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Abstract

One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, 

an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in 

any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to 

continuous assault. In this review, we examine how the replication stress response that is 

controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats 

to DNA integrity so the DNA remains available to read in all of our cells. We discuss the multiple 

data that have revealed an elegant yet increasingly complex mechanism of ATR activation. These 

involve a core set of components that recruit ATR to stressed replication forks, stimulate kinase 

activity and amplify ATR signaling. We focus on the activities of ATR in control of cell cycle 

checkpoints, origin firing and replication fork stability, and how proper regulation of these 

processes is crucial to ensure faithful duplication of a challenging genome.

Introduction

During every cell cycle, human cells must accurately and efficiently replicate over six billion 

base pairs of DNA. Replicating a genome of this size that is packed into a very small 

nucleus constitutes an enormous logistical, spatial and energetic challenge. Furthermore, 

there are numerous impediments encountered by DNA replication forks that block their 

progression, including DNA damage, the transcription machinery, RNA–DNA hybrids and 

secondary DNA structures1. Not surprisingly, cells have robust replication stress [G] 
response mechanisms to ensure the entire genome is accurately replicated once every cell 

cycle.

The kinase ataxia telangiectasia and Rad3-related (ATR) orchestrates multiple branches of 

the replication stress response. It is essential for cell viability, and, emphasizing its 
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importance, ATR-deficient embryos have shattered chromosomes2,3. Moreover, 

hypomorphic alleles [G] of ATR cause the developmental disorder Seckel syndrome, which 

is characterized by primordial dwarfism, microcephaly, craniofacial abnormalities and 

mental retardation4.

ATR is a phosphoinositide 3-kinase-related protein kinase5,6. It shares sequence and 

functional homology with two other DNA damage response kinases, ataxia telangiectasia 

mutated (ATM) and DNA protein kinase (DNA-PK). Both ATM and DNA-PK respond 

primarily to DNA double-stranded breaks (DSBs), and in contrast to ATR, neither is 

essential for cell survival7. This difference highlights the essential role of the replication 

stress response to ensure faithful duplication of a challenging genome. Although ATR has 

other functions, including during DSB repair8, inter-strand crosslink repair8 and meiosis9, as 

well as at telomeres10 and in response to mechanical and osmotic stresses11, in this Review 

we focus on the function of ATR in the replication stress response. We will begin with an 

overview of how cells detect replication stress and activate the checkpoint and later discuss 

the mechanisms by which the ATR signaling pathway helps replication forks overcome 

replication stress.

MECHANISMS OF ATR ACTIVATION

ATR responds to many types of genotoxic stress [G], including stress induced by ultraviolet 

radiation, DNA polymerase inhibitors, dNTP depletion, topoisomerase [G] poisons, base 

alkylating agents, and DNA crosslinkers12. A common theme linking these stressors is that 

they stall or slow DNA polymerases. Numerous factors work together to form the basic 

components to recruit and activate ATR at stressed replication forks.

Components of ATR pathway activation

Various types of damage and stress activate ATR, and many of these have been traced to a 

common DNA structure formed at the replication fork that ATR can recognize. This 

structure consists at least partly of single-stranded DNA (ssDNA), which is also the trigger 

for the SOS DNA damage response [G] in bacteria13. Like in bacteria, where a ssDNA 

binding protein (RecA) triggers the SOS response, the canonical ATR pathway is triggered 

by binding of the ssDNA binding protein complex replication protein A (RPA) to ssDNA. 

RPA–ssDNA interactions serve as a platform for the recruitment of many proteins including 

the ATR-interacting protein (ATRIP)14, which facilitates recruitment of ATR to stressed 

replication forks15 (Figure 1a).

Although RPA–ssDNA is sufficient to recruit the ATR–ATRIP complex, it is not sufficient 

for ATR activation16. Kinase activation depends on some as yet undefined ATR 

conformational change that is mediated by the binding of an activator protein17. In budding 

yeast, there are three Mec1 (the homolog of ATR) activating proteins: the protein kinase 

activating protein Dpb11, the DNA damage checkpoint protein 1 (Ddc1) and the 

bifunctional ATP-dependent DNA helicase and ssDNA endodeoxyribonuclease Dna2 18–21 

(Figure 1b). In vertebrates, two ATR activators have been identified. Topoisomerase II 

binding protein 1 (TOPBP1), which is a Dpb11 orthologue, contacts both ATR and ATRIP 

through its ATR-activation domain (AAD)22 (Figure 1b). The second ATR activator is 
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Ewing tumor-associated antigen 1 (ETAA1), which is recruited to stressed replication forks 

through direct interactions with RPA23–25 (Figure 1a). ETAA1 is a large protein that also 

contains an AAD23–25. However, it does not share any sequence homology to the other yeast 

or human ATR activators outside of a small motif in the AAD (Figure 1b). TOPBP1 may be 

the more important activator since mutations in its AAD are lethal in mice26, whereas 

mutations in the ETAA1 AAD do not significantly alter the growth of U2OS or HEK293T 

cells23. However, TOPBP1 also has important functions during the initiation of DNA 

replication and whether mutations in its AAD disrupt TOPBP1 function at replication 

origins has not been ruled out27.

The ATR activators are thought to be recruited to the stalled replication fork [G] 
independently of ATR12. TOPBP1 recruitment is dependent on the presence of a 5′-ended 

ssDNA–dsDNA junction. This junction serves as the loading point for the RAD9–RAD1–

HUS1 (9-1-1) checkpoint clamp complex, which is required for TOPBP1 recruitment and 

subsequent stimulation of ATR kinase activity28,29 (Figure 1a). The 9-1-1 clamp is 

structurally similar to the proliferating cell nuclear antigen (PCNA) sliding clamp and is 

loaded onto the DNA by the RAD17–replication factor C subunits 2-5 (RFC2-5) clamp 

loader30–32. An alternative clamp loader, CTF18–RFC2-5, interacts with DNA polymerase 

epsilon (Pol ε)33, which is the enzyme that synthesizes the leading strand at the replication 

fork. In budding yeast, this interaction is a key step in the activation of the downstream 

replication checkpoint response34,35. How this alternative clamp loader activates the 

checkpoint and whether this is important for checkpoint activation in human cells is 

unknown. Recruitment of TOPBP1 to the 9-1-1 clamp is also partially dependent on the 

MRE11–RAD50–NBS1 (MRN) complex36,37 and on RAD9, RAD1, HUS1 interacting 

nuclear orphan (RHINO)38,39, although the mechanisms by which these components help 

recruit TOPBP1 are unknown. Once it is bound to the 9-1-1 clamp, the TOPBP1 AAD 

interacts with ATR–ATRIP, and this stimulates ATR activation (Figure 1a,d).

Little is known about why there is more than one ATR activating protein, but current 

evidence suggests that ETAA1 and TOPBP1 function in parallel and distinct pathways of 

ATR activation23,24. ETAA1 and TOPBP1 may direct ATR towards distinct substrates, 

respond to different replication stress inputs, or serve to amplify or increase the robustness 

of the stress response.

Pathway-activating DNA structure(s)

Because ATR does not directly recognize the DNA lesion, one focus in the field has been to 

define the DNA structure that ATR recognizes and how it is formed. ATR-activating ssDNA 

can be generated through uncoupling of the helicase and DNA polymerase enzymatic 

activities of the replisome [G], such that the helicase continues to unwind the DNA ahead of 

the stalled polymerase40. This is not necessarily a physical uncoupling of the helicase and 

polymerase as the replisome likely stays intact, but instead a functional uncoupling of 

enzymatic activities that allows generation of ssDNA (Figure 2a). If the lagging-strand 

polymerase stalls at a DNA lesion, then the ssDNA that is generated may be no larger than 

the length of an Okazaki fragment since repriming events should allow the fork to simply 

bypass the lesion. However, the nascent strand gap that is left may be expanded by 
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exonucleases to generate a larger ssDNA platform for ATR recruitment and activation. If the 

stalling event is on the leading strand template, then more extensive ssDNA could be 

generated directly by uncoupling. In the Xenopus laevis egg extract in vitro replication 

system extensive unwinding can occur, but this may not be the case in human cells. Electron 

microscopy analysis of ssDNA at individual stressed forks revealed that various genotoxic 

agents typically caused ssDNA stretches ranging from 70 to 500 bases41–43. It may be that 

the persistence of such relatively small amount of ssDNA is what is required to activate 

ATR.

At least for TOPBP1-dependent activation, ssDNA is not sufficient to activate ATR16. The 

loading of the 9-1-1 complex requires a free 5′-ended ssDNA–dsDNA junction, which is 

needed for ATR activation in X. laevis egg nuclear protein extracts when there isn’t a free 3′ 
DNA end for DNA extension16. A 5′-end junction with an RNA–DNA primer is naturally 

formed on the lagging strand when the polymerase stalls due to the discontinuous manner of 

DNA synthesis on this strand (Figure 1a). Likewise, primer synthesis on the leading strand 

could also generate the appropriate junction44 (Figure 2a). Thus, the uncoupling of helicase 

and polymerase activities accompanied by DNA primer synthesis may be sufficient for 

TOPBP1-dependent ATR activation.

This model for ATR activation at a stressed fork explains the response to several types of 

agents that stall the DNA polymerase, but what if the polymerase stalls without significant 

uncoupling of helicase and polymerase activities? For example, an inter-strand crosslink 

could block replication without generating significant amounts of ssDNA, because it stalls 

the helicase, which is positioned at the forefront of the replisome. In these cases, active fork 

remodeling and DNA processing such as fork reversal followed by nascent strand resection 

could contribute to generating the checkpoint-activating structure (Figure 2b).

Fork reversal is thought to be a common mechanism of fork protection and repair45, during 

which the nascent DNA [G] strands anneal to one another. An equilibrium between fork 

reversal and fork progression may be established in response to most types of replication 

stress41,46. If the nascent lagging strand is shorter than the leading strand then an appropriate 

5′-ended ssDNA–dsDNA junction would be formed to activate ATR. However, if the 

nascent lagging strand is longer, enzymatic processing by a nuclease is needed to activate 

ATR. Indeed, DNA replication helicase/nuclease 2 (DNA2) may resect nascent DNA at a 

reversed fork in the 5′ to 3′ direction to generate the 5′-ended ssDNA–dsDNA junction 

(Figure 2b). Consistent with this activity creating a signal that activates ATR, DNA2 

depletion impairs ATR signaling47. How much cells rely on fork reversal and resection to 

generate ssDNA as opposed to helicase-polymerase uncoupling likely depends on the type 

of damage or stress that impedes fork progression.

If fork reversal is a common mechanism in generating an ATR-activating signal, then 

deficiencies in fork reversal enzymes would be expected to cause ATR-activation defects. As 

yet there is little evidence for this, possibly because the enzymes needed to catalyze fork 

reversal are still poorly defined. Many enzymes including DNA translocases like 

SMARCAL1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, 

subfamily a like 1), ZRANB3 (zinc finger RANBP2-type containing 3) and HLTF (helicase 
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like transcription factor)48,49 as well as helicases including BLM (Bloom syndrome RecQ 

like helicase), FANCM (Fanconi anemia complementation group M), FANCJ and WRN 

(Werner syndrome RecQ like helicase) can catalyze fork regression in vitro45. Some 

combination of these enzymes is likely to cooperate with the RAD51 recombinase to 

generate reversed forks in cells45. Of these enzymes, genetic depletion of only the helicases 

FANCM, FANCJ and WRN has been linked to reduced ATR signaling47,50–57.

Other nucleases such as endonuclease/exonuclease/phosphatase family domain containing 1 

(EEPD1) have also been implicated in generating single-stranded DNA at replication forks 

for ATR activation58, and ATR activating structures can be generated without DNA 

replication. For example, resection of a double-strand break59,60 or deprotection of a 

telomere can activate ATR10. Also, some repair-related DNA processing such as that taking 

place during excision repair may be sufficient to generate a transient ATR-activating DNA 

structure, especially if repair is not completed promptly61.

Although much has been discovered on the formation of ATR pathway activating structures, 

recent work has uncovered mechanisms that can shield some activating structures from ATR. 

For example, proteomic analysis and electron microscopy imaging of centromeric alpha-

satellite DNA revealed the presence of DNA loops surrounded by a matrix of proteins that 

prevent RPA loading and ATR signaling at centromeres62. This suppression is needed to 

facilitate replication of these sequences. As half of the genome is made up of repetitive DNA 

sequences, it will be important to understand how and when exclusion of ATR is beneficial 

to replication and repair of alpha-satellite DNA and other repetitive DNA sequences.

Thresholds of activation

Conditional deletion of ATR2 or kinase inactivation with inhibitors63 causes cell lethality, 

suggesting ATR is active during each S phase. It is unknown how much of this is due to the 

continuous presence of mild replication stress or simply whether the process of replication 

inherently activates ATR. After all, the ATR-activating structure forms on the lagging strand 

during normal DNA synthesis, albeit transiently. Indeed, Mec1 phosphorylates and regulates 

numerous proteins during normal DNA replication, although its major effector Rad53 (the 

budding yeast functional homolog of checkpoint kinase 1 [CHK1]) and other stress-induced 

Mec1 substrates were notably not found to be phosphorylated in normal growth 

conditions64. It was suggested that this Mec1 activation occurs at the lagging strand of a 

moving replication fork, because it required the 9-1-1 clamp and the lagging strand factor 

Dna2. This is distinct from Mec1 activation induced by replication stress, which is primarily 

dependent on Dpb11 and not Dna264. More robust activation of ATR may require more 

persistence of the activating structure than would be possible during the rapid synthesis and 

processing happening on the lagging strand during normal replication elongation.

Similarly, in human cells, CHK1 is not strongly phosphorylated by ATR during normal 

DNA replication. Nevertheless, inhibition of ATR or CHK1 has effects on unperturbed cells, 

suggesting that ATR and CHK1 are active in normal conditions. Even in the absence of 

TOPBP1 or ETAA1, purified ATR and ATR–ATRIP complexes retain some kinase 

activity14,65. This basal level of activity may be sufficient to cause some substrate 

phosphorylation, particularly if ATR is directed to the substrate.
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It is also possible that different biological responses require different levels of ATR activity. 

For example, common fragile sites (CFSs), which are specific chromosomal regions that are 

highly sensitive to replication stress, require ATR to maintain their stability under conditions 

of mild replication stress and even during unperturbed replication66, yet the major 

checkpoint effectors of ATR are not detectably phosphorylated under these conditions67. 

Importantly, chromosomal fragility at CFSs is detected and measured as breaks or gaps in 

metaphase chromosomes. Thus, conditions that hinder replication at CFSs, though they 

require ATR activity to prevent fragility, may not cause a detectable cell cycle arrest. This 

suggests that transient activation of ATR exists at individual forks that are intrinsically 

challenged, such as those at CFSs, and that ATR activity is crucial for the function of these 

forks.

Amplification of ATR signaling

Although it seems likely that different biological responses require different levels of ATR 

activity, cells also possess mechanisms to amplify ATR activation at individual replication 

forks. One way cells amplify ATR activity is by increasing the number of ssDNA–dsDNA 

junctions at a fork through continued primer synthesis68. For example, when a lesion stalls 

the leading strand polymerase and generates ssDNA ahead of the polymerase, cells are able 

to reinitiate DNA synthesis ahead of the stalled polymerase to create multiple short primers 

interspersed with ssDNA gaps (Figure 3a). ATR activation is greater, as measured by CHK1 

phosphorylation, when there are more primers ahead of the stalled polymerase68, perhaps 

because re-priming creates multiple 5′-ended ssDNA–dsDNA junctions that can recruit 

multiple 9-1-1 checkpoint clamps and additional TOPBP1 to activate ATR (Figure 3a). 

Importantly, this mode of pathway amplification is not restricted to leading strand lesions, as 

continued primer synthesis also occurs on the lagging strand.

We can envision at least two ways to create these primers. First, the recently described 

primase and DNA directed polymerase (PrimPol) can prime new synthesis ahead of 

ultraviolet-induced lesions and hydroxyurea-stalled forks69–72, although it has yet to be 

demonstrated that this amplifies ATR activation. Second, these primers may result from the 

priming activity of Pol α, which is a component of the replisome that provides primase 

(priming) activity on the lagging strand and initiates replication on the leading strand68,73. 

Some evidence suggests that Pol α stimulates loading of the 9-1-1 complex73, and this may 

occur through primer synthesis along the ssDNA to generate multiple ssDNA–dsDNA 

junctions (Figure 3a).

Another way to amplify ATR activation is through feed-forward signaling loops, which is a 

common mechanism of amplification of signal transduction. For example, the E3 ubiquitin 

ligase PRP19 is recruited to stalled replication forks, where it binds RPA-coated ssDNA and 

ubiquitylates RPA74. RPA ubiquitylation helps recruit ATRIP–ATR and promotes ATR 

activation. Importantly, ATR activation facilitates further PRP19 recruitment to RPA-coated 

ssDNA, forming a feed-forward loop for robust activation of the ATR pathway74 (Figure 

3b). Sumoylation of ATRIP may also prime the ATR pathway for activation and boost 

protein interactions among the upstream ATR activators75. A second feed-forward regulatory 

mechanism may involve phosphorylation of ATR-activating proteins. Phosphorylation of 
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TOPBP1 by ATM increases its ability to activate ATR76. Similarly, in budding yeast, Dpb11 

is phosphorylated by Mec1, and this increases its ability to activate Mec1 in vitro19. ETAA1 

is also phosphorylated in response to replication stress, although whether this affects ATR 

activation is not known23.

Post-translational modifications of ATR and ATRIP also contribute to ATR regulation 

(Figure 3c). ATRIP is both phosphorylated and acetylated77–79; ATRIP phosphorylation by 

cyclin-dependent kinase 2 (CDK2) increases ATR signaling whereas ATRIP acetylation 

decreases it. Deacetylation of ATRIP by sirtuin 2 (SIRT2) following replication stress 

increases the affinity of ATRIP for RPA79. ATR is also phosphorylated on multiple residues, 

including on Thr198980,81, which may be autophosphorylated, although it is not part of the 

preferred consensus sequence recognized by ATR. Thr1989 phosphorylation may increase 

the ability of ATR to bind and be activated by TOPBP1 and to phosphorylate other 

substrates. Thus, ATR autophosphorylation could potentiate ATR activation, similar to a 

model proposed for ATM autophosphorylation82. However, the importance of both ATM and 

ATR autophosphorylation in signaling is controversial since a mutation in the ATM 

autophosphorylation site did not impair ATM signaling in mouse models83,84, nor was ATR 

signaling impaired in human cells expressing only the non-phosphorylatable ATRT1989A 

mutant81. Other ATR phosphorylation sites such as Ser428 and the nearby protein kinase A 

(PKA)-mediated phosphorylation site (Ser435) may be important regulators in specific stress 

conditions85.

Emerging themes in ATR pathway activation

Although we have a clear grasp of how the basic components function to activate ATR 

following replication stress, new and interesting themes have begun to emerge. Of interest is 

the role of the NIMA-related kinase (NEK) family in ATR activation. There are at least 

eleven members in humans, and many have reported roles in facilitating activation of the 

ATR pathway or downstream checkpoints86, raising the intriguing possibility that the NEK 

family evolved in part to modulate the ATR pathway.

The discovery of multiple ATR activators provides an additional way to regulate or amplify 

ATR signaling quantitatively. The persistent ssDNA generated by replication stress provides 

a platform for recruitment of more ATR–ATRIP and ETAA1 to the stalled fork. Since 

current evidence suggests that ETAA1 does not require the 9-1-1 complex to activate ATR, it 

is possible that it amplifies ATR signaling even without the generation of additional 5′-

ended junctions (Figure 3d). What makes ATR more active when it is bound by an AAD is 

not known, but all the yeast and vertebrate ATR activating proteins identified to date share a 

similar motif within their AAD that contains two large hydrophobic amino acids within a 

relatively unstructured region, which can interact with the ATR–ATRIP complex and 

promote its activation87. A mutation in ATR that prevents TOPBP1 binding and activation 

also impairs ETAA1 binding and activation17,23. Furthermore, in vitro studies have shown 

that TOPBP1 and ETAA1 confer overlapping substrate specificity to activated ATR. These 

findings suggest that the mechanism of kinase activation of all ATR-activating proteins is 

similar, and may involve an allosteric change in ATR conformation that translates into a 
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difference in the ability of ATR to bind substrates17. Thus, the abundance of the ATR 

activating protein in proximity to ATR could tune the quantity of ATR signaling.

It is also possible that there are qualitative differences in the signaling of the ETAA1–ATR 

complex vs. the TOPBP1–ATR complex. Unlike TOPBP1, ETAA1 may not need a 5′ 
ssDNA–dsDNA junction to activate ATR since it can bind directly to RPA (Figure 3d). Thus, 

it is possible that active ETAA1–ATR and TOPBP1–ATR complexes form on different DNA 

substrates and that their proximity to different substrates leads to differences in signaling. 

ETAA1 and TOPBP1 could also provide qualitative differences in signaling by directly 

binding to different ATR substrates. Much more work on these alternative ATR activators is 

needed to understand how having more than one is advantageous.

Finally, recent work has revealed a new mode of ATR activation at the nuclear envelope in 

response to mechanical stress11. Although the molecular mechanism underlying ATR 

activation in this context is unclear, it does not require RPA, TOPBP1 or RAD17, strongly 

suggesting this activation is not triggered by ssDNA—dsDNA junctions11. However, given 

the mechanical forces associated with DNA replication and chromosome condensation, 

especially where chromatin is attached to the nuclear envelope, it is likely that ATR 

activation in response to mechanical stress contributes to the integrity of the genome. 

Continued work on this emerging aspect of ATR activation is needed before a clear model 

can be developed, but the activation of ATR following mechanical stress seems to indicate 

there may be other mechanisms of ATR activation.

ATR FUNCTIONS DURING DNA REPLICATION

Once activated at stressed replication forks, ATR orchestrates a multifaceted response that 

protects the integrity of the genome. Instrumental to this response is the downstream 

effector, CHK1, which is a kinase that is activated by phosphorylation by ATR12. Together, 

ATR and CHK1 function to arrest the cell cycle, suppress origin firing [G], stabilize 

replication forks and promote fork repair and restart. By coupling cell cycle arrest to fork 

stabilization and restart, ATR and CHK1 likely ensure that cells do not enter mitosis when 

replication is perturbed.

Cell cycle arrest

One crucial function of the ATR pathway is to arrest the cell cycle following DNA damage 

in S phase. This arrest is initiated by the phosphorylation of CHK1 by ATR, a reaction 

mediated by Claspin, which helps to bring CHK1 to the replication fork and into proximity 

with ATR88. Once activated, CHK1 phosphorylates and inactivates the cell division cycle 25 

(CDC25) phosphatases, including CDC25A, CDC25B and CDC25C89. These phosphatases 

remove inhibitory phosphorylations from CDK2 and CDK1, and are required to activate the 

cyclin–CDK complexes necessary for cell cycle progression90. The mechanisms of 

checkpoint-mediated CDC25 inactivation vary. CHK1-dependent phosphorylation of 

CDC25A triggers its rapid degradation in S phase91,92. By contrast, CDC25C 

phosphorylation leads to its association with 14-3-3 signaling modifier proteins and 

sequestration into the cytoplasm93,94. Although all three phosphatases are negatively 

regulated by the ATR–CHK1 pathway following DNA damage, evidence from a genome-
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wide CRISPR screen in haploid stem cells suggests that CDC25A is the most important 

target and a major determinant of sensitivity to ATR inhibition63.

Regulation of origin firing

Origin firing is tightly-regulated and occurs in an orderly fashion, both in terms of the timing 

and spacing of initiation events95. Depending on the cell type, replication origins within 

specific chromosome domains fire exclusively in early, mid, or late S phase. ATR and CHK1 

are negative regulators of origin firing and prevent excessive origin firing even during an 

unperturbed S phase. Early studies in X. laevis egg extracts indicate that loss of ATR leads 

to excessive origin firing, particularly in early S phase96,97. Furthermore, loss of CHK1 

activity in mammalian cells results in late origin firing in early S phase, in part due to 

premature activation of the cyclin A–CDK1 complex, which is thought to promote late 

origin firing98. This function of the ATR–CHK1 pathway may limit the density of active 

replication forks throughout the genome so that replication forks have a sufficient supply of 

DNA precursors and replication factors for optimal fork progression.

ATR also has a crucial role in limiting DNA replication by blocking initiation in response to 

replication stress99–101. ATR prevents origin firing by blocking recruitment of CDC45 to the 

minichromosome maintenance 2-7 complex (MCM2-7), which is a heterohexameric helicase 

complex that unwinds DNA at the replication fork (Box 1). Helicase activation requires 

CDC45 binding, which occurs following CDK-dependent phosphorylation of Treslin (Sld3 

in budding yeast)102 and DBF4-dependent kinase (DDK)- mediated phosphorylation of the 

MCM 2–7 complex103 (Figure 4a). Accordingly, one way the ATR–CHK1 pathway may 

prevent CDC45 loading and helicase activation is by down-regulating the kinase activities of 

CDK and DDK. Indeed, in yeast, the CHK1 homolog Rad53 phosphorylates Dbf4 to 

suppress DDK activity in response to replication stress104,105, and human CHK1 

phosphorylates CDC25A, thereby triggering its rapid degradation and CDK inhibition91,106.

Box 1

Origin firing

Initiation of DNA replication at origins is a two-step process, which involves origin 

licensing and origin firing95. Both steps are strictly regulated and occur during separate 

phases of the cell cycle. First, origins are licensed in late mitosis and early G1 by loading 

on chromatin the pre-replicative complex (pre-RC), which includes, among other factors, 

the origin recognition complex (ORC) and the core replicative helicase minichromosome 

maintenance 2-7 complex (MCM2-7; see the figure). MCM2-7 helicase activation 

follows when origins fire in S phase. Helicase activation requires the loading of the pre-

initiation complex (pre-IC), which includes Treslin, cell division cycle 45 (CDC45), the 

GINS complex (SLD5–PSF1–PSF2–PSF3), topoisomerase II binding protein 1 

(TOPBP1), a DNA polymerase, and other replication factors (see the figure). Recruitment 

of the pre-IC is dependent on the activities of the DBF4-dependent kinase (DDK) and the 

S phase cyclin-dependent kinase (CDK). The two kinases phosphorylate several factors 

needed to recruit the pre-IC and to activate the MCM helicase to unwind the DNA and 

initiate replication.
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Throughout the genome, clusters of replication origins fire simultaneously, and the space 

between these origins is typically 50–150 kilobases. Some clusters fire earlier in S phase 

than others. Whereas an average of 4–6 origins fire in a typical cluster, the number of 

licensed origins within a cluster is thought to be approximately 20-fold higher95. Some of 

these unused origins are referred to as dormant origins, and are only used if the 

replication forks emanating from fired origins are stalled or slowed162. Accordingly, 

dormant origins are often thought of as back-up origins that facilitate the completion of 

DNA synthesis within a cluster when the progression of neighboring replication forks is 

impeded.

Another mechanism by which the intra-S phase checkpoint blocks CDC45 recruitment is 

through ATR-dependent phosphorylation of the histone methyltransferase myeloid/lymphoid 

or mixed-lineage leukemia (MLL)107. This leads to MLL stabilization and its accumulation 

on chromatin, where it methylates histone H3 Lys 4. This modification prevents loading of 

CDC45 at nearby replication origins, and thus suppresses origin firing (Figure 4a). In 

budding yeast, downstream of Mec1, Rad53 suppresses origin firing in response to DNA 
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damage by phosphorylating Sld3105,108. This phosphorylation also blocks loading of Cdc45 

at origins and thereby enforces the intra-S checkpoint. A similar pathway is found in 

humans, where CHK1 phosphorylates Treslin, the functional homolog of Sld3, to block 

CDC45 loading and suppress origin firing109 (Figure 4a).

A key aspect of the ATR-dependent checkpoint is that, under conditions of replication stress, 

it suppresses origin firing globally, yet allows dormant origin firing locally (Figure 4b)110. 

The firing of dormant origins within an actively replicating region supports the completion 

of DNA replication within these regions. At the same time, the global suppression of new 

origin firing minimizes widespread DNA polymerase stalling and prevents problematic 

replication at yet to be replicated regions of the genome.

Within a chromatin domain, clusters of origins fire concurrently. Genetic disruption or 

chemical inhibition of the ATR–CHK1 pathway significantly decreases both the rate of fork 

progression and the inter-origin distance (IOD) at local origin clusters111–116, suggesting 

that ATR and CHK1 modulate replication initiation events locally, perhaps through direct 

regulation of the CDC25–CDK pathway. However, this effect within local domains may be 

indirect, as dormant origins may fire passively if loss of ATR or CHK1 causes slower fork 

progression. Partial inhibition of CDK activity restored the IOD and the rate of fork 

progression in CHK1-inhibited cells114. CDK inhibition would prevent further origin firing 

and reduce the number of active forks. This in turn would be predicted to increase the pool 

of available dNTPs and correspondingly increase the rate of fork progression. Indeed, 

addition of dNTP precursors increased both the fork progression rate and the IOD in CHK1-

inhibited cells116. Therefore, the decreased IOD in CHK1-inhibited cells may be a 

consequence of slower fork progression. Importantly, nucleoside addition did not increase 

the distances between initiation events in ATR-inhibited cells, suggesting that ATR 

modulates the IOD in a manner distinct from CHK1.

Although advantageous to cells, it remains enigmatic how the checkpoint can 

simultaneously suppress global origin firing, yet allow local dormant origins to fire102. One 

possibility to explain how local dormant origins escape checkpoint inhibition is that CDC45 

is already loaded at dormant origins within actively replicating regions. If so, these origins 

would be beyond the activation step controlled by the checkpoint. Indeed, in X. laevis egg 

extracts, modulating CDK activity does not appear to induce dormant origin firing within 

actively replicating regions117. ATR may also block the checkpoint inhibition of nearby 

dormant origins by phosphorylating MCM2118. In X. laevis egg extracts, MCM2 

phosphorylation recruits polo-like kinase 1 (Plk1), which inhibits Chk1 activity. This could 

allow origins near a stalled fork, where ATR is active, to fire119 (Figure 4c). Finally, recent 

data suggest that ATR regulation of global and local origin firing is even more complex, in 

that it depends on the level of replication stress. In mild to moderate levels of replication 

stress, FANCI binds unfired origins and directs DDK-dependent phosphorylation of the 

MCM helicase and subsequent dormant origin firing120. However, when replication stress is 

high, ATR phosphorylates FANCI and blocks FANCI-mediated dormant origin firing. 

Clearly, the regulation of origin initiation is complex and further studies are needed to 

assemble all the regulatory mechanisms into a unified model.
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Maintaining replication-fork stability

It is well established that ATR is essential for stabilizing stressed replication forks67,121–123 

(Figure 5). Replication fork stabilization is loosely defined as maintaining the ability of 

stalled polymerases to restart DNA synthesis following removal or bypass of a block to 

replication elongation. An unstable fork cannot resume DNA replication and is said to have 

collapsed, a process that at the molecular level often involves formation of a DSB at 

replication forks (Figure 5a). How this precisely occurs has been a matter of debate. Initially, 

it was proposed that fork collapse involved dissociation of the replisome, a conclusion based 

primarily on the study of a few replication forks in the budding yeast genome124; however, 

recent large scale genomic data in budding yeast and proteomic experiments in human cells 

suggest that the replisome itself is stable in ATR-deficient cells125,126. Instead, fork collapse 

may be an active process driven by structure-specific nucleolytic enzymes that catalyze 

cleavage of structured DNA formed at stalled replication forks or remodeled forks. DSBs 

may also be an intermediate generated in a process of recombination-based replication 

restart.

Inhibition of nuclease-dependent fork collapse—ATR function is crucial to prevent 

the nuclease-mediated cleavage of replication forks. As yet, however, there is little evidence 

that ATR directly regulates structure-specific nucleases; instead, fork cleavage may result 

from the failure of ATR to regulate fork processing events such as fork reversal. Indeed, in 

budding yeast, Rad53 restrains fork reversal and prevents nucleolytic processing of stressed 

replication forks43,127. Moreover, in human cells, the putative fork reversal enzyme SWI/

SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like 

protein 1 (SMARCAL1) is phosphorylated by ATR, thereby decreasing its ability to reverse 

forks in vitro, and suppressing fork collapse in cells115 (Figure 5b). Loss of this regulation 

by ATR may lead to excessive fork reversal in cells, and subsequently to DNA cleavage. In 

fact, loss of structure-specific endonuclease subunit (SLX4), which is a scaffold protein that 

binds to several structure-specific nucleases, reduces the formation of DSBs in ATR-

inhibited cells, suggesting that an SLX4-dependent nuclease may process the four-way 

junction of the reversed replication fork115,128 (Figure 5b).

The effects of ATR loss on fork stability may also be indirectly tied to its effects on CDK 

activity and cell cycle progression. Some of the structure-specific endonuclease complexes 

are CDK-regulated and become activated in late G2 or mitosis to resolve Holliday junctions 

[G] and under-replicated loci129. This is an important process in mitosis as it is necessary for 

the separation of sister chromatids during anaphase. However, if these nucleases become 

prematurely activated in S phase due to increased CDK activity, they could process stalled 

replication forks into DSBs. This is observed when the G2/M checkpoint kinase WEE1 is 

inhibited in S phase130,131 and may also be the case in ATR-deficient cells. Of course, some 

structure-specific nucleases, such as the EME2—MUS81 endonuclease complex, are active 

in S phase and promote restart of stalled replication forks132. Thus, nuclease-dependent DSB 

formation in ATR-inhibited cells may be an attempt to restart inactivated replication forks.

Downstream of ATR, CHK1 also stabilizes stressed replication forks. CHK1 inhibition leads 

to endonuclease-dependent fork collapse, which is catalyzed by MUS81116,133,134. In vitro, 
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MUS81 can cleave stalled replication forks, and in the absence of MUS81 many fork-

associated breaks do not form135. However, MUS81 is not essential for fork collapse in 

ATR-inhibited cells115,128. Furthermore, CHK1 inhibition alone causes massive fork 

collapse in S phase cells and cell death, whereas ATR inhibition alone does not. This could 

reflect redundancy with the other DNA damage response kinases, including DNA-PK and 

ATM, which may phosphorylate and partially activate CHK1 in ATR-deficient cells136. 

However, CHK1 could also have essential activity in the absence of these upstream kinases, 

and basal CHK1 could be very important to stabilize replication forks.

Control of replisome function—Although the replisome may remain stable when ATR 

is inhibited, other aspects of its function may be regulated by ATR. Indeed, ATR 

phosphorylates many replisome components following replication stress, including several 

DNA polymerases, the clamp-loader [G] RFC, the MCM helicase, RPA, and the Claspin-

Timeless-Tipin-And1 complex12,137. Consistent with this idea, in budding yeast Mec1 

phosphorylates several components of the replicative helicase, including DNA replication 

protein Psf1, to alter replisome progression125. Moreover, in human cells ATR recruits 

FANCD2 to the replication fork. FANCD2 recruitment may be mediated by binding the 

MCM helicase, and correlates with MCM phosphorylation by ATR138 (Figure 5c). FANCD2 

slows the progression of the DNA polymerase and presumably the helicase, and importantly, 

minimizes ssDNA formation and MRE11-dependent resection of DNA at stressed forks138. 

It is unknown if slowing fork progression is ATR-dependent. DNA lesions themselves slow 

polymerase progression, but in budding yeast this effect was found to be independent of 

Mec1 and Rad53122. The CHK1 homolog in fission yeast, Cds1, was suggested to slow fork 

movement in response to DNA damage139. Similarly, in human cells CHK1 was shown to 

slow fork elongation rates following camptothecin-induced DNA damage140,141. Although 

the precise mechanisms have yet to be identified, these results suggest that ATR modifies the 

function of the replisome to prevent unwanted DNA resection or unwinding at the fork, and 

perhaps to slow replication elongation (Figure 5c).

Exhaustion of replication factors—ATR may also stabilize replication forks indirectly, 

by suppressing late-origin firing and preventing the depletion or “exhaustion” of RPA. RPA 

exhaustion is observed when ATR inhibition is combined with replication inhibition by 

hydroxyurea or aphidicolin142. Under these replication stress conditions, the accumulation 

of ssDNA at replication forks as a result of excessive origin firing, helicase–polymerase 

uncoupling and DNA-end resection, apparently exceeds the availability of RPA142. RPA is 

needed to regulate the recruitment and activities of DNA repair and fork reversal enzymes; 

therefore, its exhaustion leads to widespread fork collapse (Figure 5d).

The suppression of origin firing in ATR-inhibited cells delays RPA exhaustion, suggesting 

that the pool of available RPA is initially sufficient to coat and protect the ssDNA formed at 

active replication forks. Accordingly, RPA exhaustion may be particularly detrimental to 

replication forks emanating from the aberrantly-fired origins in ATR inhibited cells. Indeed, 

non-homologous end-joining repair proteins accumulate at aberrantly-fired origins in ATR-

inhibited cells, instead of the normal homologous recombination factors that promote fork 

restart [G] 126. Intriguingly, suppressing new origin firing also results in the retention of 
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homologous recombination factors, including RAD51 and BRCA1, at stressed forks. This 

may suggest that, like RPA, homologous recombination factors could also become exhausted 

when ATR inhibition is combined with replication stress. However, as ATR phosphorylates 

RPA143,144 and the homologous recombination factors partner and localizer of BRCA2 

(PALB2)145,146 and X-ray repair cross complementing 3 (XRCC3)147, it is also possible that 

homologous recombination factors in ATR inhibited-cells are not properly activated. As fork 

restart can involve a RAD51 recombination-dependent process148, a functional loss of 

homologous recombination may also contribute to the fork instability seen in ATR-deficient 

cells.

Regulation of replication fork restart

Another aspect of ATR-mediated fork stabilization involves the regulation of pathways that 

actively promote replication fork restart in addition to those that prevent fork collapse 

(Figure 6). Multiple processes have been suggested to promote restart1. For example, fork 

restart may involve repriming ahead of the stalled polymerase by PrimPol. Other processes 

that promote fork restart involve the DNA damage tolerance [G] pathways, which facilitate 

continued DNA synthesis without repairing the lesion. This can occur through direct bypass 

of damage, a process that involves translesion polymerases. Alternatively, template 

switching [G] may occur, which allows the use of the undamaged sister chromatid as a 

template for replication. Replication restart may also occur though fork reversal processes45. 

Fork reversal can place a polymerase-blocking lesion back into the context of dsDNA so that 

repair can occur. Replication can then continue once the reversed fork is reset. Lastly, 

endonucleases may also cleave a reversed or stalled fork to facilitate homologous 

recombination-mediated mechanisms of fork restart149 (Figure 6).

How precisely ATR functions in these processes is not clear, but it likely contributes to 

several of them. ATR phosphorylates two of the translesion polymerases, REV1 and Pol 

η150,151, suggesting that ATR may control lesion bypass. Other fork restart pathways, 

including template switching, fork reversal and homologous recombination, require 

RAD5145,149. Importantly, ATR likely regulates RAD51-dependent fork restart pathways, as 

several factors that act in these pathways are ATR substrates and are required for ATR-

mediated fork restart. For example, ATR phosphorylates RPA, PALB2 and XRCC3 and 

these modifications are thought to promote RAD51 recruitment to stalled forks or DSBs at 

collapsed forks143–147. ATR also phosphorylates the helicases BLM and WRN, which may 

promote replication restart by processing repair intermediates152,153 (Figure 6). However, 

until we have good methods to distinguish between the effect of ATR on fork stabilization 

and on fork restart, it will be difficult to clearly delineate the molecular mechanisms and 

processes that occur when fork stall and restart.

Ensuring dNTP availability

In addition to maintaining the stability of stalled forks, ATR also actively functions to 

prevent fork stalling from happening in the first place by ensuring that dNTP levels in 

replicating cells are sufficient. Early genetic studies in budding yeast demonstrated that the 

lethality caused by Mec1 loss could be rescued by increasing the activity of ribonucleotide 

reductase (RnR), which is the rate limiting enzyme in dNTP production154,155. By 
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overexpressing RnR or deleting an RnR inhibitor, nucleotide levels are increased in the 

Mec1-deficient yeast, thereby yielding fewer stalling forks and reducing the need for 

replication stress signaling. Furthermore, Mec1 regulates RnR activity in yeast by multiple 

mechanisms156.

Similarly, in human cells ATR activity is needed for efficient transcription factor E2F1-

dependent expression of ribonucleoside-diphosphate reductase subunit M2 (RRM2)136. 

ATR-mediated RRM2 expression may be especially important in the early stages of S phase, 

where loss of ATR leads to the formation of greater levels of ssDNA. ATR also boosts RnR 

activity when DNA damage levels (and consequently the need for dNTPs) are high by 

preventing CDK and cyclin F-dependent RRM2 degradation157.

The importance of ATR in maintaining RRM2 expression and consequently dNTP levels 

was recently explored in a mouse model of Seckel syndrome158. Seckel mice have an Atr 
mutation that leads to reduced levels of ATR, similar to what is observed in humans with 

ATR mutations. These mice recapitulate many of the ATR mutation phenotypes seen in 

humans, including craniofacial abnormalities and dwarfism159. Strikingly, crossing the 

Seckel mouse with mice genetically engineered to express supra-physiological levels of 

Rrm2 resulted in a considerable increase in the overall size and lifespan of the mice. This 

elegant genetic study strongly supports the importance of ATR in regulation of dNTP 

biosynthesis158.

Conclusions and future directions

The past few years have revealed complexities in ATR regulation and function that 

emphasize its essential functions in maintaining genome integrity. The use of new reagents 

such as highly potent ATR inhibitors has lead to new discoveries, and such reagents are 

being developed for cancer therapies160. Cancer cells have elevated levels of replication 

stress and may be more dependent than normal cells on ATR function. ATR inhibition also 

sensitizes cells to many current agents that target DNA repair and replication. Thus, 

combining ATR inhibition with therapies that induce replication stress or targeting cancers 

with high levels of replication stress may be useful clinical strategies. Finding the right 

individuals that will benefit from these drugs as well as biomarkers that predict drug 

responses remain essential areas of investigation.

The identification of the second ATR activator ETAA123–25 illustrates that much is left to 

learn about the basic mechanisms of ATR regulation. Unanswered questions include: Why 

do cells need multiple ATR activators? How is ATR signaling tuned to yield different 

cellular responses? What is the complete constellation of ATR targets that are needed to 

execute an effective replication stress response?

New approaches such as high-resolution cryo-EM will hopefully reveal how ATR is 

activated at atomic resolution. A high-resolution structure may explain how post-

translational modifications and other processes generate different levels of ATR signaling. 

The recent biochemical reconstitution of origin-dependent DNA replication161 also provides 

an opportunity to build fully-defined in vitro systems to study replication stress responses.
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The genome cannot be fully protected from exogenous and endogenous sources of damage, 

which threaten its stability. Fortunately, ATR solves many of these genome maintenance 

challenges to ensure to the integrity of the information stored in the DNA.
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Glossary

Replication stress
the slowing or stalling of replication fork progression and/or DNA synthesis

Hypomorphic alleles
mutated genes that encode proteins with reduced function

Genotoxic stress
broadly refers to any agent that damages cellular DNA

Topoisomerase
an enzyme that relieves torsional stress caused by DNA supercoiling during replication or 

transcription

SOS DNA damage response
a bacterial DNA damage response that arrests the cell cycle and induces error prone DNA 

repair

Stalled replication fork
A replication fork that has prematurely halted DNA synthesis

Replisome
a multiprotein complex that unwinds double-stranded DNA and catalyzes both leading and 

lagging strand DNA synthesis

Nascent DNA
the newly synthesized strands of DNA during DNA replication

Origin firing
refers to the initiation of DNA replication at an origin

Holliday junctions
branched structures that contain a four-way junction of double-stranded DNA

Clamp-loader
a protein complex that catalyzes the loading of clamp complex onto DNA

Fork restart
the process of restarting DNA replication at a fork that had been stalled
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DNA damage tolerance
a set of pathways that allow cells to replicate damaged DNA, including translesion synthesis 

and template switching

Template switching
Switching of the DNA polymerase to the newly synthesized DNA as a template for DNA 

replication, when the parental template is damaged
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Online Summary

• ATR is an essential kinase that is active in S phase, senses stressed replication 

forks and orchestrates a multifaceted response to DNA replication stress. This 

response helps ensure completion of DNA replication and maintains the 

integrity of the genome.

• ATR and its binding partner, ATRIP, are recruited to stalled forks through 

direct interactions with the RPA–ssDNA complex that forms at stressed 

replication forks. Once bound to ssDNA, the kinase activity of ATR is 

stimulated by the ATR-activating domains of TOPBP1 or ETAA1, which are 

independently recruited to ssDNA–dsDNA junctions or to RPA–ssDNA, 

respectively.

• ATR activity can be amplified by generating more ssDNA–dsDNA junctions 

at individual replication forks, through feed-forward signaling loops, and by 

post-translational modifications of the signaling complexes.

• Once activated, ATR directs the replication stress response to arrest the cell 

cycle, block origin of replication firing, and stabilize and repair stalled 

replication forks.

• ATR and its effector CHK1 are active during both an unperturbed S phase, to 

prevent excessive origin firing and in response to replication stress, to slow 

DNA replication. However, this negative regulation of replication initiation 

does not prevent the firing of dormant origins within a replication domain, 

which can rescue replication completion without requiring the damaged fork 

to restart.

• ATR phosphorylates numerous replisome proteins and repair factors that 

prevent fork collapse and the formation of DNA breaks. These post-

translational modifications regulate the remodeling of replication forks and 

subsequent nuclease-dependent cleavage and/or resection of forks. They also 

regulate pathways needed to repair stalled forks and restart DNA synthesis.
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Figure 1. Components of ATR activation pathways
(a, Left) DNA polymerase stalling on the lagging strand generates a single-stranded DNA 

(ssDNA) gap that is bound by replication protein A (RPA), providing a platform for ataxia 

telangiectasia and Rad3-related (ATR) activation. The 5′-ended ssDNA–dsDNA junction 

formed at the Okazaki fragment adjacent to this ssDNA serves as the loading point for the 

RAD9–RAD1–HUS1 (9-1-1) clamp complex, which is loaded onto the DNA by RAD17–

replication factor C subunits 2-5 (RFC2-5) clamp loader. (a, Right) The 9-1-1 complex with 

assistance from RHINO (RAD9–HUS1–RAD1 interacting nuclear orphan 1) and the 

MRE11–RAD50–NBS1 (MRN) complex recruits the ATR activator topoisomerase II 

binding protein (TOPBP1), thereby allowing stimulation of ATR and phosphorylation of 

specific downstream effectors, including checkpoint kinase 1 (CHK1). Ewings tumor 

associated antigen (ETAA1) bound to RPA activates ATR in a parallel pathway. (b) In 

budding yeast Dpb11, DNA damage checkpoint protein 1 (Ddc1) and Dna2 have a 

disordered ATR activating domain (AAD), which contains critical hydrophobic amino acids 

that are needed for Mec1 (ATR homologue) activation. In humans, the ATR activator 

TOPBP1 is a homolog of Dpb11, whereas ETAA1 is not related to any yeast protein, and 

unlike the other activators, contains two motifs (RPA70N and RPA32C) that interact with 

two domains of RPA23–25. (c) The ATR kinase domain is followed by two motifs that are 

needed for ATR activation: FATC, and PIKK-regulatory domain (PRD), which may directly 

contact the AAD17. ATR-interacting protein (ATRIP) contains an amino-terminal RPA-

interaction domain (RPA70N), a coiled-coil dimerization domain (CC), a motif that is 

needed for AAD interaction and ATR activation, and a carboxy-terminal region that interacts 
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with ATR17,163–166. (d) Model of ATR activation. ATR–ATRIP forms a dimer of dimers167. 

TOPBP1 or ETAA1 AAD binding likely induces a conformational change in ATR that 

reduces the Km of ATR for its substrates and thereby activates ATR168.

BRCT, BRCA1 C Terminus.
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Figure 2. Generation of the ATR-activating structure at stressed replication forks
(a) When the leading strand polymerase stalls, a 5′-ended ssDNA–dsDNA junction is not 

initially present. New primer synthesis ahead of the stalled leading-strand polymerase would 

create the ssDNA–dsDNA junction. DNA polymerase alpha (Pol α) and/or primase and 

DNA directed polymerase (PrimPol) (not shown) may catalyze primer synthesis ahead of the 

stalled polymerase. (b) Fork remodeling may be necessary to generate the ATR-activating 

structure when a DNA lesion, such as an inter-strand crosslink (ICL), stalls the fork entirely. 

In this situation, DNA translocases may reverse the fork. Once reversed, specialized 

helicases, such as Werner syndrome RecQ like helicase (WRN) or Fanconi anemia 

complementation group J (FANCJ) (not shown), can unwind the dsDNA of the reversed 

strands. Exonucleases, including DNA replication helicase/nuclease 2 (DNA2), can resect 

the DNA in the 5′-3′ direction as it is unwound by the helicase, generating both the ssDNA 

and the 5′-ended ssDNA–dsDNA junction required for ATR activation.

MCM2-7, minichromosome maintenance 2-7 complex; RPA, Replication protein A; ATRIP, 

ATR-interacting protein; TOBP1, topoisomerase II binding protein 1; 9-1-1, RAD9–RAD1–

HUS1
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Figure 3. Amplification of ATR signaling
There are multiple ways to amplify ATR signaling at individual replication forks. (a) 

Continued primer synthesis by DNA polymerase alpha (Pol α) ahead of the stalled leading-

strand polymerase can generate multiple ssDNA–dsDNA junctions at a single fork. This 

would create multiple loading points for the RAD9–RAD1–HUS1 (9-1-1) complex and the 

ATR activator topoisomerase II binding protein 1 (TOPBP1), and, accordingly, would 

increase the number of ATR proteins that are activated at a single fork. (b) The E3 ubiquitin 

ligase PRP19 creates a feed-forward loop to amplify ATR activity. PRP19 ubiquitylates 

replication protein A (RPA), which increases ATR activity, which in turn boosts PRP19-

dependent ubiquitylation of RPA. (c) Multiple post-translational modifications amplify ATR 

activation. These include protein kinase A (PKA) phosphorylation of ATR, ATR 

autophosphorylation, cyclin-dependent kinase 2 (CDK2) phosphorylation of ATR-

interacting protein (ATRIP), ATR and/or ATM phosphorylation of TOPBP1, and potentially 

ATR phosphorylation of Ewing tumor-associated antigen 1 (ETAA1). ATRIP deacetylation 
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by Sirtuin 2 (SIRT2) helps recruit ATR–ATRIP to the stalled replication fork. (d) The second 

ATR activator, ETAA1, can stimulate ATR activity independently of the presence of 

ssDNA–dsDNA junctions. Because ETAA1, ATR and ATRIP are recruited to RPA–ssDNA, 

longer stretches of ssDNA could recruit multiple ETAA1, ATR and ATRIP proteins to a 

single fork and produce an amplified ATR-mediated response.

CHK1, checkpoint kinase 1
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Figure 4. Pathways regulated by ATR to suppress origin firing
(a) (Left) DBF4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) activities 

promote origin firing. DDK phosphorylates the minichromosome maintenance 2-7 complex 

helicase (MCM), and CDK phosphorylates Treslin. These phosphorylations promote 

recruitment of cell division cycle 45 (CDC45) and other pre-initiation complex (pre-IC) 

factors to activate the helicase.(Right) ATR may suppress origin firing through at least two 

distinct pathways. The first is through phosphorylation and stabilization of myeloid/

lymphoid or mixed-lineage leukemia (MLL). This promotes MLL association with 

chromatin where it methylates histone H3 Lys4 (H3K4me). This chromatin modification 

blocks CDC45 loading onto nearby origins. The second pathway is through ATR-dependent 

activation of checkpoint kinase 1 (CHK1), which negatively regulates CDK-dependent 

phosphorylations at origins, thereby blocking the loading of CDC45 and other pre-IC 

factors. CHK1 also directly phosphorylates Treslin, which limits CDC45 binding to origins. 

(b and c) ATR allows local dormant origins to fire in response to replication stress. (b) When 

a replication fork is stalled, nearby dormant origins fire to help complete DNA synthesis in 

its vicinity. At the same time, cells also block origin firing in later replicating regions. This 

prevents the accumulation of additional replication stress and the potential depletion of 

replication factors or nucleotides. (c) It is unclear how ATR allows dormant origins to fire 

locally. One proposed mechanism involves inhibition of CHK1 activity in the vicinity of the 

stalled polymerase. ATR activated at the stalled fork can phosphorylates MCM2 locally, 

primarily at nearby unfired origins. MCM2 phosphorylation creates a docking site for polo-

like kinase 1 (PLK1), which suppresses activation of CHK1 and allows recruitment of 

CDC45 to nearby origins.
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ORC, origin recognition complex
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Figure 5. Proposed mechanisms by which ATR maintains replication-fork stability
(a) ATR prevents fork collapse, which is illustrated here as double-strand DNA break (DSB) 

formation at the fork. In this example, replication of the leading strand was blocked by a 

DNA lesion. (b) ATR phosphorylates SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin, subfamily a like 1 (SMARCAL1) at stressed replication forks, 

thereby suppressing its activity and limiting fork reversal. As structure-specific 

endonuclease subunit (SLX4)-dependent nucleases can cleave reversed forks, ATR-

dependent inhibition of SMARCAL1 is a mechanism by which ATR stabilizes the fork. (c) 

ATR phosphorylates several proteins at the replication fork to modify replisome function. 

ATR mediates the recruitment of Fanconi anemia complementation group D2 (FANCD2) to 

the fork, which may occur in response to ATR-dependent phosphorylation of the MCM2-7 

helicase and FANCD2. FANCD2 minimizes the accumulation of ssDNA caused by meiotic 

recombination 11 homolog A (MRE11)-dependent resection of the nascent DNA. FANCD2 

also slows DNA polymerases at stressed forks, and fork slowing may prevent collapse. (d) 

ATR prevents exhaustion of replication protein A (RPA) availability and subsequently 

replication catastrophe. This indirect function of ATR is mediated partly through its role in 

suppressing origin firing in response to hydroxyurea (HU)- or aphidicolin (APH)-induced 

replication stress.
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Figure 6. Proposed roles of ATR in promoting replication-fork restart
In addition to stabilizing the replication fork, ATR is thought to promote restart of stalled 

forks. There are several pathways to restart a stalled fork, including repriming ahead of the 

lesion by primase and DNA directed polymerase (PrimPol), lesion bypass through 

translesion synthesis (TLS), lesion bypass through template switching, and fork reversal and 

lesion repair. If a stalled fork collapses into a double-strand DNA break (DSB), homologous 

recombination-dependent pathways can restart the fork. It is unknown whether ATR 

regulates PrimPol activity to restart replication forks, but ATR does phosphorylate two TLS 

polymerases, REV1 and DNA polymerase eta (Pol η), and may promote lesion bypass. ATR 

also phosphorylates several proteins that promote radiation sensitive 51 (RAD51)-dependent 

replication restart pathways, including template switching, fork reversal and repair, and 

homologous recombination. These include X-ray repair cross complementing 3 (XRCC3), 

partner and localizer of BRCA2 (PALB2), replication protein A (RPA), Werner syndrome 

RecQ like helicase (WRN) and Bloom syndrome RecQ like helicase (BLM).
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