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Abstract

A majority of methamphetamine (Meth) abusers also abuse alcohol but the neurochemical 

consequences of this co-abuse are unknown. Individually, alcohol and Meth cause inflammation 

and long-term alterations in dopamine and serotonin signaling within the brain. Experiments were 

conducted to identify if serial exposure to alcohol and Meth has neurochemical consequences that 

are greater than after either drug alone. Male Sprague Dawley rats voluntarily drank 10% ethanol 

(EtOH) every other day for 4 weeks and were then exposed to a binge injection regimen of Meth 

(10mg/kg injected every 2 hrs, for a total of 4 injections). EtOH drinking and preference increased 

over the 4 weeks and caused inflammation evidenced by increases in serum and brain 

lipopolysaccharide (LPS) and brain cyclooxygenase-2 (COX-2) 24 hours after the last day of 

drinking. Meth alone depleted dopamine and serotonin in the striatum, as well as serotonin in the 

prefrontal cortex when measured 1 week later. In contrast, EtOH drinking alone did not affect 

dopamine and serotonin content in the striatum and prefrontal cortex, but prior EtOH drinking 

followed by injections of Meth enhanced Meth-induced depletions of dopamine, serotonin, as well 

as dopamine and serotonin transporter immunoreactivities in a manner that was correlated with the 

degree of EtOH consumption. Cyclooxygenase inhibition by ketoprofen during EtOH drinking 

blocked the increases in LPS and COX-2 and the enhanced decreases in dopamine and serotonin 

produced by Meth. Therefore, prior EtOH drinking causes an increase in inflammatory mediators 

that mediate a synergistic interaction with Meth to cause an enhanced neurotoxicity.

Keywords

methamphetamine; alcohol; cyclooxygenase-2; lipopolysaccharide; monoamines

Correspondence: Bryan K. Yamamoto, Ph.D., Department of Pharmacology and Toxicology, MS A401, Indiana University School of 
Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, brkyama@iu.edu, TEL: 317-278-8590. 

Compliance with Ethical Standards
The authors declare that they have no conflict of interest.
All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at 
which the studies were conducted.

HHS Public Access
Author manuscript
J Neuroimmune Pharmacol. Author manuscript; available in PMC 2019 March 01.

Published in final edited form as:
J Neuroimmune Pharmacol. 2018 March ; 13(1): 53–63. doi:10.1007/s11481-017-9764-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Alcohol and methamphetamine (Meth) are often abused together and present a co-morbidity 

such that 77% of people diagnosed with amphetamine dependence also have an alcohol use 

disorder (Stinson et al. 2005). Similarly, within the population of Meth users, alcohol 

consumption increases the probability of Meth use by four-fold (Bujarski et al. 2014). 

Despite this co-morbidity, little is known about the neurochemical consequences of their co-

abuse even though both drugs share similar neuropharmacological and neurochemical 

profiles and produce oxidative stress after their combined use (Vaghef et al. 2014; Althobaiti 

et al. 2016).

Markers of Meth-induced neurotoxicity that are suggestive of degeneration of dopamine 

(DA) and serotonin (5HT) nerve terminals include long-term depletions of DA and 5HT 

content as well as decreases in the transporters for dopamine (DAT) and serotonin (SERT) 

within the brain (Seiden et al. 1976; Wagner et al. 1980; Ricaurte et al. 1980; Volkow et al. 

2001). Factors known to commonly contribute to the observed nerve terminal degradation 

and long-term decreases in monoamine neurotransmission produced by either Meth or 

alcohol include reactive oxygen species (ROS), glutamate-mediated excitotoxicity, and 

inflammation (Mirecki et al. 2004; Nash and Yamamoto 1992; Thomas et al. 2004; Blanco 

et al. 2004; Vallés et al. 2004) but it remains unknown if they play a role in the possible co-

morbid effects of EtOH and Meth.

Inflammation within the gastrointestinal (GI) tract is associated with excessive alcohol 

consumption (Fleming et al. 2001). The gut contains a GI-blood barrier comparable to the 

blood-brain barrier, which prevents toxins such as gram-negative bacteria containing 

lipopolysaccharide (LPS) from exiting the lumen and entering the bloodstream. However, 

the GI-blood barrier is compromised by alcohol metabolism within the intestinal epithelium 

resulting in degradation of tight junction proteins lining the gut mucosa (Elamin et al. 2014), 

an increased permeability of the intestinal wall, and the eventual entrance of LPS into the 

circulation (Ferrier et al. 2006). Consequently, LPS escapes the lumen and initiates a pro-

inflammatory cascade (Qin and Crews 2012). In contrast, less is known about the 

inflammatory consequences of Meth in the periphery, but Loftis et al. (2011) observed Meth-

induced increases in circulating pro-inflammatory chemokines in both rodents and humans. 

Moreover, case studies of human Meth users have documented evidence of ischemic colitis 

and other GI tract abnormalities (Johnson and Berenson 1991) that produce inflammatory 

mediators and can potentiate a neuroinflammatory state (Banks 2005).

The neuroinflammation that ensues from peripheral inflammation has been reported to 

contribute to Meth and alcohol abuse. Activation of microglia and consequently, the 

upregulation of cyclooxygenase-2 (COX-2) mRNA in the brain is known to play a key role 

in DA nerve terminal damage observed in mice after Meth exposure (Thomas et al. 2004). In 

contrast, COX-2 knockout mice are protected against Meth-induced toxicity (Thomas and 

Kuhn 2005). Alcohol consumption also increases COX-2 through activation of the toll-like 

receptor 4 (TLR4) by LPS to produce other pro-inflammatory mediators and apoptosis in the 

brain. Interestingly, TLR4-deficient mice do not exhibit increased COX-2 and apoptosis 
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after alcohol exposure (Alfonso-Loeches et al. 2010). Thus, inflammation is a common 

denominator in mediating the neurotoxicity to both alcohol and Meth.

The current study employed a paradigm that approximates the serial exposure of humans to 

alcohol and Meth by allowing rats to voluntarily and intermittently drink ethanol (EtOH) 

prior to challenge injections of Meth. It was hypothesized that voluntary ethanol drinking 

would produce a peripheral inflammatory response that increases the vulnerability to Meth 

neurotoxicity evidenced by the enhancement of long-term depletions in DA and 5HT content 

as well as DAT and SERT. Moreover, we posited that the blockade of the inflammatory 

response that is restricted to the time of EtOH exposure only, would mitigate the enhanced 

neurotoxicity observed after subsequent exposure to Meth.

Materials and Methods

Animals

Male Sprague Dawley rats (250–300 g, Envigo, Indianapolis, IN) were allowed to acclimate 

to the animal colony at Indiana University for 4 days before the start of any experiments and 

had ad libitum access to food and water throughout the experiments. All experiments were 

carried out in accordance with the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals and approved by the Indiana University Institutional Animal Care 

and Use Committee.

Drug Treatments

Rats were housed individually and had access on alternating days to either 2 water bottles or 

simultaneous access to a water bottle and a bottle containing 10% EtOH as described by Li 

et al. (2011). To prevent position bias, the placements of the water and EtOH bottles were 

changed before every EtOH exposure. To calculate EtOH intake (g/kg) and preference (% 

total volume ingested), rats and drinking bottles were weighed at the same time every day at 

the end of each 24 hour access period. The amount of EtOH consumed was calculated based 

on the density of EtOH and normalized to the weight of the rat.

A separate, subset of rats was exposed to a 20% EtOH gavage (6g/kg) once per day for 7 

days. EtOH was administered at the same time every day.

One day after the last exposure to EtOH drinking or gavage, rats were exposed to a binge 

Meth injection regimen. (+) Methamphetamine-hydrochloride (Sigma, St. Louis, MO, cat# 

M-8750) was dissolved in 0.9% saline and administered intraperitoneally at a dose of 10 

mg/kg, once every 2 hr for a total of 4 injections. Control rats received 0.9% saline 

injections (1 mL/kg) at the same time. This paradigm of Meth exposure is comparable to 

that used by human Meth users (McCann et al. 1998) and produces deficits in dopamine 

transmission (Volkow et al. 2001; Callaghan et al. 2012). This binge injection paradigm was 

chosen over the self-administration procedure because it is well-suited for studying the dose-

dependent pharmacological interactions with EtOH. It utilizes a well-documented and 

specific dose of Meth over a defined time window after the exposure to EtOH and avoids the 

confounds of more protracted and variable times required to train rats to self-administer a 

given Meth dose.
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Body temperatures were monitored remotely throughout Meth injections via transponders 

(IPTT-300 transponder, BMDS) implanted subcutaneously and body temperatures were 

remotely measured every 30 min.

Ketoprofen, a nonselective cyclooxygenase inhibitor, was purchased from Sigma (St. Louis, 

MO, Cat. K1751), dissolved in 100% transcutol (gift from Gattefosse Corporation, Paramus, 

NJ, USA) and diluted 1:4 with Millipore water resulting in a final solution of 2.5 mg/mL 

ketoprofen in 25% transcutol. Based on a 12 hr half-life (Foster and Jamali 1988), 

ketoprofen (5 mg/kg) or transcutol was administered subcutaneously to rats twice per day 

during the 24 hr when EtOH was unavailable. This dose has been shown to attenuate Meth-

induced decreases in DAT immunoreactivity (Asanuma et al. 2003).

Blood Alcohol Concentrations (BAC) and Brain Meth

BAC was measured via gas chromatography. Blood was collected in heparinized capillary 

tubes 15 min after the last dose of EtOH gavage or 4 hrs into the dark cycle of the drinking 

rats on Day 28. The time of collection was based on a pilot study showing this time point 

was the peak drinking period of EtOH. The blood was centrifuged for 45 seconds in a 

Microfuge to collect the plasma supernatant and the EtOH concentrations were analyzed via 

the Analox Analyzer (model GL5; Analox Instruments USA, Lunenburg, MA). EtOH 

concentrations are expressed as mg% (milligrams per deciliter). Brain Meth concentrations 

were measured within the striatum as described previously (Truong et al. 2005) with a 

ThemoQuest Quantum liquid chromatography tandem mass spectrometer (Thermo Electron 

Corporation, Walham, MA) at the University of Utah Center for Human Toxicology. The 

lower limit of quantitation was 0.5 ng/ml.

Lipopolysaccharide measurements

Twenty four hr after the last day of EtOH drinking, rats were euthanized. Trunk blood was 

collected in non-heparinized tubes and allowed to coagulate for 90 min on wet ice. The 

blood was then centrifuged at 3,000 × g for 10 min and supernatant was collected as serum. 

Brains were rapidly removed and prefrontal cortex and striatal tissue were dissected and 

frozen immediately on dry ice. Tissue was sonicated in RIPA buffer and protein was 

quantified via Bradford assay. Serum and brain endotoxin were measured using the Limulus 

Amebocyte Lysate QCL-1000™ (Lonza, Walkersville, MD) at 24 hrs after the last EtOH 

exposure as a measure of inflammation to EtOH alone that was present prior to and during 

the Meth injections. A subset of rats receiving ketoprofen during EtOH drinking were 

euthanized at the same time to assess the effects on LPS.

Western Blotting

Twenty four hr after the last day of EtOH drinking, rats were euthanized for COX-2 

quantification. A subset of rats that received EtOH and Meth were decapitated at 7 days for 

DAT and SERT measurements. COX-2 assays were performed on prefrontal cortex and 

striata that were dissected upon ice and homogenized in RIPA buffer. DAT and SERT assays 

were conducted on crude synaptosomal fractions. Tissue was homogenized in 0.32M sucrose 

and centrifuged at 800 × g for 24 minutes at 4°C to pellet insoluble material. Supernatant 

(S1) was collected and centrifuged at 22,000 × g for 17 minutes at 4°C. The supernatant 
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from the second spin (S2) was discarded, and the remaining pellet containing the 

synaptosomes was re-suspended in ice-cold Millipore-purified water (Millipore Bioscience 

Research Reagents, Temecula, CA). Bradford assays quantified protein content. Tissue 

homogenate was diluted in Novex 4X LDS sample buffer and 30μg was loaded onto a 

NuPAGE Novex 4–12% Bis-Tris gel for gel electrophoresis at 150V for 90 min. Proteins 

were then transferred onto PVDF membranes for 2 hr at 28V and incubated with primary 

antibody for COX-2 (1:500, anti-rabbit, Cell Signaling cat#12282S), DAT (1:1000, anti-

goat, Santa Cruz cat#SC1433) or SERT (1:1000, anti-goat, Santa Cruz cat#SC1458) for 18 

hr at 4°C. Membranes were washed with TBS containing 0.5% Tween (TBS-T) and 

incubated with horseradish peroxidase-conjugated secondary antibody (goat anti-rabbit IgG, 

1:2500, Santa Cruz cat#SC2004 or rabbit anti-goat IgG, 1:2500, Santa Cruz cat#SC2768) for 

1 hr at room temperature. Membranes were then incubated with HyGLO-enhanced 

chemiluminescence and imaged with a FujiFilm LAS-4000 camera. Band density was 

quantified using Multi-Gauge V3.1 software and normalized against β-actin (1:3000, 

Millipore cat#MAB1501).

Dopamine and 5HT Content

Tissue from the other hemisphere of the aforementioned rats euthanized 7 days after drug 

exposure was sonicated in 0.25 N perchloric acid and centrifuged at a speed of 14,000 × g 
for 20 min at 4°C. Supernatant was removed and injected onto a C18 column (250 × 4.6mm, 

5μm particle diameter, Varian) for determination of monoamine content via high-

performance liquid chromatography (HPLC) using a LC-4C amperometric detector (Bio-

analytical Systems) and EZChrom ® software. The mobile phase contained citric acid 

anhydrous (21.0 g/L), sodium phosphate dibasic (10.65 g/L), octane sulfonic acid (470 g/L), 

15% methanol, and pH 4.0. The remaining pellet after centrifugation was resuspended and 

dissolved in 1 N NaOH overnight at 4°C and protein content determined by the Bradford 

assay. DA and 5HT concentrations were normalized to total protein content. A subset of rats 

receiving ketoprofen during EtOH drinking were euthanized at the same time to assess the 

effects of ketoprofen on monoamine concentrations.

Statistical Analyses

EtOH intake and preference were analyzed using one-way repeated-measures ANOVA, 

whereas LPS, and COX-2 were analyzed using a t-test to compare between groups. 

Statistical analyses of Meth-induced monoamine and plasmalemmal transporter depletions 

after EtOH were conducted using either a two-way ANOVA and subsequent Tukey post hoc 

tests, or linear regression. A repeated-measures ANOVA was used to analyze body 

temperatures during Meth treatment. One-way ANOVAs were used to analyze LPS and 

COX-2 data with ketoprofen injections. A three-way ANOVA and subsequent Tukey post 

hoc analyses were performed to analyze monoamine content after the introduction of 

ketoprofen during EtOH drinking. All analyses were performed using SigmaPlot 13.0 

software (Systat Software, SigmaPlot for Windows). All data are presented as mean±SEM. 

Sample sizes were chosen to result in a power of 0.80 or greater, and alpha-level in all 

experiments is 0.05 or less.
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Results

Rats voluntarily drink 10% EtOH over 28 days

EtOH and water intake (g) were normalized to body weight (kg). A repeated-measures 

ANOVA revealed rats increased both intake (g/kg) and preference (% total fluid intake) for 

EtOH over 28 days (n=43; p<0.001; Fig. 1a–b). Importantly, total fluid intake over the 28 

days did not increase. Rats reached a mean intake of 5g/kg/24hr on Day 15 and continued to 

escalate EtOH intake, resulting in a peak mean intake of 8.9g/kg/24hr on Day 28.

Blood Alcohol and Brain Meth Concentrations

Blood alcohol concentrations were 146.29±2.2 mg% when measured 15 minutes after the 

last EtOH gavage on Day 7 and 70.88±1.9 mg% in drinking animals on Day 28. There were 

no significant differences between Water+Meth (2.80±0.77 ng/mg tissue) and EtOH+Meth 

(2.01±0.38 ng/mg tissue) in Meth concentrations within the striatum 2 hours after Meth 

(n=7/group).

Effects of EtOH drinking on serum LPS, brain LPS, and brain COX-2

Twenty four hr after the last EtOH exposure, LPS in serum and the striatum, and COX-2 in 

the striatum and the prefrontal cortex were determined. EtOH drinking increased serum LPS 

by 4-fold (t1,18= 2.01; p<0.05; Fig. 2a) and striatal LPS by 8-fold (t1,7= 4.80; p<0.05; Fig. 

2b). There was a significant increase in striatal and prefrontal cortex COX-2, which was 59.6 

±14.3% (t1,6= 3.04; p<0.05; Fig. 2c) and 65.3 ± 7.9% (t1,6= 4.87; p<0.05; Fig. 2d) greater, 

respectively, in EtOH-drinking rats compared to water-drinking rats. n=5–7/group.

Effects of EtOH drinking on Meth-induced hyperthermia

Meth-treated rats displayed elevated body temperatures compared to saline-treated rats over 

time (F3,176= 39.75; p<0.01; Fig. 3). However, previous exposure to EtOH did not increase 

body temperature compared to Water+Meth rats. Basal temperatures did not differ between 

Water+Meth (36.9±0.4°C) and EtOH+Meth (37.0±0.3°C) (F1,6=1.11; p>0.05; n=5/group). 

Meth significantly increased body temperatures for both Water+Meth (39.3±0.3°C; 

F1,6=78.95; p<0.05, n=6) and EtOH+Meth (39.5±0.3°C; F1,6=92.34; p<0.05; n=7) but the 

elevated body temperatures over the time course of Meth administration did not differ 

between the two groups (p>0.05). Ketoprofen administration did not affect Meth-induced 

hyperthermia in that the Water+Meth+ketoprofen group (39.2±0.4°C) did not differ from 

EtOH+Meth+ketoprofen group (39.5±0.5°C; F1,6=2.98; p>0.05; n=5–7/group).

Effects of prior EtOH on Meth-induced neurotransmitter concentrations

One day after the last EtOH exposure (either drinking or gavage), Meth was injected as 

described above to model binge Meth use, after which they were euthanized 7 days later. DA 

and 5HT content, as well as DAT and SERT immunoreactivities, were quantified in both the 

striatum and the prefrontal cortex. A two-way ANOVA revealed a significant Meth-induced 

decrease in striatal DA and 5HT in EtOH-drinking (DA: F1,17= 644.41; p<0.05; Fig. 4a; 

5HT: F1,19= 1152.83; p<0.05; Fig. 4b) and EtOH-gavaged rats (DA: F1,19= 1066.44; p<0.05; 
Fig. 4a; 5HT: F1,19= 680.05; p<0.05; Fig. 4b), as well as 5HT in the prefrontal cortex 
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(Drinking: F1,19= 969.40; p<0.05; Fig. 4c; Gavage: F1,19= 2206.78; p<0.05; Fig. 4c). DAT 

(Drinking: F1,19= 60.64; p<0.05; Gavage: F1,19= 65.87; p<0.05; Fig. 5a) and SERT in the 

striatum (Drinking: F1,9= 185.06; p<0.05; Gavage: F1,9= 203.54; p<0.05; Fig. 5b) and the 

prefrontal cortex (Drinking: F1,9= 183.42; p<0.05; Gavage: F1,9= 245.61; p<0.05; Fig. 5c) 

paralleled the depletions of DA and 5HT in EtOH-drinking rats. DA, DAT, 5HT, and SERT 

were depleted to a greater extent in EtOH drinking+Meth rats compared to Water+Meth rats 

(Tukey post hoc; DA: q=15.06; p<0.05; Fig. 4a; striatal 5HT: q=34.33; p<0.05; Fig. 4b; PFC 

5HT: q=26.15; p<0.05; Fig. 4c) as well as in EtOH-gavaged rats compared to Water+Meth 

(DA: q=23.96; p<0.05; Fig. 4a; striatal 5HT: q=19.34; p<0.05; Fig. 4b; PFC 5HT: q=35.040; 
p<0.05; Fig. 4c). EtOH alone did not deplete monoamines. Representative Western blots are 

shown for DAT and SERT in EtOH-drinking rats (n=5–7/group).

DA and 5HT content was assessed as a function of EtOH intake. Results showed a 

significant negative correlation between EtOH intake and changes in DA (r2=−0.89; 

p<0.001) and 5HT (striatum: r2=−0.58; prefrontal cortex: r2=−0.75; p<0.05) content 

produced by Meth (Fig. 6a–b) (n=10/group).

Effects of COX inhibition on LPS and COX-2 after EtOH and enhanced monoamine 
depletions after EtOH drinking and binge Meth administration

To examine the role of COX in mediating increases in inflammation after EtOH, the COX 

inhibitor, ketoprofen (5 mg/kg) was administered only during the days of intermittent EtOH 

withdrawal (28 injections total). Ketoprofen blocked EtOH-induced increases in LPS (n=4–

7/group; serum: F2,10= 39.40; p<0.01; striatum: F2,11= 870.187; p<0.01; Fig. 7a) and COX-2 

(n=4–7/group; F2,14= 173.82; p<0.01; Fig. 7b) at 24 hr after the last bout of EtOH. 

Monoamine concentrations did not differ between rats that drank EtOH and challenged with 

saline and those that drank just water. Rats that drank only water and were challenged with 

Meth showed a 50% reduction in striatal DA, a 40% reduction in 5HT within the striatum, 

and a 25% reduction in 5HT within the prefrontal cortex. Rats that drank EtOH and 

challenged with Meth showed enhanced neurotransmitter depletions evidenced by a 91% 

reduction in DA and 75% reduction in 5HT within the striatum and a 60% reduction in 5HT 

within the prefrontal cortex. Rats that received ketoprofen intermittently during the weeks of 

EtOH drinking did not differ compared to rats allowed to drink only water such that DA 

(n=5–12/group; q=24.9; p<0.01; Fig. 8a) and 5HT (n=5–12/group; striatum: q=13.62; 
p<0.01; Fig. 8b; prefrontal cortex: q=14.6; p<0.01; Fig. 8c) concentrations in ketoprofen-

treated rats were significantly higher compared to the EtOH+Meth rats treated with vehicle.

Discussion

EtOH drinking by intermittent exposure over a 28 day period produced inflammation 

marked by elevated serum LPS and eventual increases in striatal LPS and COX-2. 

Furthermore, EtOH drinking synergized with the subsequent exposure to Meth and depleted 

DA and 5HT in the striatum, 5HT in the prefrontal cortex, and their respective transporters, 

DAT and SERT, in a manner that was blocked by the inhibition of COX during EtOH 

exposure.
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Sprague Dawley rats voluntarily drank EtOH and increased their preference over 4 weeks. 

This escalation of drinking behavior is consistent with previous studies using a variety of rat 

strains that have employed a 2-bottle choice and intermittent access exposure paradigm 

(Simms et al. 2008; Bito-Onon et al. 2011; Li et al. 2011; Mill et al. 2013). Moreover, the 

amount of intake was similar to that reported in genetic alcohol preferring rats (Vengeliene 

et al. 2003; Bell et al. 2006). Therefore, this model of drinking has widespread applicability 

that can be used across multiple rat strains and is not limited to a genetic selection.

EtOH alone increased inflammation prior to Meth exposure, as indicated by increases in 

serum LPS at 24 hr after the last bout of EtOH drinking. This is likely due to GI barrier 

breakdown as LPS is associated with gram-negative bacteria and is normally restricted 

endogenously to the GI and respiratory tracts. Upon exposure of the GI tract to alcohol 

however, the lining of the GI tract is disrupted by reactive oxygen species that oxidize the 

microtubule skeleton of the epithelial cells and disassemble tight junctions such as occludin 

and claudin-3 within the small intestine (Elamin et al. 2014). The GI tract can then become 

permeable to LPS and enter the circulation (Ferrier et al. 2006) to activate peripheral 

macrophages and promote the transcription of NF-kB and secretion of inflammatory 

mediators such COX-2 and cytokines (Zuckerman et al. 1991; Eliopoulos et al. 2002).

The increase in inflammatory mediators is not limited to the periphery but can also readily 

cross the blood-brain barrier (BBB) to promote neuroinflammation (see Banks 2005 for 

review). The brain lymphatic system could also readily transport immune cells such as T-

cells across the BBB (Louveau et al. 2015). In addition, cross-talk between peripheral and 

central immune cells can be initiated at the BBB where LPS binds to the TLR4 receptor on 

brain capillary endothelial cells that in turn, signal an immune response across the BBB and 

into the brain parenchyma (Zhou et al. 2009). Along these lines, the current results show that 

LPS and COX-2 are increased in the brain and the periphery after the serial exposure to 

EtOH and Meth (Fig. 2). While peripheral LPS can elicit a neuroinflammatory response 

indirectly through its actions at the BBB (i.e. brain capillary endothelial cells), it does not 

readily cross the intact BBB since only 0.025% of LPS enters the brain (Banks and 

Robinson 2010). Therefore, the observed increases in brain LPS could be indicative of BBB 

breakdown due to Meth (Sharma and Ali 2006; Northrop and Yamamoto 2012) and when 

combined with EtOH.

LPS can also amplify the activation of microglia upon entrance into the brain and produce 

neuroinflammatory responses such as increases in COX-2 (Fig. 2c–d). Previous findings 

have shown that COX-2-facilitated inflammation is toxic to striatal DA and/or 5HT 

terminals (Vallés et al. 2004; Thomas et al. 2004) and are consistent with the dramatic long-

term decreases in DA and 5HT content, as well as decreases in DAT and SERT after the 

serial exposure to EtOH and Meth (Figs. 4–5).

Intermittent EtOH drinking by itself over the 28 day period did not affect DA and 5HT 

content, or DAT and SERT immunoreactivities within the brain. Meth alone produced a 45% 

depletion of DA and 5HT in the striatum and frontal cortex as well as a 40% depletion of 

DAT and SERT. Prior exposure to voluntary EtOH drinking potentiated Meth-induced 

depletions of the monoamines and their transporters and suggests a synergistic relationship 
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between the two drugs that enhances neurotoxicity. Furthermore, the depletions of DA and 

5HT were dose-dependent such that higher amounts of EtOH consumption produced greater 

decreases in DA and 5HT content in the striatum and prefrontal cortex after Meth (Fig. 6). 

This relationship clearly supports the interactive and causative effects of EtOH consumption 

on Meth-induced neurotoxicity.

The effects of alcohol on metabolism by the liver and hepatotoxicity are well-established. 

Similarly, we have reported that Meth also produces evidence of hepatotoxicity (Halpin and 

Yamamoto 2012). Thus, any interactive effects between EtOH and Meth may be due to their 

combined toxicity to the liver. However, voluntary EtOH drinking did not produce overt 

evidence of hepatotoxicity or alterations in ALT or AST (unpublished findings) and Meth 

concentrations in the brain were not changed by prior EtOH exposure. Thus, the synergistic 

depletions of monoamines observed after the serial exposure to EtOH and Meth are not due 

to decreased metabolism of Meth by the liver.

The finding that EtOH drinking alone increased COX-2 (Fig. 2c–d) is consistent with prior 

studies (Knapp and Crews 1999; Pascual et al. 2007) and suggests that prior EtOH exposure 

creates an inflammatory state that impacts the neurotoxic effects of Meth. The results show 

that ketoprofen during EtOH drinking blocked the increases in LPS and COX-2 produced by 

EtOH alone (Figs. 7a–b) as well as the supra-additive monoamine depletions after the 

challenge with Meth (Fig. 8a–c), indicating that EtOH-induced inflammation contributes to 

the enhanced toxicity produced by Meth. The neuroprotective effect of ketoprofen was 

observed despite the report that ketoprofen causes GI bleeding and ulcers (Shientag et al. 

2012) through the inhibition of COX-1 (see Crofford 1997 for review); however, the gastric 

damage and GI barrier breakdown should have increased rather than decreased the 

neurotoxicity produced by EtOH and Meth. Therefore, the efficacy of ketoprofen against the 

neurotoxicity is probably mediated by inhibition of COX-2. Ketoprofen also attenuated 

increases in LPS (Fig. 7a) and may have the additional benefit of blocking LPS-induced 

inflammation after EtOH and Meth. Since LPS can increase COX-2 mediated inflammation, 

as evidenced by proinflammatory cytokines and prostaglandin production (Walton et al. 

2009), and contribute to GI barrier breakdown, ketoprofen could decrease the amount of 

LPS translocating from the lumen to bloodstream. In addition, alterations in glutamate 

signaling are produced by alcohol (Crews et al. 2006) and Meth (Nash and Yamamoto 1992) 

and may interact with the inflammatory response to promote and enhance excitotoxicity.

Overall, the current study modeled the often observed co-exposure to alcohol and Meth. The 

results have identified a long-term neurochemical consequence of the co-abuse of alcohol 

and Meth that results in synergistic depletions of DAT, SERT, and DA and 5HT content 

within brain. While the current study focused logically on the brain regions and 

neurotransmitters typically affected by Meth, the extent of the neurotoxicity related to the 

combination of Meth and EtOH remains to be determined. Moreover, these studies provide 

the rationale for future studies using different behavioral models to examine the 

consequences of prior EtOH drinking on Meth self-administration and subsequent 

neurotoxicity. Additionally, the persistence of these effects remains to be determined but 

could be a long lasting/irreversible effect. The finding of a synergistic rather than an additive 

interaction between EtOH and Meth suggests a mechanism different than the more transient 
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effect of Meth alone and the lack of an EtOH effect on the neurochemical parameters 

measured in this study. It is possible the prior exposure to Meth followed by EtOH drinking 

would produce an enhanced inflammatory state given that each drug alone produces 

inflammation. It would also be interesting to determine if a similar neurotoxicity arises if the 

serial exposure were reversed (i.e., Meth before EtOH drinking). In that particular scenario, 

the neurotoxicity might be different since inflammation is typically thought to provide a 

sensitizing effect. In this regard, the enhanced toxicity to Meth would require prior exposure 

to EtOH and its inflammatory effects rather than EtOH exposure after Meth.

Overall, the implications of the findings suggest an important antecedent role for peripheral 

inflammation as evidenced by increases in circulating and brain LPS after EtOH drinking 

that triggers the augmentation of neurotoxicity produced by Meth. Importantly, limiting 

ketoprofen administration to EtOH drinking effectively blocked peripheral inflammation and 

the subsequent enhancement of neuroinflammation and neurotoxicity observed after a Meth. 

Therefore, targeting peripheral inflammation may be an effective therapeutic strategy aimed 

at mitigating the co-morbidity associated with the abuse of alcohol and Meth.
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Figure 1. EtOH intake and preference are increased over 28 days
EtOH drinking was on odd numbered days and alternated with water drinking only on even 

number days (not shown). a) Escalated intake of 10% EtOH (g/kg/day) over 14 24-hr 

exposures (p<0.001; n=43). b) Preference for 10% EtOH (% total fluid intake (EtOH

+Water)) follows a similar trend over 14 24-hr exposures as compared to water intake 

(p<0.001; n=43).
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Figure 2. EtOH drinking increases markers of inflammation
Twenty four hr after the last day of drinking, a) serum lipopolysaccharide (LPS), b) striatal 

LPS, c) striatal cyclooxygenase-2 (COX-2), and d) prefrontal cortex COX-2 in EtOH-

drinking rats was significantly higher compared to water-drinking rats (*p<0.05; n=5–7/

group).
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Figure 3. Previous EtOH drinking does not increase Methamphetamine-induced hyperthermia
Rats receiving Meth displayed higher body temperatures compared to saline-treated rats over 

time (*p<0.01; n=12/group) but there were no significant differences between Water+Meth 

and EtOH+Meth groups. Arrows denote injection times.
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Figure 4. Previous EtOH drinking or gavage enhances Methamphetamine-induced depletions of 
dopamine and serotonin in striatum and prefrontal cortex
Seven days after Meth, there was a significant Meth-induced decrease in a) striatal 

dopamine, b) striatal serotonin, and c) prefrontal cortex serotonin compared to Water+Saline 

rats (*p<0.05; n=5–7/group, 2-way ANOVA). There were greater decreases in a) striatal 

dopamine and b) striatal serotonin, and c) prefrontal cortex serotonin compared to Water

+Meth rats (#p<0.05; n=5–7/group, Tukey post hoc).
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Figure 5. Previous EtOH drinking or gavage enhances Methamphetamine-induced depletions of 
dopamine transporter (DAT) and serotonin transporter (SERT) immunoreactivities
Seven days after Meth, there was a significant Meth-induced decrease in a) striatal DAT, b) 

striatal SERT, and c) prefrontal cortex SERT compared to Water+Saline rats (*p<0.05; n=5–

7/group, 2-way ANOVA). There were greater decreases in a) striatal DAT, b) striatal SERT 

and c) prefrontal cortex SERT compared to Water+Meth rats (#p<0.05; n=5–7/group, Tukey 
post hoc).
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Figure 6. Methamphetamine-induced dopamine and serotonin depletions are dose-dependently 
affected by previous amount of EtOH consumed
Linear regression showed a significant correlation between total EtOH intake over 28 days 

and degree of a) dopamine (r2=−0.89; p<0.001) and b) serotonin (r2=−0.58; p<0.05) 

depletions in the striatum, as well as c) serotonin (r2=−0.75; p<0.05) depletions in the 

prefrontal cortex (n=10).

Blaker and Yamamoto Page 19

J Neuroimmune Pharmacol. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Markers of inflammation are blocked by ketoprofen during EtOH drinking
COX-2 inhibitor ketoprofen (Keto) during EtOH only blocked EtOH-induced increases in a) 

LPS and b) striatal COX-2 (*p<0.01; n=4–7/group; 1-way ANOVA).
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Figure 8. Enhanced monoamine depletions are blocked by ketoprofen during EtOH drinking
Meth alone resulted in significant depletions of dopamine in a) striatum, and 5-HT in b) 

striatum and c) prefrontal cortex (#p<0.05 vs. Water+Saline+Vehicle; 3-way ANOVA and 

post hoc Tukey tests; n=5–12/group). Previous exposure to EtOH significantly enhanced DA 

depletions in a) striatum, and 5-HT depletions in b) striatum and c) prefrontal cortex 

(&p<0.05 vs. Water+Meth+Vehicle). Treatment with Keto during EtOH drinking attenuated 

dopamine depletions in a) striatum, and 5-HT depletions in b) striatum and c) prefrontal 

cortex (*p<0.05 vs. EtOH+Meth+Vehicle).
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