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ABSTRACT
Whipworms are parasitic nematodes that live in the gut of more than 500 million people world-
wide. Owing to the difficulty in obtaining parasite material, the mouse whipworm Trichuris muris
has been extensively used as a model to study human whipworm infections. These nematodes
secrete a multitude of compounds that interact with host tissues where they orchestrate a parasitic
existence. Herein we provide the first comprehensive characterization of the excretory/secretory
products of T. muris. We identify 148 proteins secreted by T. muris and show for the first time that
the mouse whipworm secretes exosome-like extracellular vesicles (EVs) that can interact with host
cells. We use an Optiprep® gradient to purify the EVs, highlighting the suitability of this method for
purifying EVs secreted by a parasitic nematode. We also characterize the proteomic and genomic
content of the EVs, identifying >350 proteins, 56 miRNAs (22 novel) and 475 full-length mRNA
transcripts mapping to T. muris gene models. Many of the miRNAs putatively mapped to mouse
genes are involved in regulation of inflammation, implying a role in parasite-driven immunomo-
dulation. In addition, for the first time to our knowledge, colonic organoids have been used to
demonstrate the internalization of parasite EVs by host cells. Understanding how parasites interact
with their host is crucial to develop new control measures. This first characterization of the proteins
and EVs secreted by T. muris provides important information on whipworm–host communication
and forms the basis for future studies.
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Introduction

Infections with soil-transmitted helminths (STH) affect
more than 1.5 billion people worldwide, causing great
socio-economic impact as well as physical and intellec-
tual retardation [1]. Among the STH, hookworms
(Necator americanus and Ancylostoma duodenale),
roundworms (Ascaris lumbricoides) and whipworms
(Trichuris trichiura) are of particular importance,
owing to their high prevalence and disease burden in
impoverished countries [2]. For instance, T. trichiura
alone infects around 500 million people worldwide,
and contributes to 638,000 years of life lived with
disability (YLDs) [2].

Infection with Trichuris spp. occurs after ingestion
of infective eggs, which hatch in the caecum of the
host. Larvae penetrate the mucosal tissue, where they
moult to become adult worms and reside for the rest of
their lives. Owing to the difficulty in obtaining parasite
material to study whipworm infections, particularly

adult worms, the rodent whipworm, Trichuris muris,
has been extensively used as a tractable model of
human trichuriasis [3–5]. In addition to parasitologists,
immunologists have also benefited from the study of T.
muris infections, and a significant amount of basic
immunology research has been conducted using this
model (reviewed by [6]). For instance, the role of IL-13
in resistance to nematode infections was elucidated
using T. muris [7].

The recent publication of the genome and transcrip-
tome of T. muris has provided meaningful insights into
the immunobiology of whipworm infections [8]. This
work provided new information on potential drug targets
against trichuriasis and elucidated important traits that
drive chronicity. Despite this progress, and the tractability
of the T. muris model, very few proteomic studies have
been conducted, and only a handful of reports have
described proteins secreted by Trichuris spp. [9–14].
Drake et al. characterized a pore-forming protein that
T. muris [14] and T. trichiura [13] use to drill holes in
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the host cell membrane. Furthermore, it has been sug-
gested that a thioredoxin-like protein secreted by the pig
whipworm Trichuris suis plays a role in mucosal home-
ostasis [11].

The importance of excretory/secretory (ES) products
in governing host–parasite interactions and ensuring
parasite survival in inhospitable environments is indis-
putable. Traditionally, ES products were believed to con-
tain only soluble proteins, lipids, carbohydrates and
genomic content; however, the recent discovery of extra-
cellular vesicles (EVs) secreted by helminths has revealed
a new paradigm in the study of host–parasite relation-
ships [15–17]. Helminth EVs have immunomodulatory
effects and contribute to pathogenesis. For instance, EVs
secreted by parasitic flatworms can promote tumorigen-
esis [18] and polarize host macrophages towards a M1
phenotype [19], while EVs from the gastrointestinal
nematode Heligmosomoides polygyrus contain small
RNAs that can modulate host innate immunity [20].

In the present study, we aim to characterize the
factors involved in T. muris–host relationships. We
provide the first proteomic analysis of the soluble pro-
teins present in the ES products, and we describe the
proteomic and nucleic acid content of EVs secreted by
whipworms. This work provides important informa-
tion on whipworm biology and contributes to the
development of new strategies and targets to combat
nematode infections in humans and animals.

Experimental procedures

Ethics statement

The study was approved by the James Cook University
(JCU) Animal Ethics Committee (A2213). Mice were
maintained at the JCU animal house (Cairns campus)
under normal conditions of regulated temperature (22°
C) and lighting (12 h light/dark cycle) with free access to
pelleted food and water. The mice were kept in cages in
compliance with the Australian Code of Practice for the
Care and Use of Animals for Scientific Purposes.

Parasite material, isolation of ES products and EV
purification

Parasites were obtained from genetically susceptible B10.
BR mice infected with 200 T. muris eggs. The infection
load (200 T. muris eggs per mouse) is well tolerated and
results, usually, in ~180 adult parasites/mouse (90% suc-
cess). Adult worms were harvested from the caecum of
infected mice 5 weeks after infection, washed in PBS
containing 5× antibiotic/antimycotic (AA) and cultured
in six-well plates for 5 days in RPMI containing 1× AA, at

37°C and 5% CO2. Each well contained ~500 worms in
4.5 ml media. The media obtained during the first 4 h
after parasite culturing were discarded for further analy-
sis. Dead worms were removed, and ES products were
collected daily, subjected to sequential differential centri-
fugation at 500 g, 2000 g and 4000 g for 30 min each to
remove eggs and parasite debris. For the isolation of ES
products, media were concentrated using a 10 kDa spin
concentrator (Merck Millipore, Burlington, MA, USA)
and stored at 1.0 mg/ml in PBS at −80°C until required.

For the isolation of EVs, the media obtained after
differential centrifugation were processed as described
previously [21]. Briefly, ES products were concentrated
using a 10 kDa spin concentrator, followed by centrifuga-
tion for 45 min at 12,000 g to remove larger vesicles. A
MLS-50 rotor (Beckman Coulter, Brea, CA, USA) was
used to ultracentrifuge the supernatant for 3 h at
120,000 g, and the resultant pellet was resuspended in
70 μl of PBS and subjected to Optiprep® discontinous
gradient (ODG) separation. One millilitre of 40%, 20%,
10% and 5% iodixanol solutions prepared in 0.25 M
sucrose, 10 mMTris-HCl, pH 7.2, was layered in decreas-
ing density in an ultracentrifuge tube, and the 70 µl con-
taining the resuspended EVs was added to the top layer
and ultracentrifuged at 120,000 g for 18 h at 4°C. Seventy
microlitres of PBS was added to the control tube prepared
as described above. A total of 12 fractions were recovered
from the ODG, and the excess Optiprep® solution was
removed by buffer exchanging with 8 ml of PBS contain-
ing 1× EDTA-free protease inhibitor cocktail (Santa
Cruz, Dallas, TX, USA) using a 10 kDa spin concentrator.
The absorbance (340 nm) was measured in each of the
fractions, and density was calculated using a standard
curve with known standards. The protein concentration
of all fractions was measured using a Pierce BCA Protein
Assay Kit (ThermoFischer, Waltham, MA, USA). All
fractions were kept at −80°C until use.

Size and concentration analysis of EVs

The size distribution and particle concentration of
fractions recovered after ODG were measured using
tunable resistive pulse sensing (TRPS) by qNano
(Izon, Christchurch, New Zealand) following the man-
ufacturer’s instructions. Voltage and pressure values
were set to optimize the signal to ensure high sensitiv-
ity. A nanopore NP100 was used for all fractions ana-
lysed except for fraction 9, where a NP150 was used.
Calibration was performed using CP100 carboxylated
polystyrene calibration particles (Izon) at a 1:1000 dilu-
tion. Samples were diluted 1:5 and applied to the
nanopore. The size and concentration of particles
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were determined using the software provided by Izon
(version 3.2).

Exosome uptake in murine colonic organoids
(mini-guts)

Murine colonic organoids were produced from intestinal
crypts of a female C57 Bl6/J mouse according to previous
reports [22] with some modifications. Briefly, murine
colonic crypts were dissociated with Gentle Cell
Dissociation reagent (Stemcell Technology Inc.,
Vancouver, Canada) and further incubated in trypsin
(ThermoFischer). Approximately 500 crypts were seeded
in 50 µl of Matrigel (Corning, NY, USA) in a 24-well plate
and cultured in Intesticult Organoid Growth Medium
(Stemcell Technology Inc.) supplemented with 100 ng/ml
murine recombinant Wnt3a (Peprotech, Rocky Hill, NJ,
USA). ROCK-inhibitor (10 µM Y-27,632; Sigma-Aldrich,
St. Louis, MO, USA) was included in the culture medium
for the first 2 days to avoid anoikis.

For imaging, organoids were seeded in 75 µl of Matrigel
in six-well plates and cultured for 7 days. To investigate
internalization of EVs in the colonic epithelium layer, EVs
were labelled with PKH26 (Sigma-Aldrich) according to
the manufacturer’s instructions. A total of 15–30 million
stained particles (based on the TRPS results) in 3–5 µl were
injected into the central lumen of individual organoids and
cultured for 3 h at 37°C and 4°C, respectively. Cell-culture
medium was removed, and wells were washed with PBS.
Organoids were fixed by directly adding 4% paraformalde-
hyde to the six-well plates and incubating for 30 min at
room temperature (RT). Matrigel was then mechanically
disrupted, and cells were transferred into BSA-coated
tubes. Autofluorescence was quenched by incubating the
organoids with 50 mM NH4Cl in PBS (for 30 min at RT)
and 100 mM glycine in PBS (for 5 min). Cell nuclei were
stained with Hoechst dye (Invitrogen, Carlsbad, CA, USA)
and visualized on an AxioImager M1 ApoTome fluores-
cence microscope (Zeiss, Oberkochen, Germany).
Fluorescence intensity of PKH26-stained parasite EVs
was quantified in ImageJ and expressed as a percentage
of corrected total fluorescence (% CTF) adjusted by back-
ground fluorescence and the surveyed area in total epithe-
lial cells (donut-shaped selection) or in the lumen
incubated at different conditions in 10 different murine
colonic organoids from two technical replicates (five each).
The whole experiment was repeated to perform laser scan-
ning confocal imaging on a 780 NLO microscope (Zeiss).
Confocal image deconvolution was performed in ImageJ
using the plugins “Diffraction PSF 3D” for PSF calculation
and “DeconvolutionLab” with the Richardson–Lucy algo-
rithm for 3D deconvolution and Tikhonov–Miller algo-
rithm for 2D deconvolution [23].

Proteomic analyses

The protein contents from the T. muris ES products
and ODG fractions were analysed as follows.

Proteomic analysis of ES products
One hundred micrograms (100 µg) of T. muris ES
proteins from two different batches of adult worms
were precipitated at −20°C overnight in ice-cold
methanol. Proteins were resuspended in 50 mM
NH4HCO3, reduced in 20 mM dithiothreitol (DTT,
Sigma-Aldrich) and finally alkylated in 55 mM iodoa-
cetamide (IAM, Sigma-Aldrich). Proteins were finally
digested with 2 µg of trypsin (Sigma-Aldrich) by incu-
bating for 16 h at 37°C with gentle agitation. Reaction
was stopped with 5% formic acid, and the sample was
desalted using ZipTip® (Merck Millipore). Both sam-
ples were kept at −80°C until use.

Proteomic analysis of EVs
For the proteomic analysis of EVs, two replicates were
analysed independently. The ODG fractions with a
density of 1.07–1.09 g/ml (fractions 5–7) were com-
bined, and a total of 50 µg of protein from each of the
two replicates was loaded on a 12% SDS-PAGE and
electrophoresed at 100 V for 1.5 h. Each lane was sliced
into nine pieces, which were subjected to trypsin diges-
tion as described previously [24]. Briefly, each slice was
washed for 5 min three times in 50% acetonitrile,
25 mM NH4CO3 and then dried under a vacuum
centrifuge. Reduction was carried out in 20 mM DTT
for 1 h at 65°C, after which the supernatant was
removed. Samples were then alkylated in 55 mM IAM
at RT in darkness for 40 min. Gel slices were then
washed 3× in 25 mM NH4CO3 before drying in a
vacuum centrifuge followed by digestion with 500 ng
of trypsin overnight at 37°C. The digest supernatant
was removed from the gel slices, and residual peptides
were removed from the gel slices by washing three
times with 0.1% TFA for 45 min at 37°C. Samples
were desalted and concentrated using Zip-Tip® and
kept at −80°C until use.

Mass spectrometry and database searches
For all analyses, samples were reconstituted in 10 μl of
5% formic acid. Six microlitres of sample was injected
onto a 50 mm 300 µm C18 trap column (Agilent
Technologies, Santa Clara, CA, USA) and desalted for
5 min at 30 μL/min using 0.1% formic acid (aq).
Peptides were then eluted onto an analytical nano
HPLC column (150 mm × 75 μm 300SBC18, 3.5 μm,
Agilent Technologies) at a flow rate of 300 nL/min and
separated using a 35 min gradient (for ES proteins) or
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95 min gradient (for EV proteins) of 1–40% buffer B
(90/10 acetonitrile/0.1% formic acid) followed by a
steeper gradient from 40 to 80% buffer B in 5 min.
The 5600 mass spectrometer operated in information-
dependent acquisition mode, in which a 1 s TOF-MS
scan from 350–1400 m/z was performed, and for pro-
duct ion ms/ms 80–1400 m/z ions observed in the
TOF-MS scan exceeding a threshold of 100 counts
and a charge state of +2 to +5 were set to trigger the
acquisition of product ion. Analyst 1.6.1 (ABSCIEX,
Framingham, MA, USA) software was used for data
acquisition and analysis.

For the analysis of the ES products, a database was
built using the T. muris genome [8] with the common
repository of adventitious proteins (cRAP, http://www.
thegpm.org/crap/) appended to it. A similar database
containing the T. muris genome, the cRAP and the Mus
musculus genome was used for the analysis of the EV
mass spectrometry data. Database search was performed
using X!Tandem, MS-GF+, OMSSA and Tide search
engines using SearchGUI [25]. Parameters were set as
follows: tryptic specificity allowing two missed cleavages,
MS tolerance of 50 ppm and 0.2 Da tolerance for MS/MS
ions. Carbamidomethylation of Cys was used as fixed
modification and oxidation of Met and deamidation of
Asn and Gln as variable modifications. PeptideShaker
v.1.16.15 was used to import the results for peptide and
protein inference [26]. Peptide-Spectrum Matches
(PSMs), peptides and proteins were validated at a 1.0%
False Discovery Rate estimated using the decoy hit dis-
tribution. Only proteins having at least two unique pep-
tides (containing at least seven amino acid residues) were
considered as positively identified. The mass spectrome-
try proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD008387 (for
the extracellular vesicles data) and PXD006344 (for the
ES products data).

RNA analyses

mRNA and miRNA isolation
Two different biological replicates of EVs obtained from
two different batches of worms were used. ODG frac-
tions with a density between 1.07 and 1.09 (fractions
containing pure EV samples after TRPS analysis) were
pooled, and excess Optiprep® solution was removed by
buffer exchanging. Total RNA and miRNA were
extracted using the mirVanaTM miRNA Isolation Kit
(ThermoFischer) according to the manufacturer’s
instructions. RNA was eluted over two fractions of
50 µl each and stored at −80°C until analysed.

RNA sequencing and transcript annotation
The RNA quality, yield and size of total and small RNAs
were analysed using capillary electrophoresis (Agilent
2100 Bioanalyzer, Agilent Technologies, USA).
Ribosomal RNA was removed from samples, which
were pooled for sufficient input material for further
sequencing, resulting in one sample for mRNA and two
replicates for miRNA analyses, respectively. mRNA and
miRNA were prepared for sequencing using Illumina
TruSeq stranded mRNA-seq and Illumina TruSeq Small
RNA-seq library preparation kit according to the manu-
facturer’s instructions, respectively. RNAseq was per-
formed on a HiSeq 500 (Illumina, single-end 75-bp PE
mid output run, approx. 30M reads per sample). Quality
control, library preparation and sequencing were per-
formed at the Ramaciotti Centre for Genomics at the
University of New South Wales. The data have been
deposited in NCBI’s Gene Expression Omnibus and are
accessible through GEO Series accession numbers
GSE107985 and GSE107986.

Bioinformatic analyses

Proteomics
Proteins were classified according to Gene Ontology
(GO) categories using the software Blast2GO basic ver-
sion 4.0.7 [27] and Pfam using HMMER v3.1b1 [28].
Putative signal peptides and transmembrane domain(s)
were predicted using the programs CD-Search tool [29]
and SignalP [30].

mRNA analysis
High-throughput RNA-seq data were aligned to the T.
muris reference genome models (WormBase WS255;
http://parasite.wormbase.org; [31]) using the STAR tran-
scriptome aligner [32]. Prior to downstream analysis,
rRNA-like sequences were removed from the metatran-
scriptomic dataset using riboPicker-0.4.3 (http://ribo
picker.sourceforge.net; [33]). BLASTn algorithm [34] was
used to compare the non-redundant mRNA dataset for T.
muris EVs to the nucleotide sequence collection (nt) from
NCBI (www.ncbi.nlm.nih.gov) to identify putative homo-
logues in a range of other organisms (cutoff: <1E-03).
Corresponding hits homologous to the murine host, with
a transcriptional alignment coverage <95% (based on the
effective transcript length divided by length of the gene),
and with an expression level <10 fragments per kilobase of
exonmodel permillionmapped reads (FPKM) normalized
by the length of the gene, were removed from the list. The
final list of mRNA transcripts from T. muris exosomes was
assigned to protein families (Pfam) and GO categories
(Blast2GO).
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miRNA analysis and target prediction
The miRDeep2 package [35] was used to identify known
and putative novel miRNAs present in both miRNA sam-
ples. As there are no T. muris miRNAs available in
miRBase release 21 [36], the miRNAs from the nematodes
Ascaris suum, Brugia malayi, Caenorhabditis elegans,
Caenorhabditis brenneri, Caenorhabditis briggsae,
Caenorhabditis remanei, Haemonchus contortus,
Pristionchus pacificus, Panagrellus redivivus and
Strongyloides ratti were utilized as a training set for the
algorithm. Only miRNA sequences commonly identified
in both replicates were included for further analyses. The
interaction between miRNA and murine host genes was
predicted using the miRanda algorithm 3.3a [37]. Input
3ʹUTR from the M. musculus GRCm38.p4 assembly was
retrieved from the Ensembl database release 86 [38]. The
software was run with strict 5ʹ seed pairing, energy thresh-
old of −20 kcal/mol and default settings for gap open and
gap extend penalties. Interacting hits were filtered by con-
servative cutoff values for pairing score (>155) and
matches (>80%). The resulting gene list was classified by
the Panther classification system (http://pantherdb.org/)
using pathway classification [39] and curated by the reac-
tome pathway database (www.reactome.org) [40].

Results

Proteomics analysis of the ES products of T. muris

The ES products secreted by two different batches of T.
muris adult worms were analysed using LC-MS/MS. A
total of 1777 and 2056 PSMs were confidently identified
in the first and second biological replicates analysed
respectively. Similarly, a total of 591 and 704, correspond-
ing to 197 and 233 proteins, were identified with 100%
confidence. After removing the proteins identified from
only one peptide and the sequences belonging to the
contaminants, 100 and 116 T. muris proteins were iden-
tified in both replicates. A total of 68 proteins were found
in both replicates, whereas 32 and 48 proteins were
uniquely found in replicate 1 and 2 respectively, resulting
in 148 proteins in total (Supplementary Table 1).

The identified proteins were subjected to a Pfam and
GO analysis. The most represented domains were
“trypsin-like peptidase”, “thioredoxin-like” and “tetra-
tricopeptide repeat domains”, with 21, 19 and 13 pro-
teins containing these domains respectively (Figure 1
(a)). The most abundant GO terms within the “mole-
cular function” ontology were “protein binding”,
“metal ion binding” and “nucleic acid” as well as “iso-
merase activity”, “oxidoreductase activity” and “serine-
type peptidase activity” (Figure 1(b)). The GO terms
within “biological process” and “cell component” (as

well as the above-mentioned “molecular function”) are
detailed in Supplementary Table 1.

From the total of 148 proteins found in both repli-
cates, only 62 had a signal peptide (Supplementary
Table 2), which opened the possibility of other non-
classical mechanisms of secretion of these proteins
described in other helminths, such as EVs.

T. muris adult worms secrete exosome-like EVs
that can be internalized by host cells

The ES products secreted by T. muris adult worms were
concentrated and EVs purified using Optiprep® gradient.
The density of the 12 fractions recovered after Optiprep®
separation was measured, ranging from 1.04 to 1.27 g/ml
(Table 1). All fractions were subjected to TRPS analysis
using a qNano system, but only fractions 4–10 contained
enough vesicles for the analysis (Figure 2). Fraction 6
(corresponding to a density of 1.07 g/ml) contained the
highest number of EVs (1.34 × 1012 particles/ml), followed
by fraction 7 (density = 1.008 g/ml;
concentration = 8.21 × 1010 particles/ml) and fraction 5
(density = 1.07 g/ml; concentration = 7.47 × 1010)
(Table 1). Protein concentration was measured in all frac-
tions, and EV purity determined as described previously
[41] (Table 1). Fraction 6 had the purest EV preparation
(4.31 × 109 particles/µg), followed by fractions 7 and 5
(4.04 × 108 and 1.58 × 108 particles/µg respectively)
(Table 1). Furthermore, the vesicle size was determined
using the qNano system, and the results are summarized in
Table 1.

In vitro cellular uptake of T. muris EVs in host cells was
studied using murine colonic organoids, comprising the
complete census of progenitors and differentiated cells
from the colon epithelial tissue growing in cell culture.
Purified membrane-labelled T. muris EVs were injected
into the central lumen of the colonic organoids (corre-
sponding to the intestinal lumen), and they were incubated
for 3 h at 37°C to demonstrate cellular uptake. We
observed internalization of EVs by organoid cells, which
was absent by preventing endocytosis in metabolic inactive
cells at 4°C (Figure 3). Using confocal microscopy, we
confirmed that EVs were inside cells and present a cyto-
plasmic location of the stained EVs in some cells within the
donut-shaped epithelial layer. By analysing the pictures
and comparing the area of epithelial cells and the central
lumen, uptake of stained vesicles at 37°C could be quanti-
tatively traced within epithelial organoid cells (mean %
CTF ±SD: 4.04 ± 1.11), and % CTF values were signifi-
cantly reduced (p < 0.001) in the central lumen (0.59 ±
0.41), whereas at 4°C, CTF values were 0.21 ± 0.29 and 3.79
± 2.29 for the total epithelial organoid cells and the central
lumen, respectively (Figure 3(e)).
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T. muris secreted EVs contain specific proteins

Two replicates containing ODG fractions with a density
between 1.07 and 1.09 g/ml were subjected to SDS-PAGE
separation, each lane cut into nine slices and subjected to

trypsin digestion followed by LC-MS/MS analysis. The
results obtained from both replicates were combined, and
only proteins commonly found in both replicates were
considered for further analysis. A total of 28,376 and

Table 1. Features of the different fractions isolated after Optiprep fractionation of extracellular vesicles from Trichuris
muris. Despite protein being detected in all fractions, only vesicles from fractions 4–10 could be quantified. The purity
of the different fractions was calculated according to Webber and Clayton [41].

Optiprep fraction
Density
(g/ml)

Protein quantification
(µg/ml)

Particle concentration
(particles/ml)

Purity of vesicles
particles/µg Particle size nm

S1 1.04 104.69 – – –
S2 1.05 290.10 – – –
S3 1.05 435.58 – – –
S4 1.06 477.86 2.96E + 08 6.19E + 05 93 ± 41.5
S5 1.07 474.19 7.47E + 10 1.58E + 08 72 ± 11.7
S6 1.07 310.61 1.34E + 12 4.31E + 09 72 ± 23.8
S7 1.08 202.99 8.21E + 10 4.04E + 08 90 ± 25.5
S8 1.10 160.76 1.31E + 10 8.15E + 07 152 ± 75.3
S9 1.12 190.46 1.31E + 10 6.88E + 07 183 ± 68.2
S10 1.15 436.86 1.71E + 09 3.91E + 06 165 ± 54.9
S11 1.21 232.77 – – –
S12 1.27 83.35 – – –

Figure 1. Bioinformatic analyses of the proteins secreted by Trichuris muris. (a) Bar graph showing the most abundant protein
families after a Pfam analysis on the excretory/secretory proteins derived from T. muris. (b) Bar graph showing the most abundantly
represented gene ontology molecular function terms in excretory/secretory proteins derived from T. muris.
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19,510 spectra corresponding to 6489 and 5455 peptides
were identified in replicates 1 and 2 respectively. A total of
663 and 718 proteins matching T. muris, M. musculus and
common contaminants for the cRAP database were iden-
tified (Supplementary Table 3). From these, 465 and 26
proteins containing at least two validated unique peptides
matchedT.muris andM.musculus respectively in replicate
1. Similarly, 486 and 36 proteins containing at least two
validated unique peptides matched T. muris and M. mus-
culus respectively in replicate 2. A final list of 364 and 17
proteins corresponding to T. muris and M. musculus
respectively was defined with proteins commonly identi-
fied in both replicates (Supplementary Table 4). Only these
common proteins were used in subsequent analyses

Among the identified proteins from T. muris, the most
abundant proteins based on the spectrum count were a

trypsin domain-containing protein, several sperm-coating
protein (SCP)-like extracellular proteins, also called SCP/
Tpx-1/Ag5/PR-1/Sc7 domain-containing proteins (SCP/
TAPS), a poly-cysteine and histidine-tailed protein, a gly-
ceraldehyde-3-phospahte dehydrogenase and a TB2/DP1
HVA22 domain-containing protein. One tetraspanin
(TMUE_s0037005100) was found in the EVs sample, as
well as other proteins typically found in EVs from hel-
minths like 14–3–3; heat shock protein (HSP) and glu-
tathione-S-transferase were also identified in this study.
Furthermore, from the 364 identified proteins from T.
muris, only 50 (13.7%) contained a transmembrane
domain, and 120 (32.96%) had a signal peptide. Despite
washing the worms extensively before culturing, discard-
ing the first 4 h of the ES for EV isolation (which typically
contains a significant amount of host proteins) and

Figure 2. Tunable resistive pulse sensing analysis of the extracellular vesicles (EVs) secreted by Trichuris muris. (a) Size and number of the EVs
secreted by T. muris after purification using an Optiprep® gradient was analysed using a qNano system (iZon). (b) Detailed graph showing
number of vesicles with a diameter between 30 and 150 nm. Only fractions 4–9 contained enough vesicles for the analyses.
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analysing only fractions containing highly pure EV sam-
ples, we found some host proteins in our analysis. Among
these proteins, we found an antibody Fc fraction and nine
proteasome proteins (Supplementary Table 4).

Following a GO analysis, the most represented GO
terms within biological process in the T. muris EV pro-
teins were assigned as “cellular metabolic process”,
“response to stimulus” and “proteolysis” (Figure 4(a)).
Similarly, the most represented GO terms within mole-
cular function were “oxidoreductase activity”, “protein
binding” and “ATP binding” (Figure 4(b)).

T. muris secreted EVs contain specific mRNAs and
miRNAs

RNA content of EVs was characterized using the Illumina
HiSeq platform. For an initial description of parasite-

specific mRNAs in EVs, total RNA from a highly pure
EV sample was sequenced, and results were curated based
on stringent thresholds. This resulted in 475 full-length
mRNA transcripts mapping to T. muris gene models. The
identified hits were subjected to a Pfam and GO analysis.
Interestingly, the most represented domains were of
“unknown function”, “reverse transcriptase” and “heli-
case”, whereas other gene models with DNA-binding and
processing domains were also highly abundant (e.g. genes
with “retrotransposon peptidase” domain) (Figure 5(a)).
Mapping to molecular functions identified “protein bind-
ing” as the most abundant term, with 31.9% of all
sequences involved in this function (Figure 5(b)). The
underlying proteins from the parasite-specific mRNAs
had functions in signalling and signal transduction, trans-
port, protein modification and biosynthetic processes, as
well as in RNA processing and DNA integration (Figure 5
(c)). Data are provided in Supplementary Table 5.

Figure 3. Trichuris muris extracellular vesicles (EVs) are internalized by murine colonic organoids. (a) Representative fluorescence images
(Zeiss AxioImager M1 ApoTome) of PKH26-labelled EVs (red) internalized by organoids after 3 h at 37°C and 4°C (metabolically inactive cells).
Hoechst dye (blue) was used to label cell nuclei. †Lumen of the organoids, which corresponds to the murine gut lumen, separated by the
dotted line from the epithelial cell layer. White bar corresponds to 20 μm. (b) Deconvolved laser scanning confocal microscopy images (Zeiss
780 NLO) of murine colonic organoids under 20× magnification. White bar corresponds to 20 µm. (c) Magnification of the framed area in B
under 100× magnification. White bar corresponds to 10 μm. (d) 3D projection of z-stack serial confocal images of a 12 µm organoid slice
incubated with PKH26-labelled EVs after 3 h at 37°C (videos of 3D projections of the experiments at 37°C and 4°C are available in the
supplementarymaterials). (e) Percentage of the CTF adjusted by background fluorescence and the surveyed area of PKH26-stained EVs in total
epithelial cells (donut-shaped selection) or in the organoid lumen incubated under different conditions in 10 different organoids from two
technical replicates (five each). ***Highly significant results (p < 0.001). Error bars indicate 95% confidence intervals.
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By sequencing and screening biological duplicates for
miRNAs, we identified 56 miRNAs commonly present in
both datasets, 34 of which have close homologues in other
nematodes. The remaining 22 miRNAs were novel and
were named serially according to their mean abundances
(tmu.miR.ev1 to tmu.miR.ev22). Potential interactions of
T. murismiRNAs to murine host genes were explored by
computational target prediction. The 56 nematode EV
miRNAs were predicted to interact with 2,043 3ʹUTR
binding sites of the mouse genome assembly
(Supplementary Table 6). Associated annotated coding
genes were grouped according to signalling, metabolic,
and disease pathways (Supplementary Figure 1). Indeed,
a number of the nematode miRNA-mouse gene interac-
tions are involved in host immune system, receptor and
transcriptional regulation (Figure 6). Within the 56

identified EV miRNAs, three (5.4%) could not be
assigned for interaction with a specific pathway in the
murine host, including the second most abundant asu-
miR-5360-5p.

Discussion

Trichuriasis is a soil-transmitted helminth infection that
affects almost 500 million people worldwide [1,42,43].
In addition to the pathogenicity associated with the
disease, the infection can also cause physical and intel-
lectual retardation [1,44]. There is, therefore, an urgent
need to understand the mechanisms by which the para-
site interacts with its host such that novel approaches to
combat this neglected tropical disease can be developed
[45]. T. trichiura is the main species that affects humans,

Figure 4. Gene ontology analysis of proteins from the extracellular vesicles (EVs) secreted by Trichuris muris. (a) Bar graph showing
the most abundantly represented gene ontology biological process terms in proteins present in the EVs secreted by T. muris. (b) Bar
graph showing the most abundantly represented gene ontology molecular function terms in proteins present in the EVs secreted by
T. muris.
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but the difficulty in obtaining worms and working with
the adult stage has prompted parasitologists and immu-
nologists to use the T. muris rodent model.

We provide herein the first high-throughput study of
the secretome of T. muris. The analysis of the genome
from T. muris predicted 434 proteins containing signal
peptides [8]. We have confidently identified (with two or
more peptides) 148 proteins secreted by adult T. muris,
corresponding to 34.1% of the total predicted secreted
proteins [8]). From the total proteins identified, 68 were
commonly found in both replicates, highlighting the
importance of analysing multiple batches of samples
when conducting proteomics analyses of parasitic ES
products. Among the identified proteins, we found sev-
eral peptidases and proteases (such as serine proteases,
pepsin and trypsin domain-containing proteins) and also
protease inhibitors including WAP domain-containing
proteins. These findings are in agreement with the func-
tional annotation of the T. muris proteins predicted from
the genome [8]. Protease inhibitors (particularly serine
protease inhibitors and secretory leukocyte proteinase
inhibitor (SLPI)-like proteins – proteins containing
mostly WAP domains) are abundantly represented in
the T. muris genome [8]. SLPI-like proteins have been
suggested to have immunomodulatory properties as well
as a role in wound healing [8,46–48], so they could be
secreted in an attempt to modulate the host’s immune

response and repair damage caused by both feeding/
migrating worms and immunopathogenesis. In addition,
we found five SCP/TAPS (also known as CAP-domain)
proteins. SCP/TAPS proteins are abundantly represented
in STH, although they have not been well characterized in
the clade I nematodes [49].

Only recently, different authors have shown the
importance of helminth-secreted EVs in host–parasite
interactions. The secretion of small EVs was demon-
strated in various intracellular and extracellular parasites,
interacting with their hosts in a specific manner [17]. In
addition, the secretion of EVs has been demonstrated
thus far only in a small number of nematodes, including
the free-living C. elegans, the filarial nematodes Brugia
malayi and Dirofilaria immitis, the rodent nematode
Heligmosomoides polygyrus and the ovine and porcine
intestinal nematodes Teladorsagia circumcincta and
Trichuris suis, respectively [20,50–53].

Our results show that T. muris secretes EVs with a wide
variety of sizes (40–550 nm). In order to study the exo-
some-like vesicles (vesicles with a size between 50–150 nm)
and eliminate contamination with soluble proteins that
could be co-precipitated in the ultracentrifugation step,
we further purified the EVs using Optiprep and analysed
only fractions 5–7 (fractions containing EVs with sizes
between 72 ± 23.8 nm and 90 ± 25.5 nm). For a totally
novel approach in EV research, we introduced and

Figure 5. Analysis of the 475 full-length mRNAs detected in Trichuris muris extracellular vesicles. (a) Bar graph showing the most
represented protein families (Pfam) from the translated mRNAs. (b) Molecular functions and (c) biological functions of proteins
encoded by each of the 475 transcripts assigned to gene ontology functional annotation.
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established a long-term primary in vitro culture to generate
3D intestinal organoids, recapitulating the in vivo epithelial
tissue organization and representing the complete census
of progenitors (stem cells) and differentiated cells [22,54].
Although there are colonic cancer cell lines available, such
as the intestinal epithelial cell line Caco2, cell lines cannot
recapitulate the complex spatial organization of the intest-
inal epithelium, they have undergone significant molecular
changes to become immortal, and they do not represent all
intestinal subsets [55]. Hence, we used colonic organoids
corresponding to the epithelial barrier, which is the first
line of defence against intestinal pathogens. In a first
attempt to study whipworm EV interactions with the
host intestinal epithelial barrier, we observed vesicle uptake
only in a subset of cells. This could not be confirmed by
repeating the experiment and analysing the cells by laser
scanning confocal imaging and z-stack rendering. At first
glance, this suggests that parasite EV uptake – at least
under the tested conditions – is a cell-type-unspecific
process. Results from several studies show that fluores-
cently labelled EVs can be taken up by different cell
types, whereas other studies indicate that vesicular uptake

is a highly cell-type-specific process [56]. As we do not
know which intestinal cells are presented in the screened
murine colonic organoids, further studies should include
good host cell markers to distinguish the different cells in
the heterogeneous organoid system. Furthermore, as the
tested conditions could correspond to a high parasite
burden present in severe infections, titration of the admi-
nistered EV dosages and inclusion of different endocyto-
sis-inhibitors could give clues about the specificity and
mechanisms of T. muris EV–host interactions. In line
with the observation of different studies, uptake of EVs
was dramatically reduced when incubating at 4°C, suggest-
ing that internalization is not a passive process occurring in
metabolically inactive cells and hence relies on some
source of energy [57–60]. A disadvantage of the intestinal
organoid culture is the lack of any immune cells. Co-
culture experiments with intestinal organoids and intrae-
pithelial lymphocytes as described by Nozaki and collea-
gues [61] could be a powerful tool to study interactions of
EVs with immune cells at their primary interface, comple-
mented with host cell proteomics to detect host and para-
site proteins, and transcriptomic studies.

Figure 6. Prediction of T. muris extracellular vesicle (EV) miRNA target interactions to murine host genes. Functional map of T. muris
EV miRNAs and their target murine host genes. (a) Individual targeted host genes are categorized by PantherDB signalling pathway
analysis (heat map corresponds to individual targeted genes in the murine host). Bottom axis shows the 56 identified miRNAs in T.
muris EVs and their abundances (average mean read counts from two biological replicates), termed according to their closest
homologues (de novo transcripts were designated as tmu.miR.ev#). Total number of targeted genes identified by PantherDB
categories classified as (b) “immune system related”, (c) “receptor regulation” and (d) “transcription regulation”.
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The proteomic analysis of the exosome-like EVs
showed a total of 381 proteins (364 from T. muris and
17 from the host), 130 of which have also been found in
the crude ES prep. From the common proteins, only 54
(41.5%) were predicted to have a signal peptide; thus, EVs
could be a potential mechanism by which these proteins
are secreted by helminths into the extracellular milieu,
addressing an issue that has been frequently debated in
the literature [8]. It is interesting to note that one tetra-
spanin (TMUE_s0037005100) was detected in the T.
muris EVs. Tetraspanins are considered a molecular mar-
ker of exosomes, since they are present on the surface
membrane of EVs frommany different organisms includ-
ingmammalian cells and bacteria [62]. EVs secreted by or
shed from the surface of parasitic trematodes are enriched
in tetraspanins [18,21,63], although, in the case of nema-
todes, they are not abundant on the surface of EVs. For
instance, only onemember of this family was found in the
EVs secreted by the nematode H. polygyrus [20]. Since
tetraspanins are involved in the formation of the mem-
brane of EVs [62], it is unclear why EVs secreted by
nematode parasites are not replete in tetraspanins, as
happens in trematodes. In trematodes, exosomes derive
from the tegumental syncytium of the worm [64],
whereas in nematodes they seem to have an intestinal
origin [20]. This different origin could be the reason why
tetraspanins are not enriched in nematode EVs. Our
dataset presents other proteins usually found in parasitic
exosomes, such as 14–3–3, HSP 90 and myoglobin.

Proteins involved in proteolysis were abundantly repre-
sented (12.3% of sequences) in the T. muris EVs (e.g.
trypsin-like, cathepsins and aminopeptidases). Trichuris
lacks the muscular pharynx that many other nematodes
use to ingest their food, a challenging process given the
hydrostatic pressure of the pseudocoelom that charac-
terizes the phylum. Instead, it has been suggested that the
parasite secretes copious quantities of digestive enzymes
for this purpose [8]. We have shown that proteases are
heavily represented in the ES products, and proteolysis is
also in the top three main GO terms found when we
analysed the proteins present in the EVs. Indeed, 37 of
the 364 proteins from T. muris found in the EVs contain a
trypsin or trypsin-like domain. These proteins could be
involved in extracellular digestion, and, since feeding is a
key process in parasite biology, theymight also be potential
targets for vaccines and drugs against the parasite.
Helminth proteases have also been hypothesized to be
involved in immunomodulatory processes, where they
degrade important immune cell surface receptors [65]
and host intestinal mucins [9,66]. If this is the case,
Trichuris could be secreting EVs containing peptidases to
promote an optimal environment for attaching to the
mucosa and feeding purposes.

Proteins containing an SCP/TAPS domain were iden-
tified in the EVs secreted by T. muris. This family of
proteins is abundantly expressed by parasitic nematodes
and trematodes. For instance, they represent 35% of the
ES products of the hookwormAncylostoma caninum [67]
and have been found in free-living and plant nematodes
(reviewed by [68]). Their role is still unknown, although
they have been suggested to play roles in fundamental
biological processes such as larval penetration [69] and
modulation of the immune response [70,71], in the tran-
sition from the free-living to the parasitic stage [72], and
have even been explored as vaccine candidates against
hookworm infections [73]. It is interesting to note that
EVs from other helminths are enriched for many known
vaccine candidate antigens [21]. Since SCP/TAPS pro-
teins are abundant in the EVs secreted by T. muris, their
potential use as vaccines should be further explored.

We analysed the mRNA and miRNA content of the
exosome-like EVs secreted by T. muris since it has been
well documented that the nucleic acid content of eukar-
yotic EVs can be delivered between species to other cells
and can be functional in the new location [74]. Functional
categorization of the 475 mRNAs from T. muris EVs
revealed a high proportion of protein-binding proteins.
Interestingly, mRNAs for common EV proteins were
present, including inter alia mRNAs for tetraspanins,
HSPs, histones, ubiquitin-related proteins, and signal-
ling- and vesicle trafficking molecules (rab, rho and ras).
A significant number of domains found in the proteins
predicted from mRNA sequences were involved in
reverse transcription and retrotransposon activity, sug-
gesting a strong involvement of these mRNAs in direct
interactions with the host target cell genome. This is
supported by the hypothesis of shared pathways between
EV biogenesis and retrovirus budding, including the
molecular composition of the released particles, sites of
budding in different cell types and the targeting signals
that deliver proteins [75–78].

To gain a more comprehensive picture of the RNA
composition of the T. muris EVs, we sequenced the
miRNAs present in T. muris EVs and identified 56
miRNAs, including 22 novel miRNAs without
described homology to other nematodes. We also iden-
tified miRNAs that shared homology with those from
other parasitic nematodes, such as let-7, miR-2, miR-9,
miR-34, miR-36 (a and c), miR-44, miR-60, miR-72,
miR-81, miR-86, miR-87, miR-92, miR-228, miR-236
and miR-252 [79]. This suggests that secretion of
miRNAs by parasitic nematodes is most probably con-
served and that EVs could be playing an important role
in this secretory pathway. T. muris miRNAs that reg-
ulate expression of genes involved in specific condi-
tions and cellular pathways were identified. In humans,
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more than 60% of all protein-coding genes are thought
to be controlled by miRNAs [80]. Our in silico predic-
tion analysis of murine host gene interactions of T.
muris EV miRNAs points towards a strong involve-
ment of parasite miRNAs in regulation/modulation of
the host immune system [81]. In this sense, it has been
previously demonstrated that small EVs secreted by H.
polygyrus interact with intestinal epithelial cells of its
murine host and suppress type 2 innate immune
responses, promoting parasite survival [20]. Similarly,
other studies demonstrated the secretion of EVs con-
taining miRNAs by larvae of the porcine whipworm T.
suis, and although the miRNAs were not sequenced,
the authors suggested a possible role in immune eva-
sion [50].

The mechanisms by which parasitic helminths pack
their nucleic acid cargo into EVs is still unknown, and,
while we hypothesize that an active mechanism might
regulate this process, we cannot discard the possibility
that mRNAs and miRNAs could be internalized at
random. Understanding this mechanism will be of
importance in understanding the intimately interactive
nature of host–parasite biology. For example, are
mRNAs in parasite EVs translated into protein by
target host cells, akin to viral hijacking of host cell
protein manufacturing machinery? Or, are EV
mRNAs unimportant, and is manipulation of host cell
gene expression mostly due to miRNAs?

In the present study, we have provided important
information regarding themolecules secreted by themur-
ine whipworm T. muris. The identification of the secreted
proteins and EVs (including their proteomic and RNA
content) will prove useful not only for the design of novel
approaches aimed at controlling whipworm infections,
but also to understand the way the parasite promotes an
optimal environment for its survival.
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