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Absolute quantification of proteins elucidates the molec-
ular composition, regulation and dynamics of multiprotein
assemblies and networks. Here we report on a method
termed MS Western that accurately determines the molar
abundance of dozens of user-selected proteins at the
subfemtomole level in whole cell or tissue lysates without
metabolic or chemical labeling and without using specific
antibodies. MS Western relies on GeLC-MS/MS and quan-
tifies proteins by in-gel codigestion with an isotopically
labeled QconCAT protein chimera composed of concate-
nated proteotypic peptides. It requires no purification of
the chimera and relates the molar abundance of all pro-
teotypic peptides to a single reference protein. In com-
parative experiments, MS Western outperformed immu-
nofluorescence Western blotting by the protein detection
specificity, linear dynamic range and sensitivity of protein
quantification. To validate MS Western in an in vivo
experiment, we quantified the molar content of ze-
brafish core histones H2A, H2B, H3 and H4 during ten
stages of early embryogenesis. Accurate quantification
(CV<10%) corroborated the anticipated histones eq-
uimolar stoichiometry and revealed an unexpected
trend in their total abundance. Molecular & Cellular
Proteomics 17: 10.1074/mcp.O117.067082, 384–396,
2018.

Despite well-known technical limitations and numerous ap-
plication pitfalls, Western blotting (WB)1 remains one of the
most widely used tools in analytical biochemistry (reviewed in
(1–7)). WB conveniently provides a semi-quantitative estimate
of the protein abundance directly from crude cell or tissue
extracts. Quantification capabilities of WB, particularly its lin-
ear dynamic range, have been improved by using secondary
antibodies bearing fluorescent labels and advanced systems
for the optical readout of the abundance of recognized protein
bands (8). This, however, has not alleviated the critical re-
quirement of having antibodies with high and specific affinity
toward target proteins (9).

Within the last two decades a variety of mass spectrometry
based methods for targeted absolute protein quantification
relying on isotopically labeled peptide/protein standards (e.g.
AQUA (10), PSAQ (11), FLEXIQuant (12), prEST (13), or Qcon-
CAT (14, 15)); relative proteome-wide quantification using
chemical or metabolic labeling (e.g. ICAT (16), TMT (17),
iTRAQ (18, 19), SILAC (20), Super SILAC (21)), as well as
label-free proteome quantification (22–26) have been devel-
oped. As an alternative to WB of SDS-extracted membrane
proteins Arnott et al. developed a method of SRM quantifica-
tion of preselected pairs of ICAT-labeled peptides enriched by
affinity chromatography before LC-MS/MS (27). However,
these and other developments did not replace WB en masse,
although it had been suggested that the field would strongly
benefit from routine use of a targeted antibody-independent
quantification of proteins by mass spectrometry (28).

Because of the attomole sensitivity, protein identification
confidence, quantification accuracy, analyses throughput (re-
viewed in (29)) and, last but not least, the availability of high-
end mass spectrometers proteomics has had a major impact
on the entire field of molecular and cell biology. However, it is
often perceived as a tool for monitoring global proteome-wide
perturbations that is too cumbersome and inflexible for hy-
pothesis-driven studies encompassing a limited selection of
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proteins that need to be quantified in many biological condi-
tions. High costs and technical hurdles of proteome-wide
labeling of tissues or entire model organisms with stable
isotopes; cumbersome preparation of clean protein extracts;
inconsistent quality of synthetic peptide standards; biased
quantification of membrane and modified proteins are com-
mon bottlenecks in targeted proteomics applications.

Here we report on a method we termed MS Western that
provides multiplexed absolute (in moles) antibody-free quan-
tification of dozens of user-selected proteins from unlabeled
cell and tissue lysates that combines sample preparation
versatility of conventional WB with the specificity, accuracy,
and sensitivity of LC-MS/MS.

EXPERIMENTAL PROCEDURES

Chemicals and Reagents—All reagents were of the analytical grade
or better quality. LC-MS grade solvents were purchased from Fisher
Scientific (Waltham, MA); formic acid (FA) from Merck (Darmstadt,
Germany), Complete Ultra Protease Inhibitors from Roche (Mann-
heim, Germany); Trypsin Gold, mass spectrometry grade, from
Promega (Madison, WI); restriction enzymes and buffers from New
England BioLabs (Ipswich, MA); benzonase from Novagen
(Gibbstown, NJ); other common chemicals and buffers were from
Sigma-Aldrich (Munich, Germany). Precast 4 to 20% gradient 1-mm
thick polyacrylamide mini-gels were from Anamed Elektrophorese
(Rodau, Germany).

Protein Standards and Amino Acids—Protein standards: bovine
serum albumin (BSA), glycogen phosphorylase (GP), alcohol dehy-
drogenase (ADH), enolase (ENO) and ubiquitin (UBI) were purchased
as a lyophilized powder from Sigma-Aldrich. Their purity was checked
by 1D SDS-PAGE and by amino acid analysis (Functional Genomics
Centre Zurich, Switzerland). Ampoules of Pierce BSA standard and of
recombinant human histones were purchased from Thermo Fisher
Scientific (Waltham, MA) and from New England BioLabs, respec-
tively. Amino acids were from AppliChem (Darmstadt, Germany);
isotopically labeled 13C6

15N4-L-arginine and 13C6-L-lysine were from
Silantes (Munich, Germany).

Protein Analysis by GeLC-MS/MS—To visualize protein lanes gels
were stained with Coomassie CBB R250 and gel slabs covering the
mass range of ca � 20 kDa off the Mr of target proteins were excised.
Proteins were in-gel digested with trypsin (30) and recovered tryptic
peptides were analyzed by nanoflow LC-MS/MS (31); full details on
the GeLC-MS/MS procedure are provided in Supplementary Meth-
ods. Mass spectra were acquired in data-dependent acquisition
(DDA) mode on LTQ Orbitrap Velos or Q Exactive HF mass spectrom-
eters, both from Thermo Fisher Scientific (Bremen, Germany). DDA
settings are provided in supplemental Table S5.

Data Processing—To match peptides to target proteins, MS/MS
spectra were searched by Mascot v.2.2.04 software (Matrix Science,
London, UK) against a customized database containing sequences of
all target proteins, human keratins and porcine trypsin (in total, 234
protein entries). We applied precursor mass tolerance of 5 ppm;
fragment mass tolerance of 0.6 Da and 0.03Da for LTQ Orbitrap Velos
and Q Exactive HF instruments, respectively; fixed modification: car-
bamidomethyl (C); variable modifications: acetyl (protein N terminus),
oxidation (M); labels: 13C(6) (K) and 13C(6)15N(4) (R); cleavage spec-
ificity: trypsin, with up to 2 missed cleavages allowed. Peptides
having the ions score above 20 were accepted (significance threshold
p � 0.05) and the quantification was only carried out if both light and
heavy forms of the same peptide were identified by MS/MS and
retention time of their XIC peaks matched. Xcalibur (Thermo Fisher
Scientific) and Progenesis LC-MS v.4.1 (Nonlinear Dynamics, UK)

software were used for extracting peptide features from LC-MS/MS
data sets.

Experimental Design and Statistical Rationale—For benchmarking
and validation of MS Western we designed four QconCAT chimeric
proteins (CP01 to CP04) having MW in the range of 35 to 264 kDa and
comprising proteotypic peptides from proteins of different properties
(e.g. cytosolic, transmembrane), size (from 8 to 2065 kDa) and organ-
ismal origin. Knock-down experiments in HeLa cells were performed
in biological triplicates and analyzed by LC-MS/MS in technical du-
plicates. MS Western benchmarking experiments were performed in
technical duplicates for each of 15 samples made by successive
dilution of a total protein extract of HeLa cells. Core histones were
quantified in zebrafish embryos in three biological replicates and
LC-MS/MS run were acquired in technical duplicates. Wherever ap-
plicable, we provide standard deviation (�S.D.), coefficient of vari-
ance (CV) and robust coefficient of variance (rCV) calculated as
1.4826 times the median absolute deviation (32).

Quantification of Proteins Spiked into an E. coli Lysate—The over-
night culture (OD600 � 1.5) of E. coli strain BL21 (DE3) T1 pRARE was
pelleted by centrifugation at 5000 rpm for 5 min at 4 °C (JLA 8.1000
centrifuge from Beckman Coulter, Brea CA). The cell pellet was
re-suspended in 2� PBS, lysed in the presence of protease inhibitors
and the total protein content was quantified using Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific). Equimolar mixtures containing
25 fmol to 25 pmol of each protein standard (stock concentrations
were quantified by amino acid analysis) were spiked into 50 �g of an
E. coli protein extract and subjected to 1D SDS-PAGE as above. On
electrophoresis gel slices corresponding to the apparent MWs of
spiked proteins were excised, codigested with gel bands of CP01 and
recovered peptides quantified by LC-MS/MS.

Absolute Quantification of Human Recombinant Histone H4—Ali-
quots of a stock solution of recombinant human H4 with the concen-
tration of 1 mg/ml were appropriately diluted and mixed with equal
volumes of 2� Laemmli buffer. Three samples containing 0.05, 0.1,
and 0.3 �g of histone H4 were subjected to 1D SDS-PAGE as de-
scribed above. In parallel, the CP02 and an aliquot containing 0.066
�g of Pierce BSA standard were run on a separate gel. The excised
bands of histone H4, CP02, and BSA were mixed and codigested with
trypsin. After in-gel codigestion and extraction, tryptic peptides were
reconstituted in 46 �l of 5% aqueous FA and 5 �l were analyzed by
LC-MS/MS.

Knock-down Experiments in HeLa Cells—AKT1, CAT, PLK1, and
TUBA4A genes were knock-down (KD) in HeLa cells using RNAi
(Eupheria Biotech, Dresden, Germany). KD experiments were per-
formed in triplicate; renilla luciferase transfections as a RNAi speci-
ficity control were performed on a separate plate. Further details are
provided in Supplementary Methods; details on antibodies and RNAi
probes are in supplemental Tables S6 and S7, respectively.

Comparison of Protein Quantification by MS Western and LI-COR
Odyssey—HeLa cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal calf serum and 1% penicillin-
streptomycin (Gibco™ Life Technologies). 1 � 107 HeLa cells were
re-suspended in 100 �l RIPA buffer containing Complete Protease
Inhibitor Mixture, EDTA-free (Roche). Equal volume of 2� Laemmli
buffer was added and incubated at 80 °C for 15 min with intermittent
vortexing. The supernatant was transferred to a new vial and further
diluted with RIPA:2x Laemmli buffer (1:1, v/v). Samples obtained at
each dilution step were subjected to 1D SDS-PAGE on two different
gels. One gel was analyzed by LI-COR Odyssey and another by MS
Western using bands of CP03 and BSA as standard and reference
proteins, respectively. In each dilution step an equivalent amount of
target proteins was digested and injected into LC-MS/MS or imaged
by the Odyssey.
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Monitoring the Kinetics of In-Gel Digestion of HeLa Proteins—
Protein extracts of ca. 1 � 107 HeLa cells were prepared as described
above, however in one series of experiments, the same amount of
cells was homogenized in a twice larger volume of the buffer. Aliquots
of cell extracts each equivalent to 4% of the total amount of recov-
ered protein material were loaded onto multiple lanes of polyacryl-
amide mini-gels. On SDS-PAGE, gel slabs whose Mr corresponded to
TUBA and CAT proteins were excised; gel bands of CP03 and of the
reference protein BSA were mixed with each gel slab and all samples
were in parallel digested with trypsin. After the specified periods of
time one sample per each digestion experiment was withdrawn,
peptides were extracted from the entire in-gel digest and quantified
by LC-MS/MS as described above. Each sample was analyzed in
technical duplicates. The amount of protein digested at each time
point was calculated by averaging the amounts of five independently
quantified peptides from TUBA and BSA and of three peptides from
CAT.

Absolute Quantification of Histones in Zebrafish Embryos by MS
Western—Wild-type (TLAB) zebrafish embryos were dechorionated
immediately on fertilization, synchronized and allowed to develop to
the desired stage at 28 °C. Ten embryos per developmental stage
(except five embryos for 1-cell stage) were manually deyolked and
snap frozen in liquid nitrogen. Samples were boiled in the Laemmli
buffer at 98 °C for 10 min and subjected to SDS-PAGE. A single gel
slab containing all histones was excised from each sample lane and
histones were quantified by MS Western using bands of CP02 and
BSA as standard and reference proteins, respectively. 10% of the
total amount of recovered tryptic peptides were injected into
LC-MS/MS.

Absolute Quantification of Histones in Zebrafish Embryos by LI-
COR Odyssey—Zebrafish embryos were collected at the specified
developmental stages (n � 5 for H3 and H2B; n � 10 for H2A and H4).
Embryos were processed as described above and total protein ex-
tracts were subjected to SDS-PAGE. Proteins were blotted onto a
nitrocellulose membrane (GE Life Sciences). Primary antibodies (sup-
plemental Table S8) were incubated at room temperature for 1 h or at
4 °C overnight; secondary antibodies (supplemental Table S8) were
incubated at room temperature for 45 min. Proteins were quantified
by LI-COR Odyssey using tubulin as a loading control. Standards of

recombinant human histones were used for making calibration plots
for the quantification of corresponding zebrafish homologs.

RESULTS AND DISCUSSION

MS Western: Protein Quantification Concept and Work-
flow—Effectively, MS Western merges the three established
analytical approaches: GeLC-MS/MS (30, 31, 34–36); proteo-
typic peptides clubbed with “top N peptides” protein quanti-
fication (31, 37–42) and QconCAT synthesis of isotopically
labeled protein chimeras comprising concatenated se-
quences of proteotypic peptides (14, 15, 32). We termed this
method as MS Western to underscore that it is targeted
(rather than global), quantitative, relies on SDS-PAGE of crude
protein extracts and in this way, is in line with classical West-
ern. However, because of mass spectrometry readout, it re-
quires no blotting and, most importantly, no antibodies.

To quantify a protein by MS Western we first selected a few
(typically, three to six) proteotypic peptides (37, 39) in prelim-
inary GeLC-MS/MS experiments, which also verified the po-
sition of bands of target proteins at the electrophoresis gel
lanes separating crude protein extracts. However, peptides
could be also picked from collections of LC-MS/MS spectra
(43, 44) or predicted by software (45, 46).

In the same way, we further selected proteotypic peptides
from two reference proteins—in this work we used glycogen
phosphorylase (GP) and bovine serum albumin (BSA). Peptide
sequences from the target and reference proteins were con-
catenated in-silico in an arbitrary order except that peptides
from the same protein were positioned successively. The
entire stretch of peptide sequences was flanked at the N- and
C-termini with the sequences of twin-strep-tag followed by a
3C protease cleavage site and His-tag, respectively (Fig. 1).
These tags protect target peptides from exopeptidase degra-

Target protein 1

Target protein 2

Target protein 3

Target protein 4

Target protein 5

Peptides from other 
target proteins

Glycogen phosphorylase (GP) Bovine Serum Albumin (BSA)
-CN-N- -C

3C cleavage site 
His tag 

Twin strep tag

N- -C

-C

-C

-C

-C

-C

N-

N-

N-

N-

N-

FIG. 1. Modular organization of chimera proteins (CP) used in MS Western. Sequences of proteotypic peptides (schematically shown as
boxes) from each target protein (color-coded) are in-silico concatenated into a single chimera, flanked with peptide sequences from the
reference proteins GP (at the N-terminus side) and BSA (at the C-terminus side) and with two affinity tags together with 3C cleavage site.
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dation and, only if deemed necessary, could be used to enrich
the expressed chimera from a whole cell lysate. Altogether we
designed four project-specific chimera proteins (CP) ranging
in size from 35 to 264 kDa that encoded, in total, more than
300 proteotypic peptides from 58 individual proteins (supple-
mental Fig. S1, S3, S5, and S7). The design rationale was the
same as in QconCAT proteins (14, 15) and here we use CP
acronym solely for the presentation clarity. All CPs made in
this work were highly expressed in E.coli (supplemental Fig.
S2, S4, S6, and S8) and incorporated more than 99.5% of
heavy arginine and lysine residues (supplemental Fig. S9).

In contrast to the relative (fold change) quantification, ab-
solute (in moles) quantification critically depends on the ex-
actly known concentration of internal standard(s). In Qcon-
CAT and related methods it is usually determined by the
amino acid analysis or photo- or colorimetric assays (15).
This, however, requires highly purified CPs and is prone to
batch-to-batch variations and inter-laboratory inconsistency.
Instead, MS Western uses a simple workaround solution that
requires no CP purification (Fig. 2).

To quantify proteins of interest a cell or tissue lysate was
subjected to SDS-PAGE. Gel slab(s) approximately matching
the Mr of target protein(s) were excised and mixed with the
band of the CP excised from a lane with E. coli lysate and with
the band of a reference protein (e.g. BSA). The three bands
were codigested with trypsin, recovered peptides were ana-
lyzed by LC-MS/MS and quantified by considering the abun-
dance of XIC peaks of matching pairs of light and heavy
peptides. Molar abundance of each quantified protein (includ-
ing CP) was calculated by averaging molar abundances of
several (typically, three to six) proteotypic peptides. Gel bands
of CP, BSA and the gel slab with target protein(s) were in-gel
digested together, light and heavy peptides were extracted
from the same digest and quantified in the same LC-MS/MS
experiment. Hence, in MS Western workflow the molar
amount of each target protein was inferred from the molar
amount of the CP, which in turn was referenced to the known
molar amount of the BSA standard. However, there was no
need in purifying CPs to homogeneity or maintaining their
stock solutions with the exactly known concentration. In all
experiments absolute (molar) quantities of all CPs were refer-
enced to the same commercial protein standard (Pierce BSA)
with the guaranteed chemical purity, stock concentration and
batch-to-batch reproducibility.

MS Western protocol should be adjusted according to the
Mr and abundance of target proteins. Coomassie staining was
not intended to visualize bands of target proteins. Instead,
proteins were excised within slightly larger (typically, � 20
kDa) gel slabs (Fig. 2C) centered at their expected Mr and
verified by preliminary GeLC-MS/MS. If a target protein
smeares across several adjacent gel slices, molar amount (but
not raw peak area) of each peptide in each slice should be
summed up. For optimal quantification the abundance ratio
between light and heavy peptides should be adjusted by

considering the isotopic purity (�99.5%) of heavy arginine
and lysine amino acids, rather than large (better than 104-fold)
linear dynamic range of Orbitrap analyzers (47). We typically
codigested ca. 100 fmols of CPs, depending on the abun-
dance of target proteins. If required, the detection sensitivity
could be further enhanced by using DDA with an inclusion list
of expected m/z of target peptide precursors, by t-SIM or
parallel reaction monitoring (PRM) (48).

Taken together, a vastly simplified MS Western workflow
offers several experimental advantages. First, both CP and
target proteins are independently quantified in the same ex-
periment by several proteotypic peptides and it is expected
that they should produce quantitatively consistent determina-
tions (31, 40). Second, MS Western protocol only requires
femtomole amounts of isotopically labeled standards. All four
CPs were produced with high yield in E.coli (supplemental Fig.
S2A, S4A, S6A, and S8A) and ca 1 ml of the cell culture
provided them in hundred picomole quantities. In our experi-
ence none of expression experiments failed or low yield of
CPs required their enrichment before MS Western quantifica-
tion. Also, we did not maintain prequantified CP stocks, but
simply excised their bands directly from a gel loaded with
E. coli lysate. Third, because proteins were solubilized in 4%
SDS and analyzed by GeLC-MS/MS the quantification was
not affected by the solubility or purity of CPs and target
proteins. SDS-PAGE also improved both the dynamic range
and sensitivity of peptide detection. In contrast to a gel-free
“mass western” approach by Arnott et al. (27) that is also
compatible with SDS extraction of proteins our method en-
ables their absolute (rather than relative) quantification (also
including membrane proteins) and uses no chemical de-
rivatization and/or multistep clean-up of heavy and light pairs
of proteotypic peptides. And finally, in contrast to conventional
WB, MS Western does not rely on antibodies and ordering a
synthetic gene at the current price level of ca 10 to 15 Eur per
peptide with guaranteed quality and a few weeks delivery time
is simply incomparable with costs and efforts required for gen-
erating and validation of reliable monoclonal antibodies.

Validation and Properties of MS Western—Although the
concept of MS Western looked appealing, a major question
remained if in-gel codigestion of relatively pure CPs, of target
protein(s) embedded into a polyacrylamide gel matrix together
with abundant background proteins and of pure BSA stand-
ard delivered the same yield of proteotypic peptides?

To answer this question, we designed and expressed ca. 42
kDa chimera CP01 (supplemental Fig. S1 and S2A) compris-
ing 31 proteotypic peptides from five commercially available
protein standards: GP, BSA, ENO, ADH, and UBI (supplemen-
tal Table S1). GeLC-MS/MS of its gel band yielded 100%
sequence coverage (supplemental Fig. S2B) and confirmed
�99.5% isotopic labeling efficiency (supplemental Fig. S9).

Gel bands of each of these five target proteins were codi-
gested with the band of CP01. The extracted peptides were
analyzed by LC-MS/MS and relative abundances of light (nor-
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malized to all light) and heavy (normalized to all heavy) pro-
teotypic peptides were compared (supplemental Fig. S10).
We observed that within 31 peptide pairs the relative abun-
dances varied by less than 5% (supplemental Fig. S10), de-
spite light and heavy peptides originated from structurally
different chimera and endogenous proteins. Indeed, before

in-gel digestion chimera, target and reference proteins were
fully denatured first by SDS and then by acetic acid/methanol
during Coomassie staining. Also, because of preseparation of
crude extracts by SDS-PAGE, only a small fraction of a back-
ground proteome was codigested together with target pro-
tein(s). In line with previous findings (32), we observed no
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FIG. 2. Workflow of the absolute protein quantification by MS Western. Gel band containing the known amount of the reference protein
BSA (A), gel band of CP metabolically labeled with 15N4, 13C6-Arg and 13C6-Lys (B) and gel slab excised at the range of expected Mr of the
target protein(s) (C) are codigested with trypsin and recovered peptides are analyzed by LC-MS/MS (D). The CP is quantified by comparing
the abundances of XIC peaks of unlabeled (from reference protein BSA) (E) and labeled (from the CP) (F) peptides (G). Next, the amount of
target protein is inferred from the ratio of abundances of XIC peaks of matching unlabeled (from the target protein) (H) and labeled (from the
CP) (I) proteotypic peptides (J) and from the amount of CP determined as described above. For clarity, only two (out of several) matching pairs
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of the CP. Quantification of a peptide from norpA protein from D.melanogaster using CP04 chimera is shown here as an example.
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noticeable impact of the size and composition of both target
protein and CPs and speculated that SDS-PAGE and in-gel
digestion might even relax the constraints (49) applied for the
selection of proteotypic peptides.

In only a few instances (supplemental Fig. S10B and S11F)
not all relative abundances matched because of trypsin mis-
cleavages or post-translational modifications (PTMs). How-
ever, irrespectively of why they mismatched, “problematic”
pairs of peptides could be spotted by their discordant relative
abundances and disregarded from the protein quantification.

We next asked if the likeness of peptide relative abun-
dances in in-gel digests of CP and of target proteins war-
ranted their accurate molar quantification. As a test bed, we
used the CP02 comprising peptides from the four core his-
tones H2A, H2B, H3, and H4 from D.rerio (supplemental Fig.
S3, S4 and supplemental Table S2). We also obtained a
standard of human recombinant histone H4 supplied as a
stock solution with the exactly known concentration. Human
and zebrafish histones H4 share 99% full-length sequence
identity (supplemental Fig. S12) and we tested if human H4
could be quantified using identical peptides from CP02 whose
molar abundance was referenced to the BSA standard. Three
aliquots containing different amounts of human H4 were sub-
jected to SDS-PAGE and quantified by MS Western. Relative
abundances of light peptides from BSA and histone H4 and
corresponding heavy peptides from CP02 were in a good
agreement (Fig. 3A and Fig. 3B, respectively). Relative abun-
dances of one BSA (QTALVELLK) and one histone H4
(TVTAMDVVYALK) peptide mismatched because of trypsin
miscleavage caused by flanking dibasic amino acid residues
in the sequences of endogenous proteins (45, 50–52). When
the areas of XIC peaks of miscleaved peptides were added
into the calculation, the expected relative abundances were
restored. Next, for each peptide and each amount of histone
H4 we calculated the ratio of relative abundances of their light
(normalized to all light) and heavy (normalized to all heavy)
peptide forms. If these normalized relative abundances re-
main the same then their ratio should be close to the value of
1.0, which was also consistent with our findings (Fig. 3C).
Altogether, in the three independent experiments MS Western
quantification relying on five proteotypic peptides (Fig. 3B)
correctly determined different molar amounts of histone H4
loaded on the gel (Fig. 3D).

Finally, we checked if the target, chimera and reference
proteins were in-gel codigested each at its own kinetics and if
matching of their digestion rate was required for accurate
absolute quantification? To this end, we monitored in-gel
digestion of �-tubulin (TUBA, 50 kDa) and catalase (CAT, 60
kDa) in a SDS-PAGE separated total protein extract from
HeLa cells. Gel slabs were excised at the correspondent Mr,
codigested with bands of 72 kDa chimera protein CP03 (sup-
plemental Fig. S5, S6 and supplemental Table S3) comprising
proteotypic peptides from TUBA and CAT and with bands of
the reference protein BSA. Peptides extracted from in-gel

digests were quantified by LC-MS/MS to produce the kinetic
plots in Fig. 4A, 4B, and 4C. In the HeLa extract the abun-
dance of TUBA and CAT differed by ca 100-fold (Fig. 4B, 4C)
and they were digested together with ca 1100 comigrating
background proteins. As a consistency check, we independ-
ently digested two loadings of the same extract whose total
protein amount differed by 2-fold. In line with the previous
report on in-solution digestion of chimera proteins (53), CP03
was digested in-gel within a few minutes. The digestion of
TUBA and CAT was complete after ca 6 h, whereas MS
Western protocol relies on overnight digestion. Interestingly,
not all proteotypic peptides were produced at the same rate
(Fig. 4D, 4E). The ratio of relative abundances of light and
heavy forms of most peptides plateaued at the expected
value of 1.0 already after 3 h, consistently with the kinetic
plots in Fig. 4B, 4C. However, two peptides showed deviating
trends. The ratio of relative abundances of peptide
QTALVELLK was lower than expected (Fig. 4D, supplemental
Fig. S13) because of miscleavage of native BSA (see also Fig.
3A). Consistently with earlier reports on the specificity of
trypsinolysis of peptides flanked with successive Arg, Lys
residues (45, 50, 51, 54) the yield of QTALVELLK did not
improve at extended digestion times, whereas its release from
CP03 was rapid and complete. Peptide QLFHPEQLITGK from
TUBA was also produced at the slow rate, however its release
was complete after 12 h (Fig. 4E, supplemental Fig. S14).
Importantly, biased yield of both peptides at all digestion time
points was clearly reflected by deviating ratios of relative
abundances of their light and heavy forms and supported the
informed decision on accepting or excluding them from pro-
tein quantification.

Benchmarking Protein Quantification by MS Western—We
further benchmarked MS Western quantification in three
ways. First, we checked if its linear dynamic range was af-
fected by a concomitant protein background. Second, we
tested if both WB and MS Western produced quantitatively
concordant determinations of endogenous proteins in whole
cell lysates. Finally, we benchmarked MS Western sensitivity
and dynamic range against currently the most advanced
quantitative Western blotting system LI-COR Odyssey (further
termed as Odyssey) that relies on near-infrared immunofluo-
rescent readout of the abundance of antibodies recognizing
target proteins.

We first analyzed a series of eleven samples containing 25
fmol to 25 pmol of an equimolar mixture of five proteins (GP,
BSA, ENO, ADH and UBI) spiked into 50 �g of E. coli protein
extract. Each sample was subjected to SDS-PAGE and the
five proteins were quantified by MS Western by codigesting
their bands with the band of CP01. Closely migrating bands of
ENO and ADH (�Mr ca 10 kDa) were excised and digested
together. Calibration graphs were produced by plotting the
average of ratios of absolute abundances of light and heavy
forms of proteotypic peptides pertinent to each protein
against the injected amounts of protein digests and were
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linear within the entire range of protein loadings (Fig. 5A).
Calibration plots for 21 individual peptides used for making
Fig. 5A are provided in supplemental Fig. S15 and suggested
that peptides recovery was independent of protein size and
percentage of acrylamide in digested gel slabs and was not
affected by protein background.

Next, we tested if WB on LI-COR Odyssey and MS Western
provided concordant quantification of endogenous proteins in
whole cell lysates. In contrast to MS Western, pure protein
standards are required for the absolute quantification by the
Odyssey because slopes of calibration plots relying on inte-
gral intensities of visualized bands differ between individual

proteins. Therefore, to compare the two methods, we de-
pleted several proteins in HeLa cells by RNAi. We then ana-
lyzed the same extracts from control and KD cells by the
Odyssey and by MS Western and checked if they reported
concordant changes in protein abundances.

For MS Western quantification we designed a 72 kDa chi-
mera protein CP03 comprising 47 proteotypic peptides from
six human proteins: CAT, TUBA, PLK1, AKT1, GAPDH and
PTEN (supplemental Fig. S5, S6 and supplemental Table S3)
for each of which commercial monoclonal antibodies are
available. Both Odyssey and MS Western determined quan-
titatively concordant levels of endogenous TUB, PLK1, CAT,
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and AKT1 in KD-cells as compared with the luciferase control
(supplemental Fig. S16). Interestingly, MS Western could sep-
arately quantify the relative abundances of TUBA4A and
TUBA1A sharing 96% of the full-length sequence identity. The
abundance of both proteins was affected by RNAi at the same
extent, however they were not distinguished by the Odyssey
(supplemental Fig. S16F).

We used the same proteins to benchmark the dynamic
range and sensitivity of MS Western quantification in compar-
ison to the Odyssey. To this end, samples of successively
diluted total protein extract from HeLa cells were loaded on
two different gels. We adjusted the loaded volumes such that,
for each dilution, the same amount of protein extract (here
exemplified as an equivalent number of extracted cells) was
subjected to Odyssey imaging and injected into the LC-MS/

MS. Therefore, protein molar amounts (as determined by MS
Western) and integrated intensities of protein bands (deter-
mined by Odyssey) could be correlated with no further ad-
justment (Fig. 5B, 5C).

Fig. 5D and 5E compare the dilution plots of TUBA quanti-
fied by MS Western (as TUBA1A) and by the Odyssey (as
TUBA1A and TUBA4A), respectively. In WB experiments
GAPDH served as a loading control and its abundance fol-
lowed the dilution of HeLa extract. In MS Western an equal
amount of CP03 was codigested with each sample and there-
fore its constant abundance evidenced the analyses consis-
tency. Compared with the Odyssey, MS Western showed at
least 60-fold better sensitivity (down to 1.5 fmol of TUBA1A)
along with higher dynamic range (�16000-fold) and excellent
linearity (r2 � 0.9983) (Fig. 5E). In the middle of the plot (Fig.
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5D) the Odyssey also showed good linearity toward both
GAPDH and TUB1A/4A. However, at lower loadings the Od-
yssey did not recognize the target proteins, whereas at higher
loadings the system incorrectly integrated the abundance of
misshaped protein bands and lost the response linearity. Ex-
pectantly, we could also quantify proteins from gel lanes with

no visible protein bands (Fig. 5C, 5E); for better visualization
we also present the expanded gel image showing the four
most diluted samples of the corresponding calibration plot
(supplemental Fig. S17).

Contrary to WB that is often pestered with false positives,
MS Western seems to be more prone to false negatives,
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particularly if overwhelming background abolishes the ioniza-
tion of proteotypic peptides and/or if target proteins are ex-
tremely low abundant. Nevertheless, we were able to quantify
proteins at the subfemtomole to hundred attomole range in
complex biological extracts. supplemental Fig. S18 presents
calibration plots for subfemtomole quantification of BSA
spiked into a total protein extract from E. coli. supplemental
Fig. S19 presents the attomole quantification of 229 kDa
transmembrane protein axotactin in two biological conditions
from a total extract of Drosophila eye using 264 kDa chimera
CP04 (supplemental Fig. S7, S8 and supplemental Table S4).
The figure provides BPC and XIC traces as well as FT MS
spectra of light and heavy forms of the two axotactin peptides
and of five reference peptides from BSA acquired in the same
quantification experiment. We also provide the ratios of rela-
tive abundances of light and heavy peptides suggesting that
even at the hundred attomoles level protein quantification with
both peptides was concordant.

We note that MS Western workflow does not enhance the
detection sensitivity compared with conventional GeLC-
MS/MS and might fail to quantify very low abundant proteins
that might still be detectable by classical Western. Although
in MS Western a linear calibration plot could be extended
down to 100-attomoles of a gel separated protein standard
(supplemental Fig. S20), it is nevertheless advisable to al-
ways start with preliminary GeLC-MS/MS experiments be-
fore designing CPs to make sure that target proteins are
detectable and to select the optimal constellation of pro-
teotypic peptides.

Absolute Quantification of Histones in Zebrafish Embryos—
Histones make up the basic unit of chromatin, the nucleo-
some. Each nucleosome consists of 147 base pairs of DNA
wrapped around a histone octamer comprising two copies of
each of the four core histones: H2A, H2B, H3, and H4. Em-
bryos inherit histones from the mother (55) and previous WB
analyses suggested that, despite embryo growth, histones
level is stable during the early stages of development in both
Xenopus (56) and zebrafish (57), but increases rapidly upon
genome activation. We reasoned that predictable stoichiom-
etry and time course of their total content make embryonic
histones a good model for validating MS Western in in vivo
experiments.

We employed MS Western to determine the molar content
of H2A, H2B, H3, and H4 in zebrafish embryos at ten devel-
opmental stages ranging from 1-cell stage to Shield stage.
Zebrafish embryos (1-cell stage n � 5; otherwise n � 10) were
collected and (except for 1-cell stage) manually deyolked (58).
Proteins extracted from deyolked embryos were subjected to
SDS-PAGE. Slabs corresponding to the Mr range of ca. 5 to
25 kDa that contained all core histones were excised from
each gel and histones were quantified using the bands of
CP02 and BSA. We observed that ratios of relative abun-
dances of light and heavy forms of proteotypic peptides (Fig.
6A) varied by less than 10% in all embryogenesis stages and

concluded that endogenous peptides were not harboring
PTMs. Accurate (CV �10%) absolute quantification of four
histones (Fig 6B; supplemental Table S9) revealed that, in
contrast to previous reports, histones content steadily in-
creased already during the early stages of development (59).
This suggested that in zebrafish embryos mothers deposit
both histone proteins and corresponding mRNA that are
translated before the onset of zygotic transcription around the
1000-cell stage. As expected, after genome activation, his-
tones content increased more rapidly.

Molar quantities of individual histones were consistent
with the expected equimolar stoichiometry (Fig. 6C). At the
very early stages of development the histones stoichiometry
slightly, yet consistently deviated from equimolar ratios,
however that were closely approached at the later stages.
We note that MS Western quantification only reflected the
total content of histones, irrespectively if they were assem-
bled into a nucleosome or associated with chaperones
(55, 60).

We also quantified histones by the Odyssey (Fig. 6D) and
compared it to MS Western (supplemental Fig. S21). We
found that the quantification by Odyssey was generally incon-
clusive and stoichiometry between individual histones was
nowhere close to the expected equimolar ratios. This, once
again, highlighted that WB quantification is extremely sensi-
tive toward the quality of antibodies and protein standards.

Taken together, MS Western enabled precise and consis-
tent quantification of the molar amounts of four core histones
at the subpicomole per embryo level directly from total protein
extracts and revealed their unexpected individual dynamics
during early embryogenesis.

Conclusions and Perspectives—We argue that MS Western
is a practical and technically simple solution for the accurate
multiplex targeted absolute quantification of proteins. In MS
Western workflow SDS-PAGE circumvents the limited solu-
bility of both target and chimera proteins; it also removes
interfering buffers and detergents, including SDS. Presepara-
tion of total protein extracts improves the dynamic range and
sensitivity of quantification. Protein quantification relies on
multiple proteotypic peptides and the concordance between
relative abundances of matching pairs of heavy and light
peptides provides independent validation of the quantification
consistency. However, one conceptual limitation of MS West-
ern is that it is difficult to predict if a low abundant protein (e.g.
a transcription factor) could be detectable by GeLC-MS/MS.
In our experience the detection of proteins by classic Western
blotting or projecting their abundances from transcriptomics
did not substitute preliminary analyses by GeLC-MS/MS and
it is advisable to establish the scope of detectable proteins
before planning systematic MS Western experiments. How-
ever, once target proteins have been detected, their accurate
absolute multiplexed quantification becomes a straightfor-
ward technical task.
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In the future it would be interesting to explore if a single,
reasonably large CP could cover all essential members of
metabolic and/or signaling pathways and allow us to relate their
molar abundances to molar concentrations of corresponding
metabolites. It would also be intriguing to explore if CP could be
used as templates to incorporate site-specific post-translational
modifications by some chemical or genetic means.
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