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ABSTRACT
Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of
ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No
protocols for gene insertion, deletion, silencing, or mutation are currently available
for the AGF, rendering gene-targeted molecular biological manipulations unfeasible.
Here, we developed and optimized an RNA interference (RNAi)-based protocol for
targeted gene silencing in the anaerobic gut fungus Pecoramyces ruminantium strain
C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA
silencing in fungi (Dicer, Argonaute,Neurospora crassaQDE-3 homolog DNA helicase,
Argonaute-interacting protein, and Neurospora crassa QIP homolog exonuclease);
and the competency of C1A germinating spores for RNA uptake was confirmed
using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-
synthesized siRNAs targeting D-lactate dehydrogenase (ldhD) gene to C1A germinating
spores resulted in marked target gene silencing; as evident by significantly lower ldhD
transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in
intracellular protein extracts, and a reduction in D-lactate levels accumulating in the
culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-
treated cultures identified a few off-target siRNA-mediated gene silencing effects. As
well, significant differential up-regulation of the gene encoding NAD-dependent 2-
hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed,
which could possibly compensate for loss of D-LDH as an electron sink mechanism in
C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the
door for gene silencing-based studies in this fungal clade.
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INTRODUCTION
The role played by non-coding RNA (ncRNA) molecules in epigenetic modulation of gene
expression at the transcriptional and post-transcriptional levels is now well recognized
(Catalanotto, Cogoni & Zardo, 2016). Small interfering RNAs (siRNA) are short (20–24 nt)
double stranded RNA molecules that mediate post-transcriptional regulation of gene
expression and gene silencing by binding to mRNA in a sequence-specific manner (Quoc &
Nakayashiki, 2015). The process of RNA interference (RNAi) has been independently
documented in fungi (Chang, Zhang & Liu, 2012; Cogoni & Macino, 1997b; Romano
& Macino, 1992), animals and human cell lines (Atayde, Tschudi & Ullu, 2011; Chiu &
Rana, 2002), as well as plants (Fang & Qi, 2016). The fungal RNAi machinery has been
investigated in several model fungi, e.g., Neurospora crassa (Romano & Macino, 1992),
Mucor circinelloides (Nicolás, Torres-Martínez & Ruiz-Vázquez, 2003), and Magnaporthe
oryzae (Kadotani et al., 2003; Kadotani et al., 2004), and encompasses: (1) Dicer (Dic)
enzyme(s): RNaseIII dsRNA-specific ribonucleases that cleave double stranded RNA
(dsRNA) to short (20–25 bp) double stranded siRNA entities; (2) Argonaute (Ago)
protein(s), the core component of the RNA-induced silencing complex (RISC) which
binds to the dicer-generated siRNAs and other proteins and cleaves the target mRNA;
(3) RNA-dependent RNA polymerase (RdRP) enzyme (present in the majority, but
not all fungi) that aids in amplifying the silencing signal through the production of
secondary double stranded siRNA molecules from single stranded mRNAs generated
by the RISC complex; (4) DNA helicase, Neurospora crassa QDE-3 homolog (Pickford
et al., 2002), that aids in the production of the aberrant RNA to be targeted by RdRP;
and (5) Argonaute-interacting protein, Neurospora crassa QIP homolog (Maiti, Lee & Liu,
2007), an exonuclease that cleaves and removes the passenger strand from the siRNAduplex.

The phenomenon of RNA interference could induce gene silencing due to the action of
endogenously producedmicroRNA (miRNA), or could be triggered due to the introduction
of foreign siRNA (e.g., due to viral infection or genetic manipulation). Under normal
physiological conditions, RNAi is thought to play a role in endogenous regulation of
gene expression (Bartel, 2004), development of resistance to viruses (Hammond et al.,
2008a; Segers et al., 2007; Sun, Choi & Nuss, 2009; Zhang et al., 2008), and silencing the
expression of transposons (Murata et al., 2007; Nolan et al., 2005). On the other hand,
the introduction of foreign siRNA could be utilized for targeted, sequence-specific, gene
knockdown in fungi (Quoc & Nakayashiki, 2015; Chang, Zhang & Liu, 2012; Romano &
Macino, 1992). Indeed, demonstration of the feasibility of RNAi approaches for targeted
gene silencing has been shown in Ascomycota (Romano & Macino, 1992; Abdel-Hadi et al.,
2011; Barnes, Alcocer & Archer, 2008; Eslami et al., 2014; Jöchl et al., 2009; Kalleda, Naorem
&Manchikatla, 2013; Li et al., 2012; Moazeni et al., 2012; Moazeni et al., 2014; Mousavi et
al., 2015; Penn et al., 2015; Prakash, Manjrekar & Chattoo, 2016), Basidiomycota (Caribé
dos Santos et al., 2009; Matityahu et al., 2008; Nakade et al., 2011; Namekawa et al., 2005;
Skowyra & Doering, 2012), and Mucoromycota (Gheinani et al., 2011; Nicolas et al., 2008);
and RNAi-based protocols were used to infer the putative roles of several genes or simply
as a proof of principle.
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The anaerobic gut fungi (AGF) represent a basal fungal phylum (Neocallimastigomycota)
that resides in the herbivorous gut and plays an important role in enhancing plant biomass
metabolism by the host animals (Gruninger et al., 2014). The AGF have multiple potential
biotechnological applications such as a source of lignocellulolytic enzymes (Cheng et al.,
2014; Kwon et al., 2016; Lee et al., 2015; Morrison, Elshahed & Youssef, 2016; Wang, Chen &
Hseu, 2014; Wei et al., 2016a; Wei et al., 2016b), direct utilization of AGF strains for sugar
extraction from plant biomass in enzyme-free biofuel production schemes (Ranganathan
et al., 2017), additives to biogas production reactors (Nkemka et al., 2015; Procházka et
al., 2012), and feed additives for livestock (Dey et al., 2004; Lee, Ha & Cheng, 2000; Paul
et al., 2011; Paul et al., 2004; Saxena et al., 2010; Sehgal et al., 2008; Tripathi et al., 2007).
However, the strict anaerobic nature of AGF renders genetic manipulation procedures
involving plating and colony selection extremely cumbersome. Consequently, there are
currently no protocols for transformation, gene insertion, gene deletion, or sequence-
specific homologous recombination-based genetic manipulation in AGF, hindering in-
depth investigation of their biotechnological potential.

We here report on the development of an RNAi-based protocol for targeted gene
knockdown in the anaerobic gut fungal isolate Pecoramyces ruminantium strain C1A.
The protocol does not involve transformation, and does not require homologous
recombination, or colony selection. We demonstrate the uptake of chemically synthesized
short double stranded siRNA by germinating spores of P. ruminantium strain C1A, and
subsequently demonstrate the feasibility of using this approach for silencing D-lactate
dehydrogenase (ldhD) gene. We finally examine the off-target effects of ldhD gene
knockdown, as well as the impact of inhibiting D-lactate production on the glycolytic
and fermentation pathways in C1A.

MATERIALS AND METHODS
Microorganism and culture maintenance
Pecoramyces ruminantium strain C1A was isolated previously in our laboratory (Hanafy et
al., 2017) and maintained by biweekly transfers into an antibiotic-supplemented rumen-
fluid-cellobiose medium (RFC) as described previously (Calkins et al., 2016).

Identification and phylogeny of RNAi complex in anaerobic fungi
The occurrence of genes encoding Dic, Ago, RdRP, QIP, and QDE3 proteins was examined
in the genome of P. ruminantium C1A (Youssef et al., 2013) (Genbank accession number
ASRE00000000.1), as well as in three additional publicly available Neocallimastigomycota
genomes (Solomon et al., 2016) (Genbank accession numbers: MCOG00000000.1,
MCFG00000000.1, MCFH00000000.1). The phylogeny of the translated amino acid
sequences of identified homologues was compared to fungal and eukaryotic homologues in
MEGA7. Representative sequences were aligned using ClustalW and the aligned sequences
were manually refined and used to construct Neighbor Joining trees in Mega7 (Kumar,
Stecher & Tamura, 2016) with bootstrap values calculated based on 100 replicates.
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RNAi experimental design
Choice of delivery procedure
Delivery of the inhibitory RNA molecules to fungal cultures is commonly achieved
using appropriate vectors that either express short hairpin RNA (Hammond et al., 2008b;
Hammond & Keller, 2005; Nakayashiki et al., 2005), or individual sense and antisense RNA
strands that will subsequently be annealed into dsRNA (Cogoni & Macino, 1997b; Patel et
al., 2008). The process involves transformation (PEG-CaCl2-mediated into protoplasts,
Li acetate-mediated, Agrobacterium-mediated, or via electroporation) and necessitates
transformants’ selection on marker (usually hygromycin) plates. Alternatively, direct
delivery of exogenous, chemically synthesized short double stranded RNA (siRNA) has
also been utilized for targeted gene silencing in fungi (Eslami et al., 2014; Jöchl et al., 2009;
Kalleda, Naorem &Manchikatla, 2013; Mousavi et al., 2015; Khatri & Rajam, 2007). This
approach exploits the machinery for nucleic acids uptake, and the natural competence
of the germinating spore stage observed in the filamentous fungus Aspergillus (Jöchl et
al., 2009). Due to the strict anaerobic nature of AGF which would hinder the process
of transformation and selection on plates, we opted for direct addition of chemically
synthesized siRNA to C1A germinating spores, in spite of its reported lower efficacy
(Kalleda, Naorem &Manchikatla, 2013).

dsRNA synthesis
We targeted D-lactate dehydrogenase (ldhD) gene encoding D-LDH enzyme (EC 1.1.1.28).
D-LDH is an NAD-dependent oxidoreductase that reduces pyruvate to D-lactate, a
major fermentation end product in C1A (Ranganathan et al., 2017). Only a single copy
of ldhD (996 bp in length) was identified in C1A genome (IMG accession number
2511055262 within the C1A genome: https://img.jgi.doe.gov/cgi-bin/m/main.cgi?section=
TaxonDetail&page=taxonDetail&taxon_oid=2510917007). A 21-mer siRNA targeting
positions 279-298 in the ldhD gene transcript (henceforth ldhD-siRNA) was designed
using Dharmacon R© siDesign center (http://dharmacon.gelifesciences.com/design-center/)
with the sense strand being 5′-CGUUAGAGUUCCAGCCUAUUU-3′, and the antisense
strand being 5′-AUAGGCUGGAACUCUAACGUU-3′. Included within the designed
siRNAs were 3′ overhanging UU dinucleotides to increase the efficiency of target RNA
degradation as suggested before (Elbashir et al., 2001). The siRNA was ordered from
Dharmacon R© (LaFayette, CO, USA) as 21-mer duplex (double stranded) with a central
19-bp duplex region and symmetric UU dinucleotide 3′ overhangs on each end. The 5′

end of the antisense strand was modified with a phosphate group required for siRNA
activity (Chiu & Rana, 2003), while the 5′ end of the sense strand was modified with a Cy-3
fluorescent dye to facilitate visualization of the siRNA uptake by C1A germinating spores.
In addition, a 21-mer duplex that should not anneal to any of C1A’s mRNA transcripts
(henceforth unrelated-siRNA) was also designed and used as a negative control with the
sense strand being 5′-UCGUUGGCGUGAGCUUCCAUU-3′, and the antisense strand
being 5′-UGGAAGCUCACGCCAACGAUU-3′. The unrelated-siRNA was modified in the
same way as the ldhD siRNA.
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RNAi protocol
The basic protocol employed is shown in Fig. 1. StrainC1Awas grownonRFC-agarmedium
in serum bottles at 39 ◦C in the dark as described previously (Calkins et al., 2016) until
visible surface colonies are observed (usually 4–7 days). Surface growth was then flooded
by adding 10 ml sterile anoxic water followed by incubation at 39 ◦C (Calkins et al., 2016).
During this incubation period, spores are released from surface sporangia into the anoxic
water. Previous work has shown that the duration of incubation with the flooding solution
has a major impact on the spore developmental stage, where exclusively active flagellated
spores were observed in incubations shorter than 30 min, while 90–100-minute incubation
exclusively produced germinating spores. The onset of spore germination was observed at
75–80min during incubation with the flooding solution (Calkins et al., 2016). Germinating
spores were previously shown to be most amenable for accumulating the highest amount of
exogenously added nucleic acids (Jöchl et al., 2009). We, therefore, reasoned that addition
of chemically synthesized siRNA to the sterile anoxic flooding water at the onset of spore
germination (at around 75 min from the onset of flooding) followed by re-incubation at
39 ◦C for 15 additional minutes (for a total of 90-minute incubation period) would allow
for uptake of the siRNA by the germinating spores. Chemically synthesized siRNA was
added from a stock solution constituted in a sterile anoxic RNase-free siRNA buffer (60
mM KCl, 6 mM HEPES-pH 7.5, and 0.2 mM MgCl2) to the desired final concentration.
Initial experiments were conducted using Cy3-labeled ldhD-siRNA molecules to test the
uptake of siRNA by the germinating spores. Subsequent experiments were conducted using
unlabeled siRNA. Following siRNA addition and incubation, spores were gently recovered
from the serum bottle using a 16G needle and used to inoculate fresh RFC media bottles
(CalFkins et al., 2016), and the impact of silencing ldhD gene on gene expression, enzyme
activities, and D-lactate concentrations was assessed in these cultures. Controls included
treatments with unrelated-siRNA, as well as cultures with no siRNA addition.

Impact of ldhD gene knockdown on ldhD transcriptional levels,
D- LDH enzyme activity, and D-lactate production in strain C1A
The supernatant of both siRNA-treated and control C1A cultures was periodically sampled
(0.5 ml) and used for D-lactate quantification. The amount of fungal biomass at the
time of quantification was derived from the headspace pressure as previously described
(Ranganathan et al., 2017). The fungal biomass was vacuum filtered on 0.45 µm filters, and
immediately crushed in a bath of liquid nitrogen using a mortar and pestle as described
previously (Calkins & Youssef, 2016). The crushed cells were then poured into 2 separate
15-mL plastic falcon tubes, and stored at −80 ◦C for subsequent RNA, and protein
extraction, respectively.

D-Lactate quantification
D-lactate was determined in the culture supernatant using the D-Lactate Assay Kit
(BioAssay Systems, Hayward, CA, USA) following the manufacturer’s instructions.
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Figure 1 A cartoon depicting the RNAi gene knockdown protocol used in this study.
Full-size DOI: 10.7717/peerj.4276/fig-1
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RNA extraction, qRT-PCR, and RNA-seq
RNA was extracted following the protocol in Epicentre R© MasterPureTM Yeast RNA
Purification Kit, with few modifications as detailed previously (Calkins & Youssef,
2016). RNA concentrations were measured using the Qubit R© RNA HS Assay Kit (Life
Technologies R©, Carlsbad, CA, USA). Total RNA was utilized for both transcriptional
studies using qRT-PCR, as well as for transcriptomic analysis using RNA-seq.

For transcriptional studies, replicate samples were chosen to cover a range of fungal
biomass ranging from 6–22 mgs corresponding to various growth stages. Reverse
transcription (cDNA synthesis) was performed using the Superscript IV First-Strand
Synthesis System kit for RT-PCR (Life Technologies R©, Carlsbad, CA, USA), following
the manufacturer’s protocols. Quantitative reverse transcription PCR (qRT-PCR) was
conducted on a MyIQ thermocycler (Bio-Rad Laboratories, Hercules, CA, USA). ldhD, as
well as the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were
amplified using primers designed by the OligoPerfectTM Designer tool (Life Technologies,
Carlsbad, CA, USA) (ldhD-forward primer: AGACCATGGGTGTCATTGGT, ldhD-reverse
primer TTCATCGGTTAATGGGCAGT; GAPDH -forward primer: ATTCCACTCACG-
GACGTTTC, GAPDH -reverse primer: CTTCTTGGCACCACCCTTTA). The reactions
contained 1 µl of C1A cDNA, and 0.5 µM each of the forward and reverse primers.
Reactions were heated at 50 ◦C for 2 min, followed by heating at 95 ◦C for 8.5 min. This
was followed by 50 cycles, with one cycle consisting of 15 s at 95 ◦C, 60 s at 50 ◦C, and 30 s
at 72 ◦C. Using the 1Ct method, the number of copies of ldhD is reported relative to the
number of copies of GAPDH used as the normalizing control.

Transcriptomic analysis was used both to evaluate off-target effects of the chemically
synthesized ldhD siRNA (transcripts that will be down-regulated in siRNA-treated versus
untreated cultures), and to examine the effect of ldhD knockdown on other NADH-
oxidizing mechanisms to compensate for loss of D-LDH as an electron sink in C1A
(transcripts that will be up-regulated in siRNA-treated versus untreated cultures). For
transcriptomic analysis, RNA from untreated (Quoc & Nakayashiki, 2015 biological
replicates) as well as siRNA-treated (two biological replicates) cultures was sequenced
using Illumina-HiSeq. RNA sequencing as well as sequence processing were as described
previously (Couger et al., 2015). Briefly, de novo assembly of the generated RNA-Seq reads
was accomplished using Trinity (Haas et al., 2013), and quantitative levels of assembled
transcripts were obtained using Bowtie2 (Langmead & Salzberg, 2012). Quantitative values
in Fragments Per Kilobase of transcripts perMillionmapped reads (FPKM) were calculated
in RSEM. edgeR (Robinson, McCarthy & Smyth, 2010) was used to determine the transcripts
that were significantly up- or down-regulated based on the Benjamini–Hochberg adjusted
p-value (False discovery rate, FDR). We used a threshold of 10% FDR as the cutoff for
determining significantly differentially expressed transcripts.

Total protein extraction and D-Lactate dehydrogenase enzyme assay
For total protein extraction, replicate samples were chosen to cover a range of fungal
biomass ranging from 6–22 mgs corresponding to various growth stages. C1A cells crushed
in liquid nitrogen were suspended in 0.5mL of Tris-Gly buffer (3 g Tris base, 14.4 g Glycine,
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H2O up to 1L, pH 8.3), and mixed briefly. Cell debris were pelleted by centrifugation
(12,500× g for 2 min at 4 ◦C) and the sample supernatant containing the total protein
extract was carefully transferred into a sterile microfuge tube. Protein concentrations
were quantified in cellular extracts using QubitTM Protein assay kit (Life Technologies,
Carlsbad, CA, USA). D-LDH enzyme activity was quantified in the cell extracts using the
AmpliteTM Colorimetric D-Lactate Dehydrogenase Assay Kit (ATT Bioquest R©, Sunnyvale,
CA, USA), following the manufacturer’s protocols.

Statistical analysis
To evaluate the effect of the siRNA treatment on the transcriptional level of ldhD relative
to the housekeeping gene gapdh, the D-LDH specific activity, as well as the total amount
of D-lactate in the culture supernatant, Student t -tests were conducted to test for the
significance of difference between untreated cultures and ldhD-siRNA treated cultures,
and p-values were compared. To evaluate the effect of the concentration of ldhD-siRNA
exogenously added to C1A cultures on the level of inhibition of ldhD (at the RNA (the
transcriptional level of ldhD relative to the housekeeping gene gapdh), protein (D-LDH
specific activity), and metabolite (the total amount of D-lactate in the culture supernatant)
levels), Student t -tests were conducted to test for the significance of difference between
samples treated with different concentrations of ldhD-siRNA, and p-values were compared.

Nucleotide accession
This Transcriptome Shotgun Assembly project has been deposited at DDBJ/EMBL/Gen-
Bank under the accession GFSU00000000. The version described in this paper is the first
version, GFSU01000000.

RESULTS
RNAi machinery in the Neocallimastigomycota
The four examined Neocallimastigomycota genomes harbored most of the genes
constituting the backbone of the RNAi machinery: ribonuclease III dicer, argonaute,
QDE3-homolog DNA helicase, and QIP-homolog exonuclease. Phylogenetically, these
genes were closely related to representatives from basal fungal lineages (Figs. 2–4). Gene
copies in various genomes ranged between 1 to 4 (Figs. 2–4). However, it is notable that
all four examined genomes lacked a clear homolog of RNA-dependent RNA polymerase
(RdRP) gene. RdRP has been identified in the genomes of diverse organisms including
Caenorhabditis elegans (Smardon et al., 2000), plants, and the majority of examined fungi
(Cogoni & Macino, 1997a) but is absent in the genomes of vertebrates and flies; in spite of
their possession of a robust RNAi machinery that mediates sequence-specific gene silencing
in response to exogenously added dsRNAs.

Uptake of synthetic siRNA by C1A germinating spores and effect on
growth
The addition of fluorescently labeled siRNA targeting ldhD transcript to C1A spores at
the onset of germination followed by a 15-minute incubation at 39 ◦C resulted in the
uptake of the siRNA by the germinating spores as evident by their fluorescence (Fig. S1A).
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Figure 2 Neighbor joining phylogenetic tree.Neighbor joining phylogenetic tree depicting the phylo-
genetic relationship between Pecoramyces ruminantium strain C1A predicted Dicer sequences and those
from other fungal and eubaryotic species. Trees were constructed in Mega7 with bootstrap support based
on 100 replicates. Bootstrap values are shown for branches with >50 bootstrap support.

Full-size DOI: 10.7717/peerj.4276/fig-2

Several fields of vision were examined and the number of spores with Cy3-fluoresence,
indicative of siRNA uptake, as a percentage of the total number of spores (stained with the
nuclear stain DAPI) was evaluated. Under the examined conditions, the majority of the
germinating spores picked up the siRNA since 80–90% of spores stained with the nuclear
stain DAPI also exhibited Cy3-fluoresence (results from at least four separate experiments).
ldhD-siRNA-treated spores were collected and used to inoculate fresh RFC liquid media,
and the growth rate of these cultures were compared to siRNA-untreated controls. As
shown in Fig. S1B, ldhD-siRNA treatment had no significant effect on either the rate of
fungal growth or the final fungal biomass yield.
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Figure 3 Neighbor joining phylogenetic tree.Neighbor joining phylogenetic tree depicting the phyloge-
netic relationship between Pecoramyces ruminantium strain C1A predicted Argonaute sequences and those
from other fungal and eukaryotic species. Trees were constructed in Mega7 with bootstrap support based
on 100 replicates. Bootstrap values are shown for branches with >50 bootstrap support.
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Figure 4 Neighbor joining phylogenetic tree.Neighbor joining phylogenetic tree depicting the phylo-
genetic relationship between Pecoramyces ruminantium strain C1A predicted QDE-3 helicase (A) and QIP
exonuclease (B) sequences and those from other fungal and eukaryotic species. Trees were constructed in
Mega7 with bootstrap support based on 100 replicates. Bootstrap values are shown for branches with >50
bootstrap support.
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Table 1 Effect of the uptake of exogenous ldhD-siRNA by C1A germinating spores on the transcriptional level of ldhD relative to the house-
keeping gene gapdh.

Treatment Final siRNA
conc. (nM)

Copies of ldhD relative
to gapdh1,2

Fold change in
transcription level
(11Ct) compared to
untreated samples

Number of biological
replicates

Fungal biomass yield
(mg) at the time of
sacrificing1

20 4.2E−03± 3E−03∗∗∗,a 0.02 4 12.3± 5
50 4.4E−03± 2E−03∗∗∗,b 0.02 5 9.3± 5.2
75 3.6E−04± 1.8E−04∗∗∗,ab 0.0017 4 15.4± 3.7

ldhD-
siRNA

100 6.1E−05± 2.4E−05∗∗∗,ab 0.0003 4 15.9± 6
Untreated NA 0.21± 0.04 1 5 9.6± 2
Unrelated-siRNA 50 0.26 ± 0.07NS 1.29 2 13.5± 3.8

Notes.
1Values are average± standard deviation. Student t -test was used to test the significance of the difference of the siRNA-treated samples averages from that of the untreated sam-
ple. All ldhD-siRNA treated samples showed a significant decrease in the transcriptional level of ldhD relative to the housekeeping gene gapdh compared to the untreated control.
P-value of the significant difference; ***, p-value <0.00002; **, p-value= 0.0012; NS, not significant.

2.a,b When comparing the transcriptional level of ldhD relative to the housekeeping gene gapdh in samples treated with different concentration of ldhD-siRNA, a significant differ-
ence was observed with concentrations higher than 50 nM (p-value <0.05). Samples with the same letter were significantly different.

Knockdown of ldhD-gene by exogenously added ldhD-siRNA
Inhibition at the mRNA level
Table 1 shows the effect of adding exogenous ldhD-siRNA on ldhD transcriptional level
relative to the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase. Results
from qRT-PCR revealed that there was an observable decrease in ldhD transcription levels
in samples treated with ldhD-specific siRNA compared to siRNA-untreated samples or
unrelated siRNA-treated samples. This effect was significant (Student t -test p-values
≤ 0.0012). The inhibitory effect increased with the concentration of ldhD-specific
siRNA added, and this observed increase in inhibitory effect was significant at siRNA
concentrations higher than 50 nM (Student t -test p-values <0.05). The highest level of
inhibition was obtained when 100 nM of the ldhD-siRNA was exogenously added to C1A
germinating spores, where a four-fold decrease in transcription was observed. C1A cultures
treated with the unrelated siRNA showed no significant difference in the transcriptional
level of ldhD when compared to siRNA-untreated cultures.

Inhibition at the protein level
Similar to the effect of treatment on themRNA level, ldhD-siRNA-treated samples exhibited
a marked decrease in the specific D-LDH activity (Table 2). This effect was significant
(Student t -test p-value <2×10−8). The decrease in D-LDH specific activity was dependent
on the concentration of siRNA added and ranged from 71–84% reduction compared to
siRNA-untreated samples. The highest level of inhibition was obtained when 100 nM of the
ldhD-siRNA was exogenously added to C1A germinating spores, where an 84% decrease
in D-LDH specific activity was observed. When comparing samples treated with different
concentration of ldhD-siRNA to one another, D-LDH specific activities in samples treated
with 20 nM ldhD-siRNA were not significantly different from those in samples treated with
50 nM ldhD-siRNA (p> 0.05). Similarly, D-LDH specific activities in samples treated with
75 nM ldhD-siRNA were not significantly different from those in samples treated with
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Table 2 Effect of the uptake of ldhD-siRNA by C1A germinating spores on the D-LDH specific activity.

Treatment siRNA concentration
(nM)

D-LDH specific activity
(U/mg protein)1

Fold change in D-LDH
specific activity
compared to untreated
samples

Total number of
biological replicates

Fungal biomass yield
(mg) at the time of
sacrificing1

20 332.2 ± 90∗∗∗ 0.29 6 16.5± 5.8
50 331.9 ± 144.5∗∗∗ 0.29 17 10± 4.3
75 194.2 ± 79∗∗∗ 0.17 6 12.8± 5.3

ldhD-
siRNA

100 180.6 ± 131∗∗∗ 0.16 6 12.7± 7.4
Untreated NA 1157.6± 308.6 1 13 10.9± 2.9
Unrelated-siRNA 50 926.4± 69NS 0.8 2 13.5± 3.8

Notes.
1Values are average± standard deviation. Student t -test was used to test the significance of the difference of the siRNA-treated samples averages from that of the untreated sam-
ple. All ldhD-siRNA treated samples showed a significant decrease in the D-LDH specific activity compared to the untreated control. P-value of the significant difference; ***, p-
value <2×10−8; NS, not significant. When comparing samples treated with different concentration of ldhD-siRNA to one another, D-LDH specific activities in samples treated
with 20 nM ldhD-siRNA were not significantly different from those in samples treated with 50 nM ldhD-siRNA (p> 0.05). Similarly, D-LDH specific activities in samples treated
with 75 nM ldhD-siRNA were not significantly different from those in samples treated with 100 nM ldhD-siRNA (p > 0.05). However, D-LDH specific activities in samples
treated with 20 nM ldhD-siRNA were significantly different from those in samples treated with 75 nM or 100 nM ldhD-siRNA, and similarly, samples treated with 50 nM ldhD-
siRNA were significantly different from those in samples treated with 75 nM or 100 nM ldhD-siRNA (p< 0.05).

100 nM ldhD-siRNA (p> 0.05). However, D-LDH specific activities in samples treated
with 20 nM ldhD-siRNA were significantly different from those in samples treated with 75
nM or 100 nM ldhD-siRNA, and similarly, samples treated with 50 nM ldhD-siRNA were
significantly different from those in samples treated with 75 nM or 100 nM ldhD-siRNA
(p< 0.05). C1A cultures treated with the unrelated siRNA showed no significant difference
in D-LDH specific activities when compared to siRNA-untreated cultures (Table 2).

Effect of ldhD gene knockdown on the extracellular levels of D-lactate in
culture supernatants
D-lactate production in C1A culture supernatant is non-linear, with higher amounts of
D-lactate produced at later stages of growth (Fig. 5A). D-lactate production in ldhD-siRNA-
treated cultures was invariably significantly lower when compared to controls (Student
t -test p-value <0.05) (Fig. 5B), with the difference especially pronounced at later stages
of growth. The level of reduction was dependent on the siRNA concentration added and
ranged from 42–86% in the early log phase, 49–67% in the mid log phase, and 57–86% in
the late log-early stationary growth phase (Fig. 5B, and Table S1).

Transcriptomic analysis
Differential gene expression patterns between ldhD-siRNA-treated and siRNA-untreated
samples were analyzed to identify possible off-target effects of siRNA treatment, i.e.,
transcripts that were significantly down-regulated in the siRNA-treated cultures. Only 29
transcripts were significantly (FDR <0.1) down-regulated (Fig. 6). Predicted functions of
these transcripts are shown in Table S2 and included hypothetical proteins (n= 11), several
glycosyl hydrolases (n= 5), and other non-fermentation related functions. Comparison of
the siRNA sequence to these 29 transcripts revealed matches to the first seven bases of the
ldhD-siRNA sequence to only three of the down-regulated transcripts indicating that the
off-target effect was mainly not sequence-specific.
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Figure 5 D-lactate in culture supernatant. (A) Pattern of D-lactate production in C1A culture
supernatant as a factor of fungal biomass. The majority of the D-lactate production occurs at the
late log-early stationary phase. Data is shown for both siRNA-untreated cultures (green), as well as
ldhD-specific siRNA-treated cultures with final concentration 20 nM (dark blue), 50 nM (orange),
75 nM (grey), and 100 nM (yellow). (B) A bar-chart depicting average± standard deviation (from at
least two replicates) of D-lactate levels in C1A culture supernatant during early log (6–13 mg biomass),
mid-log (14–17 mg biomass), and late log/early stationary (18–23 mg) phases. Data is shown for both
siRNA-untreated cultures (green), as well as ldhD-specific siRNA-treated cultures with final concentration
20 nM (dark blue), 50 nM (orange), 75 nM (grey), and 100 nM (yellow).

Full-size DOI: 10.7717/peerj.4276/fig-5
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Figure 6 Volcano plot of the distribution of gene expression for C1A cultures when treated with
ldhD-specific siRNA (50 nM) versus untreated cultures. The fold change (log2 (average FPKM in
siRNA-treated cultures/average FPKM in control cultures)) is shown on the X-axis, while the significance
of the change (−log10 (false discovery rate)) is shown on the Y -axis. Red data points are those transcripts
that were significantly down-regulated (n = 29), while green data points are those transcripts that were
significantly up-regulated (n = 53). The corresponding IMG gene accession numbers and the predicted
functions for these genes are shown in Table S1. The orange data point corresponds to the D-lactate
dehydrogenase transcript (targeted in the RNAi experiment) with 2.5-fold decrease in FPKM compared
to the untreated control, while the purple data point corresponds to the NAD-dependent 2-hydroxyacid
dehydrogenase (Pfam 00389) transcript (possibly acting to compensate for the loss of NADH oxidation
that occurred as a result of ldhD knockdown) with 1,542-fold increase in FPKM compared to the
untreated control.

Full-size DOI: 10.7717/peerj.4276/fig-6

In an attempt to decipher the impact of inhibiting the D-lactate dehydrogenase enzyme
(one of the major electron sinks in C1A) on the glycolytic and fermentation pathways
in C1A, we investigated the significantly up-regulated transcripts in the siRNA-treated
cultures. A total of 53 transcripts were significantly upregulated in the siRNA-treated
cultures (FDR < 0.1) (Fig. 6). Predicted functions of these transcripts are shown in Table
S2. One transcript encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam 00389)
was significantly upregulated (1,542-fold) in the siRNA-treated cultures (P-value = 0.02).
Enzymes belonging to this family act specifically on the D-isomer of their substrates
(Dengler et al., 1997). In case of D-LDH inhibition in the siRNA-treated cultures, the Pfam
00389 enzyme might act to compensate for the loss of NADH oxidation by acting on an
alternate substrate (e.g., hydroxypyruvate, 2-oxoisocaproate, or other 2-oxo carboxylic
acids) and reducing it as a sink of electrons to regenerate NAD. However, it is difficult to
know the actual substrate based on sequence data alone. Transcripts of other glycolytic and
fermentative enzymes of C1A were not differentially expressed in siRNA-treated cultures
(Table S2).

DISCUSSION
Here, we explored the feasibility of RNA interference for targeted gene silencing in the
anaerobic gut fungi (phylum Neocallimastigomycota) via the exogenous addition of
synthetic double stranded siRNAs targeting the ldhD gene to Pecoramyces ruminantium
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strain C1A germinating spores.We show that ds-siRNAwas uptaken by germinating spores,
and, as a consequence, the transcription of the target gene (ldhD) was down-regulated
(Table 1), leading to lower D-LDH enzymatic activity (Table 2) and lower D-lactate
concentration in the culture supernatant (Fig. 5).

In general, the fungal RNAi machinery encompasses Dicer (Dic) enzyme(s),
Argonaute (Ago) protein(s), RNA-dependent RNA polymerase (RdRP) enzyme,
QDE3-like DNA helicase, and Argonaute-interacting exonuclease (QIP-like). Genomes
of Neocallimastigomycota representatives belonging to four genera (Pecoramyces,
Neocallimastix, Piromyces, and Anaeromyces) encode at least one copy of Dic, Ago, QDE3-
like helicase, and QIP exonuclease. However, all genomes lacked a clear homolog of
RdRP. The absence of an RdRP homolog is not uncommon. While present in almost all
studied fungi, RdRP seems to be missing from the genomes of other basal fungal phyla
(Chytridiomycota and Blastocladiomycota) representatives (Choi et al., 2014; Farrer et al.,
2017). The absence of clear RdRP homologues in the Neocallimastigomycota and related
basal fungal phyla despite their presence in other fungi could suggest that either an RdRP
is not involved in dsRNA-mediated mRNA silencing as shown before in mammals (Stein
et al., 2003). Alternatively, RNA-dependent RNA polymerase activity could be mediated
through a non-canonical RdRP in basal fungi, e.g., the RNA polymerase II core elongator
complex subunit Elp1 shown to have RdRP activity in Drosophila, as well as Caenorhabditis
elegans, Schizosaccharomyces pombe, and human (Birchler, 2009; Lipardi & Paterson, 2009).

We chose as a gene knockdown target the D-Lactate dehydrogenase gene (ldhD) that
mediates NADH-dependent pyruvate reduction to D-lactate, for several reasons. First, the
gene is present as a single copy in the genome. Second, quantification of the impact of
ldhD gene knockdown is readily achievable in liquid media at the RNA (using RT-PCR
and transcriptomics), and protein (using specific enzyme activity assays) levels, as well as
phenotypically (by measuring D-lactate accumulation in the culture media); providing
multiple lines of evidence for the efficacy of the process. Finally, D-lactate dehydrogenase
is part of the complex mixed acid fermentation pathway in P. ruminantium (Ranganathan
et al., 2017; Youssef et al., 2013) and other anaerobic gut fungi, and we sought to determine
how blocking one route of electron disposal could lead to changes in C1A fermentation
end products.

ldhD-siRNA-treated cultures showed a significant reduction in ldhD gene transcription
and D-LDH enzyme activity. Both of these effects were dependent on the concentration
of siRNA added (Tables 1 and 2) similar to previous reports in filamentous fungi (Eslami
et al., 2014; Jöchl et al., 2009; Kalleda, Naorem &Manchikatla, 2013; Mousavi et al., 2015).
We show that the addition of 100 nM of ldhD-siRNA resulted in a four-fold reduction
in ldhD transcription, 84% reduction in D-LDH specific activity, and 86% reduction
in D-lactate concentration in culture supernatant. The fact that targeted gene silencing
using exogenously added gene-specific siRNA results in reducing rather than completely
abolishing gene function is an important advantage of RNAi approaches allowing functional
studies of housekeeping or survival-essential genes.

While initial studies of gene silencing using exogenously added siRNAs suggested that the
process was highly sequence-specific (Elbashir et al., 2001; Tuschl et al., 1999), subsequent
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studies showed silencing of off-target genes based on less than perfect complementarity
between the siRNA and the off-target gene (Jackson et al., 2003). Here, we used RNA-seq
to quantify the off-target effects of ldhD-siRNA. In contrast to previous studies that used
similar approaches to quantify RNAi off-targets (Li-Byarlay et al., 2013), we show here that
the off-target effects of ldhD silencing were minimal (only 29 transcripts out of 55,167
total transcripts were differentially down-regulated as a result of siRNA treatment) and
appeared to be not sequence-specific.

Currently, and due to their strict anaerobic nature, there are no established procedures
for genetic manipulations (e.g., gene silencing, insertion, deletion, and mutation) of AGF
leading to a paucity of molecular biological studies of the phylum. This is in stark contrast
to the rich body of knowledge available on genetic manipulations of various aerobic
fungal lineages (Eslami et al., 2014; Kalleda, Naorem &Manchikatla, 2013; Mousavi et al.,
2015; Khatri & Rajam, 2007; Michielse et al., 2008; Minz & Sharon, 2010). Our work here
represents a proof of principal of the feasibility of the RNAi approach in AGF, and opens the
door for genetic manipulation and gene function studies in this important group of fungi.

CONCLUSIONS
Anaerobic gut fungi (AGF) have a restricted habitat in the herbivorous gut. Due to their
anaerobic nature, gene manipulation studies are limited hindering gene-targeted molecular
biological manipulations. We used an AGF representative, Pecoramyces ruminantium strain
C1A, to study the feasibility of using RNA interference (RNAi) for targeted gene silencing.
Using D-lactate dehydrogenase (ldhD) gene as a target, we show that RNAi is feasible in
AGF as evidenced by significantly lower gene transcriptional levels, a marked reduction in
encoded enzymatic activity in intracellular protein extracts, and a reduction in D-lactate
levels accumulating in the culture supernatant. To our knowledge, this is the first attempt
of gene manipulation studies in the AGF lineage and should open the door for gene
silencing-based studies in this fungal clade.
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