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Abstract

Bone mineral density (BMD) is a complex trait with high missing heritability. Numerous 

evidences have shown that BMD variation has a relationship with coronary artery disease (CAD). 

This relationship may come from a common genetic basis called pleiotropy. By leveraging the 

pleiotropy with CAD, we may be able to improve the detection power of genetic variants 

associated with BMD. Using a recently developed conditional false discovery rate (cFDR) method, 

we jointly analyzed summary statistics from two large independent genome wide association 

studies (GWAS) of lumbar spine (LS) BMD and CAD. Strong pleiotropic enrichment and 7 

pleiotropic SNPs were found for the two traits. We identified 41 SNPs for LS BMD (cFDR<0.05), 

of which 20 were replications of previous GWASs and 21 were potential novel SNPs that were not 

reported before. Four genes encompassed by 9 cFDR-significant SNPs were partially validated in 

the gene expression assay. Further functional enrichment analysis showed that genes 
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corresponding to the cFDR-significant LS BMD SNPs were enriched in GO terms and KEGG 

pathways that played crucial roles in bone metabolism (adjP < 0.05). In protein-protein interaction 

analysis, strong interactions were found between the proteins produced by the corresponding 

genes. Our study demonstrated the reliability and high-efficiency of the cFDR method on the 

detection of trait-associated genetic variants, the present findings shed novel insights into the 

genetic variability of BMD as well as the shared genetic basis underlying osteoporosis and CAD.
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1. Introduction

Bone mineral density (BMD) is a complex trait with high heritability. It’s a major risk factor 

for osteoporosis, the incidence of which increased dramatically in recent years due largely to 

the ageing of population worldwide. Nearly 54 million adults were affected by osteoporosis 

or osteopenia in 2010 in the US, and this number was estimated to increase to 70.8 million 

from 2010 to 2030 [1]. The incidence of fragility fracture – the most severe complication of 

osteoporosis, also increased proportionally with the high prevalence, leading to long term 

disability, high mortality to afflicted individuals and huge economic burden on their families 

and societies [2]. BMD is a heritable trait with the highest heritability of 83% at lumbar 

spine (LS) [3]. To date, genome-wide association studies (GWAS) have reported more than 

200 SNPs associated with BMD (https://www.ebi.ac.uk/gwas, April 2017), yet only 

explained a small proportion of the whole heritability [4]. For better disease control and 

prevention, further studies are warranted to uncover novel BMD associated genetic variants.

Numerous epidemiological and clinical evidences have shown a relationship between BMD 

and coronary artery disease (CAD). CAD is the most common type of heart disease, which 

is the major cause of death worldwide, accounting for almost 1 of every 4 death in the 

United States [5]. BMD and CAD are both highly heritable traits [3,6], BMD decreasing 

diseases (such as osteoporosis and osteopenia) and CAD have high prevalence and occur 

concurrently in the elderly [1,5]. It has been reported that in healthy men, BMD was 

inversely associated with their 10-year CAD risk [7], while among women, slight increase of 

annual BMD loss was notably associated with higher coronary artery calcification - a main 

cause of plaques in inner lining of coronary artery which eventually leads to CAD [8]. 

Osteoporosis and CAD share common risk factors, such as dyslipidemia, estrogen and/or 

vitamin D deficiency [9], and GWAS analysis has revealed strong genetic overlap between 

BMD and CAD risk factors, such as lipoproteins cholesterol and blood pressure [10]. 

Molecular pathways involved in bone mineralization and coronary artery calcification are 

very similar [11], meanwhile bone marrow cells including osteoclasts and osteoblasts were 

identified in calcified plaques of vessels [12]. In addition, in mouse models, deletion of 

osteoprotegerin caused both osteoporosis and vascular calcification [13].

The underlying genetic mechanism of the relationship between BMD and CAD might 

partially come from the presence of pleiotropic effect, which means that one single gene 
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could influence multiple traits. By leveraging pleiotropy with associated traits and using 

novel analytical methods, we may be able to explore more of the traits’ total heritability. 

Recently, Andreassen et al. proposed a novel, high-efficient and cost effective analysis 

method - pleiotropy informed conditional false discovery rate (cFDR) method on existing 

GWAS data and successfully identified potential novel loci for a number of traits as well as 

pleiotropic loci for multiple disorders [14,10]. cFDR method has the advantage to increase 

the effective sample size of existing GWAS data for individual traits/diseases and improve 

the detection of genetic variants without the need of larger datasets or new recruitments. 

According to the authors’ simulation, while compared with the unconditional FDR during a 

single trait analysis, using the cFDR method could increase 15–20 times the number of non-

null SNPs discovered for a FDR smaller than 0.05 [14]. In our previous studies, we 

successfully implemented the cFDR analyses and identified potential novel and pleiotropic 

variants for type 2 diabetes and/or birth weight [15] as well as for BMD and height [16]. 

Here, we applied the cFDR method to two large independent GWAS data of LS BMD and 

CAD, aiming to detect more potential novel trait-associated single nucleotide 

polymorphisms (SNPs) and genes for BMD.

2 Method and materials

2.1 GWAS datasets

We obtained GWAS summary statistics of LS (lumbar spine) BMD from the Genetic Factors 

for Osteoporosis Consortium (GEFOS). This dataset contains summary statistics from meta-

analysis of 35 individual GWAS studies (n=53,236) conducted by whole genome 

sequencing, whole exome sequencing and deep imputation of genotype data. To date, it is 

the largest published GWAS data of BMD and 10,582,866 SNPs were included [17]. The 

CAD GWAS summary statistics were obtained from the CARDIoGRAMplusC4D 

Consortium. It is a meta-analysis of 22 CAD GWAS studies with 22,233 cases and 64,762 

controls (n=86,995), and 2,420,360 SNPs were included [18]. There were no overlapping 

subjects between the LS BMD and CAD GWAS datasets. The detailed phenotype 

characteristics and inclusion criteria for the two GWASs were described in the original 

publications [18,17].

2.2 Data processing

First, based on linkage disequilibrium (LD) SNP pruning method and using HapMap 3 

genotypes as a reference, we performed pruning on LS BMD and CAD datasets respectively. 

The linkage disequilibrium (LD) between each pair of SNPs in the datasets was calculated 

by Plink, for those SNP pairs with r2 > 0.2, the SNP with the smaller allele frequency 

(MAF) was removed [19]. After pruning, there were 369,514 SNPs remained for LS BMD 

and 167,894 SNPs remained for CAD. Next, the two datasets were combined and there were 

128,164 common SNPs remained for both phenotypes to be used in the subsequent analysis. 

Genomic control has already been applied in the two datasets to ensure that the variance 

estimates for each SNP were not inflated due to population structure [18,17].
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2.3 Statistical Analyses

2.3.1 Pleiotropic Enrichment Estimation—Quantile-quantile plot (Q-Q plot) is an 

exploratory tool implemented in R to evaluate whether the primary phenotype is related to 

the given phenotype under the null hypothesis, which is also termed as “enrichment”. The 

Q-Q curve was plotted for the quantile of nominal –log10 (p) values for association of the 

subset of variants that were below different significance threshold in the conditional trait. 

The empirical quantiles (-log10(q)) were plotted on x-axis and the nominal p-values (-log10 

(p)) were plotted on y-axis. As the principal phenotype successively conditioned on more 

stringent significance criteria in the conditional phenotype, the pleiotropic enrichment could 

be observed intuitively by the degree of leftward deflection from the expected identity line.

2.3.2 The calculation of cFDR and conjunction cFDR (ccFDR)—The cFDR 

method is regarded as an extension of the standard FDR framework. It represents the 

possibility that a random SNP is null for association with the principal phenotype given that 

the observed p-values for the principal and conditional phenotypes are both less than two 

pre-defined trait specific significance thresholds [14]. Using GWAS p-values of the two 

pruned datasets, we computed cFDR for every single SNP while LS BMD was the principal 

phenotype conditioned on the strength of its association with CAD (LS|CAD) and reversely 

(CAD|LS). To assess whether the cFDR method results in the enrichment of specific SNPs, 

the subset of SNPs was confined based on the level of significance for the association of 

each variant with the conditional trait using the following criteria: p < 1 (all SNPs), p < 0.1, 

p < 0.01 and p < 0.001. A threshold of cFDR less than 0.05 was used to determine whether 

the SNP was significantly associated with the principal phenotype. The procedure of this 

method has been described in detail by Jonathan et al [16]. ccFDR was computed to identify 

pleiotropic SNPs for both LS BMD and CAD after the calculation of cFDR. It refers to the 

possibility that a given SNP has a false positive association with the two traits, and is taken 

as the maximum cFDR value between them. We used a threshold of ccFDR less than 0.05 to 

identify whether the SNP was significantly associated with both traits and was a pleiotropic 

one. Manhattan plots of cFDR and ccFDR were constructed respectively by R to mark the 

chromosomal locations as well as significance of various SNPs. SNPs with –log10 cFDR 

value or –log10 ccFDR value more than 1.3 were regarded as significant.

2.4 Annotation of Potential Novel SNPs for LS BMD

To compare with the previous BMD GWAS findings and verify whether the cFDR-

significant SNPs are potential novel ones, we assembled a confirmed_SNP set by 

downloading all the SNPs that were already confirmed to be associated with BMD in earlier 

GWASs from the web site https://www.ebi.ac.uk/gwas, April 2017 (Supplementary Table 1). 

Totally there were 251 SNPs that were confirmed by previous BMD GWASs. Then, based 

on HapMap genotype data and using LD threshold at 0.8 as a criteria, we input the set of 

cFDR-significant SNPs with p values > 5E-8 and the confirmed_SNP set into the SNPinfo 

Web Server to perform LD analysis (https://snpinfo.niehs.nih.gov/). Each LD block may 

contain one or more than one SNP, a SNP that is not clustered in the same LD block with 

SNPs of the confirmed_SNP set was regarded as a potential novel SNP. Meanwhile, SNPs 

that clustered in the same LD block with SNPs of the confirmed_SNP set were regarded as 

replication of the previous findings.
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2.5 Gene Expressional Validation Analysis

Using gene expression profiling in iliac bone biopsies from 84 postmenopausal Caucasian 

women [20], we performed gene expressional partial validation analysis by calculating the 

correlation values between LS BMD and the mRNA levels of cFDR-significant LS BMD 

associated genes. The details of the gene expression profiling of iliac bone biopsies can be 

found in the original publication [20].

2.6 Functional Enrichment analysis and Protein-Protein Interaction analysis

To explore the biological roles of cFDR-significant SNPs/genes, we performed functional 

enrichment analysis and protein-protein interaction analysis. cFDR-significant SNPs were 

mapped to nearby genes by the online tool SNPinfo Web Server (https://

snpinfo.niehs.nih.gov/). Using Web-Based Gene Set Analysis Toolkit [21], we input these 

genes into the WebGestalt system and performed functional term enrichment analysis. Gene 

ontology (GO) terms and KEGG canonical pathways with adjusted p value less than 0.05 

were regarded as significant. Functional term enrichment analysis of the corresponding 

genes gave us the opportunity to further partially validate our results by identifying gene sets 

that play key roles in bone metabolism. Protein-protein interaction analysis for the 

corresponding genes were conducted using the online database STRING 10.0 (http://string-

db.org/), it helped us explore the functional roles of the proteins produced by the identified 

LS BMD-associated genes in the context of biological mechanisms of bone metabolism.

3 Results

3.1 Pleiotropic enrichment assessment and pleiotropic SNPs identified for LS BMD and 
CAD

Quantile-quantile plot (Q-Q plot) was constructed to assess the pleiotropic enrichment 

between LS BMD and CAD. As shown in Figure 1, strong enrichment could be observed for 

LS BMD associated SNPs across different levels of association with CAD (LS│CAD), the 

separation shown between different curves indicated the extent of pleiotropic SNPs shared 

between both traits. The earlier departure from the expected line indicated the greater 

proportion of true associations for a given CAD p-value. Similar patterns of strong 

enrichment could also be observed for CAD conditioning on LS BMD (CAD│LS) 

(Detailed information of the CAD cFDR-significant SNPs were presented in Supplementary 

Table 2). Totally we identified 7 pleiotropic SNPs mapping to 3 chromosomes reached the 

significance threshold of ccFDR < 0.05 (Figure 2 and Table 1). Genes encompassed by these 

pleiotropic SNPs were found to be associated with bone metabolism [22,23] and/or CAD 

pathology [24], as well as risk factors for both osteoporosis and CAD, such as obesity and 

insulin resistance [25,26].

3.2 LS BMD SNPs identified with cFDR

We identified 41 LS BMD SNPs mapping to 13 chromosomes conditioned on CAD with a 

significance threshold of cFDR < 0.05 (Supplementary Figure 1), all the details were 

presented in Table 2. Of these cFDR-significant SNPs, 16 have been discovered in the 

original GWAS to be significantly associated with LS BMD (p ≤ 5E-8 in the original 
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GWAS), and 3 other SNPs with p values > 5E-8 for LS BMD (rs10464592, rs11753987 and 

rs2741856) have reached GWAS significance threshold of p ≤ 5E-8 for femoral neck BMD 

in the original GWAS [17]. SNP rs7683315 resides in the same LD block with two other 

SNPs (rs6532023, rs1471403) of the confirmed_SNP set (supplementary Table 1). These 20 

SNPs were regarded as successful replication of previous BMD GWASs’ findings and well 

demonstrated the reliability of cFDR method in detecting trait-associated genetic variants. 

Totally we identified 21 potential novel SNPs for LS BMD (bold SNPs in Table2), which 

have been overlooked in the original GWAS analysis using standard statistical methods [17]. 

Of these potential novel SNPs, 9 out of 21 were located in or near genes (ESR1, FLJ42280, 

JAG1, MEPE, SOST, TNFRSF11B, TNFSF11, WNT4) that were confirmed in previous 

GWASs to be significantly associated with BMD [27], there were 12 potential novel SNPs 

located in or near genes which were not reported to be associated with BMD before.

3.3 Gene expressional validation analysis for cFDR-significant genes associated with LS 
BMD

Using gene expression profiling in iliac bone biopsies from 84 postmenopausal Caucasian 

women [20], the correlation values between LS BMD and the mRNA levels of cFDR-

significant genes were calculated and presented in the rightmost columns of Table 1. mRNA 

transcripts of 4 genes (MEPE, CCDC170, SFRP4 and SOST) annotated by 9 LS BMD 

cFDR-significant SNPs (with *r values) were significantly correlated with LS BMD (p value 

< 0.05, this threshold of p value was used here for the purpose of partial validation).

3.4 Functional enrichment analysis for LS BMD cFDR-significant genes

To explore the functional role of LS BMD associated genes in bone metabolism, we 

performed a series of analysis. Firstly, we input the corresponding genes into WebGestalt 

system for GO term analysis and KEGG pathway analysis. The corresponding genes were 

enriched in as much as 47 GO terms (Supplementary Table 3), many of which were 

significantly associated with bone metabolism (Table 3). As shown in Table 3, 

“Ossification” (adjP = 2.30E-03) was one of the most significantly enriched GO terms for 

LS BMD associated genes. It is the process of bone formation and a major part of bone 

metabolism. Other GO terms which obviously played important roles in bone were also 

found for the corresponding genes, such as “negative regulation of canonical Wnt receptor 

signaling pathway” (adjP = 3.70E-03), “regulation of bone resorption” (adjP = 7.30E-03), 

“regulation of bone remodeling” (adjP = 8.00E-03), “negative regulation of ossification” 

(adjP = 9.00E-03). Interestingly, LS BMD associated genes were also enriched in GO terms 

related to estrogen, such as “Response to estrogen stimulus” (adjP = 2.40E-03) and “Cellular 

response to estrogen stimulus” (adjP = 3.70E-03). BMD is believed to be a marker of 

women’s lifetime exposure to estrogen, estrogen helps maintain bone mass and its 

deficiency plays a key role in the process of osteoporosis among menopausal women [28]. 

This interesting GO term result further validated the functional roles of LS BMD associated 

genes in the estrogen related bone metabolism. The significant KEGG pathways were 

presented in Table 4, of which “proteasome” (adjP = 1.20E-02) was the most significantly 

enriched. Protein degradation mediated by ubiquitin-proteasome is very crucial to both bone 

formation and resorption [29]. TNFRSF11B and TNFSF11 were enriched in “osteoclast 

differentiation pathway” (adjP = 4.30E-02), which was crucial to the resorption and 
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remodeling of bone. WNT4 and SFRP4 were enriched in “Wnt signaling pathway” (adjP = 

4.30E-03). Activation of Wnt signaling pathway increases bone mass while inhibition of it 

decreases bone mass and promotes osteoporosis in mice [30], and polymorphisms in Wnt 

pathway have been identified to be associated with altered BMD variation in GWAS and 

meta-analysis [31].

3.5 Protein-protein interaction analysis for LS BMD cFDR-significant genes

Based on connection evidence with STRING 10.0 summary score above 0.4, protein-protein 

interaction network was constructed to explore the biological function of the cFDR-

significant genes (Figure 3). Strong interactions were detected between proteins produced by 

cFDR-significant genes, especially among WNT4, SFRP4, WLS, JAG1, MEPE, ESR1, 

TNFRSF11B, TNFSF11 and SOST. For example, protein produced by SFRP4 regulates Wnt 

signaling through direct interaction [32], JAG1 encodes Jagged1 protein, Jagged1-Notch1 

signaling induces the expression of WNT4 in encocardial cells [33]. SOST inhibits Wnt 

signaling and negatively regulates bone formation [34], TNFRSF11B is the decoy receptor 

for TNFSF11 and neutralizes its function in osteoclastogenesis [35]. Interestingly, though 

some genes encompassed by cFDR-significant SNPs did not have any interaction with other 

cFDR-significant genes in this network, they were found in studies to be associated with 

bone tumors (TOM1L2 and ADAMTS2) [22,23] and risk factors to osteoporosis, such as 

insulin resistance (TCERG1L) [36] and obesity (RAI1) [25].

4 Discussion

Our study demonstrated a strong pleiotropy between LS BMD and CAD, 7 pleiotropic SNPs 

were identified and validated the hypotheses of the shared genetic basis between the two 

complex traits. More importantly, by leveraging power from the epidemiologically and 

clinically related trait CAD, we successfully identified 41 LS BMD-associated SNPs with 

cFDR < 0.05, of which, 20 SNPs have been identified in the original and other BMD GWAS 

analyses to be significantly associated with BMD [17,37]. These 20 SNPs were considered 

as successful replication of the previous BMD GWASs and demonstrated the reliability of 

cFDR method on detecting trait-associated genetic variants for complex phenotypes. Totally 

we identified 21 potential novel LS BMD associated SNPs without any further recruitment 

or new study participants, some of these SNPs were located in or near genes that reached 

detection level in our gene expression validation assay, and most of their corresponding 

genes were enriched in GO terms and KEGG pathways that have close relationship with 

bone metabolism. Our findings strongly highlighted the reliability, cost-effectiveness and 

high-efficiency of the current cFDR method on its enhanced power of detecting potential 

novel potential genetic variants in complex traits and diseases.

Of the 21 potential novel LS BMD SNPs identified by cFDR method, there were 8 SNPs 

located in or near 5 genes which were confirmed before to be GWAS-associated with BMD. 

These 5 previously confirmed genes were WNT4, WLS, CCDC170, ESR1 and 

TNFRSF11B. rs11209223 and rs1864569 were located in WLS, rs2473252 was located in 

WNT4. Transmembrane protein produced by WLS can regulate WNT proteins’ sorting and 

secretion in a feedback regulation [38]. Meanwhile, as an important member of WNT 
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family, WNT4 was the key gene in the enrichment analysis of our study, it was included in 

nearly all the GO terms with adjP < 0.05, many of which have been proved to be very 

important to bone metabolism, such as “Ossification”, “regulation of canonical Wnt receptor 

signaling pathway” and “regulation of bone remodeling”. In osteoporosis mouse models, 

WNT4 decreases osteoclast formation as well as bone resorption via inhibiting nuclear 

factor-kappaB (NF-kappaB), and its expression on osteoblast in transgenic mice can greatly 

promote bone formation [39]. rs7746854 was located in CCDC170, rs1293935 and 

rs2504065 were located near CCDC170 and ESR1. CCDC170 was one of the genes that 

were validated in our gene expressional validation assay, its genetic variation was proved to 

be significantly associated with BMD after adjustment of age and gender [40]. ESR1 is a 

crucial gene involved in hormone-associated diseases, it encodes estrogen receptor and 

regulates the function of estrogen on its target tissues including bone. rs12375331 and 

rs1905776 were located near TNFRSF11B. TNFRSF11B encodes osteoprotegerin (OPG), 

which is a decoy receptor for receptor activator of nuclear factor kappa-B ligand (RANKL), 

after binding to RANKL, OPG can prevent osteoclast maturation and reduce bone resorption 

[41]. Considering the functional roles these 5 genes have played in bone metabolism, we 

believed that these 8 potential novel SNPs represent important genetic variants to LS BMD, 

further replication studies and biological function research may follow their attention on 

them.

In addition to the 8 potential novel SNPs mentioned above, there were other 13 potential 

novel SNPs located in or near genes that were not found to be GWAS-associated with BMD 

before, including 7 pleiotropic SNPs (rs11005240, rs12449964, rs12943500, rs6502629, 

rs10039254, rs10765090 and rs7208561). Some genes annotated by these SNPs were found 

in studies to be associated with bone and/or CAD. rs12449964 was located near PEMT and 

RAI1, rs7208561 was located in the intron region of RAI1. PEMT expression could be 

positively activated by estrogen [42], which was also a crucial regulator to bone metabolism. 

RAI1 was confirmed to be a CAD significant gene in a previous GWAS [24], in mice and 

humans, haploinsufficiency of RAI1 was revealed to be significantly associated with obesity 

- a risk factor for both osteoporosis and CAD [25]. TOM1L2 was encompassed by 

rs12943500 and rs6502629, it was reported in a previous study that TOM1L2 was associated 

with 17p amplicons in osteosarcoma – a fatal malignant tumor of bone [23]. rs10039254 was 

located in the intron region of ADAMTS2, which was associated with the invasion and 

metastasis of chondrosarsoma – a common bone tumor [22], increased ADAMTS2 

expression was detected in coronary plaques causing myocardial infarction [43]. rs10765090 

was located near TCERG1L, in African Americans, TCERG1L was confirmed to be 

significantly associated with insulin resistance [26], which negatively affects bone mass and 

is an important risk factor for CAD. To date, studies of these potential novel LS BMD 

associated SNPs (including the 7 pleiotropic SNPs) were very limited, there is still much to 

learn about the precise mechanism how they affect BMD and/or CAD, yet taken the various 

relationship between their corresponding genes and bone and/or CAD mentioned above, we 

inferred that these cFDR-significant SNPs might be potential novel SNPs associated with 

BMD and/or CAD, RAI1, TOM1L2, ADAMTS2 and TCERG1L might play key roles in the 

pleiotropy of LS BMD and CAD. More studies were warranted to follow up with them and 

explore their biological function in bone metabolism and/or pathophysiology of CAD.
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In addition to LS BMD, we also performed the pleiotropy analysis on CAD GWAS data with 

GEFOS data for femoral neck BMD and forearm BMD respectively. However, no significant 

pleiotropy was found between them. The results may not be surprising, since different 

skeleton sites do not have all the same genetic determination and the degree of their 

pleiotropic determination with CAD may also be different [44].

There may be some limitations of our present study. First, cFDR method were not able to 

identify causal variants for the interested trait, the aim of the present study was to provide 

more potential novel BMD associated genetic variants, so that replication studies or fine 

mapping studies could follow up with them in the future. Second, the contribution of our 

findings to the proportion of BMD’s variability could not be estimated, since we only 

analyzed GWAS summary statistics, and the raw genotype data was unavailable.

5 Conclusion

cFDR method increased the effective sample size of existing GWAS data and greatly 

improved the detection of trait-associated genetic variants. By leveraging the pleiotropy with 

the associated phenotype CAD, we identified 21 potential novel SNPs associated with LS 

BMD, genes encompassed by these SNPs played important roles in bone metabolism. Our 

findings shed novel insight into the genetic variability of BMD as well as the shared genetic 

basis underlying osteoporosis and CAD.
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Highlights

• Applied cFDR method to GWAS data to identify potential novel SNPs for 

complex trait

• Identified pleiotropic SNPs for BMD and coronary artery disease

• Identified 21 potential novel loci for lumbar spine BMD
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Figure 1. 
Quantile-quantile plots (Q-Q plots) of nominal versus empirical -log10(p) for LS BMD as a 

function of significance of the association with CAD (LS |CAD) at the level of -log10(p) > 

0, -log10(p) > 1, -log10(p) > 2, -log10(p) > 3 corresponding to p < 1, p < 0.1, p < 0.01, p < 

0.001 respectively; and reversely CAD as a function of significance of the association with 

LS BMD (CAD|LS).
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Figure 2. 
Conjunction Manhattan plot of conjunction –log10 FDR values for LS BMD and CAD. The 

red line marking the conditional –log10 FDR value of 1.3 corresponds to a ccFDR < 0.05. 

The figure shows the genomic locations of pleiotropic SNPs and further details are presented 

in Table 1.
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Figure 3. 
Protein-protein interaction analysis for LS BMD cFDR-significant genes. Connections are 

based on evidence with a STRING 10.0 summary score above 0.4. Network nodes represent 

proteins produced by the corresponding genes, edges between nodes indicate protein-protein 

associations, edge color indicates the type of interaction and was specified on the right in the 

figure.
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Table 3

Bone associated GO term results for LS BMD cFDR-significant genes (adjP < 0.05)

GO ID adjP GO Term Genes

1503 2.30E-03 ossification WNT4,TNFSF11,MEPE,SOST,ESR1

43627 2.40E-03 response to estrogen stimulus WNT4,ESR1,SFRP4

71391 3.70E-03 cellular response to estrogen stimulus WNT4,ESR1

90090 3.70E-03 negative regulation of canonical Wnt receptor signaling pathway WNT4,SOST,SFRP4

60828 7.30E-03 regulation of canonical Wnt receptor signaling pathway WNT4,SOST,SFRP4

45124 7.30E-03 regulation of bone resorption TNFSF11,TNFSF11B

30178 7.30E-03 negative regulation of Wnt receptor signaling pathway WNT4,SOST,SFRP4

46850 8.00E-03 regulation of bone remodeling TNFSF11,TNFSF11B

30279 9.00E-03 negative regulation of ossification MEPE,SOST

30278 1.08E-02 regulation of ossification WNT4,MEPE,SOST

Column definition: GO – gene ontology term; adjP – p value adjusted by the multiple test adjustment.
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Table 4

KEGG pathway analysis for LS BMD cFDR-significant genes (adjP < 0.05)

Pathway Name adjP Genes

Proteasome 1.20E-03 SHFM1, PSMD12

Wnt signaling pathway 4.30E-03 WNT2, SFRP4

Osteoclast differentiation 4.30E-03 TNFRSF11B, TNFSF11

Cytokine-cytokine receptor interaction 9.50E-03 TNFRSF11B, TNFSF11

Column definition: adjP – p value adjusted by the multiple test adjustment.
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