
Quackenbush J. 2003. TM4: a free, open-source system for microarray
data management and analysis. Biotechniques 34:374 –378.

61. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van
Sinderen D, Ventura M. 2016. Genomics of the genus Bifidobacterium
reveals species-specific adaptation to the glycan-rich gut environ-
ment. Appl Environ Microbiol 82:980 –991. https://doi.org/10.1128/
AEM.03500-15.

62. Bottacini F, Milani C, Turroni F, Sanchez B, Foroni E, Duranti S, Serafini F,
Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P,
Fitzgerald GF, Margolles A, van Sinderen D, Ventura M. 2012. Bifidobac-
terium asteroides PRL2011 genome analysis reveals clues for coloniza-
tion of the insect gut. PLoS One 7:e44229. https://doi.org/10.1371/
journal.pone.0044229.

Lugli et al. Applied and Environmental Microbiology

February 2018 Volume 84 Issue 4 e02249-17 aem.asm.org 14

https://doi.org/10.1128/AEM.68.12.6429-6434.2002
https://doi.org/10.1128/AEM.68.12.6429-6434.2002
https://doi.org/10.1371/journal.pone.0068739
https://doi.org/10.1371/journal.pone.0068739
https://doi.org/10.1093/femsle/fnw049
https://doi.org/10.1093/femsle/fnw049
https://doi.org/10.1101/gr.1917404
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/nar/25.5.0955
https://doi.org/10.1093/nar/gkm160
https://doi.org/10.1093/nar/gkm160
https://doi.org/10.1093/bioinformatics/btr595
https://doi.org/10.1093/nar/gkt1223
https://doi.org/10.1093/bioinformatics/16.10.944
https://doi.org/10.1093/bioinformatics/btr655
https://doi.org/10.1093/bioinformatics/btr655
https://doi.org/10.1093/nar/30.7.1575
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1128/AEM.03500-15
https://doi.org/10.1128/AEM.03500-15
https://doi.org/10.1371/journal.pone.0044229
https://doi.org/10.1371/journal.pone.0044229
http://aem.asm.org

	RESULTS AND DISCUSSION
	Pangenome reconstruction among members of the genus Bifidobacterium. 
	Phylogenetic and phylogenomic analyses of bifidobacterial type strains. 
	Evaluation of intraspecies variability between bifidobacterial genomes. 
	Genome sequencing as the most current standard for taxonomic classification of bifidobacteria. 
	Phylogenomic approach for the evaluation of novel bifidobacterial taxa. 
	Conclusions. 

	MATERIALS AND METHODS
	Bifidobacterial genome sequences. 
	Isolation of bifidobacterial species. 
	DNA extraction and amplification of 16S rRNA and ITS sequences. 
	Genome sequencing and assemblies. 
	Genome annotation. 
	Pangenome and identification of shared and unique genes. 
	Phylogenomic comparison between strains. 
	Accession number(s). 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

