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Abstract

The go/no-go task is one in which there are two choices, but the subject responds only to one of 

them, waiting out a time-out for the other choice. The task has a long history in psychology and 

modern applications in the clinical/neuropsychological domain. In this article we fit a diffusion 

model to both experimental and simulated data. The model is the same as the two-choice model 

and assumes that there are two decision boundaries and termination at one of them produces a 

response and at the other, the subject waits out the trial. In prior modeling, both two-choice and 

go/no-go data were fit simultaneously and only group data were fit. Here the model is fit to just 

go/no-go data for individual subjects. This allows analyses of individual differences which is 

important for clinical applications. First, we fit the standard two-choice model to two-choice data 

and fit the go/no-go model to RTs from one of the choices and accuracy from the two-choice data. 

Parameter values were similar between the models and had high correlations. The go/no-go model 

was also fit to data from a go/no-go version of the task with the same subjects as the two-choice 

task. A simulation study with ranges of parameter values that are obtained in practice showed 

similar parameter recovery between the two-choice and go/no-go models. Results show that a 

diffusion model with an implicit (no response) boundary can be fit to data with almost the same 

accuracy as fitting the two-choice model to two-choice data.
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In standard two-choice tasks, subjects are asked to make a categorical decision that requires 

one of two responses. In go/no-go tasks, subjects are presented with the same categorical 

decision, but they are instructed to make a response to only one of the choices ("go" trials) 

and not to the other ("no-go" trials). On no-go trials, the next trial begins after some fixed 

time-out such as 1500 ms. In this article, we show how a sequential sampling model for 

decision-making, the standard diffusion model (Gomez, Ratcliff, & Perea, 2007; Ratcliff, 

1978; Ratcliff & McKoon, 2008), explains data from go/no-go tasks and how the model can 

provide a different understanding of individuals’ failures to inhibit responses on no-go trials 

than can be drawn directly from data.
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Gomez et al. (2007) tested several variants of the diffusion model for three go/no-go tasks 

(including the numerosity discrimination task used in the studies reported here). In the 

diffusion model for two-choice tasks, information from a stimulus is accumulated from a 

starting point to one or the other of two boundaries, one for each choice, and a response is 

made when the accumulated information reaches one of the boundaries. In Gomez et al.’s 

variants of the model, the decision process is the same except that when the no-go boundary 

is reached, no response is made. Thus, the go/no-go model is essentially the same as the 

two-choice model except that RT distribution data is not used for go/no-go responses. Here 

we use the term "go/no-go model" to refer to the model applied to go/no-go data in order to 

discriminate it from application of the two-choice model.

Gomez et al. believed that the parameters of the go/no-go model were not sufficiently 

constrained unless they were jointly determined by two-choice data collected with the same 

subjects in the same experimental session. In other words, they believed that without the 

two-choice data, the parameters recovered from fitting the go/no-go task alone would be 

inaccurate. As a result, they did not fit the go/no-go data alone and therefore could not 

examine whether parameters changed between the two tasks. They also analyzed the data 

only at the group level, not at the level of individual subjects.

In this article, we show that the diffusion model can, in fact, be used to estimate parameters 

for go/no-go data alone and we show that it can recover parameters for individual subjects. 

Removing the need for go/no-go tasks to be combined with two-choice tasks is especially 

important for clinical research where there is often a limited amount of time for data 

collection and where individuals may not have the stamina for lengthy sessions of data 

collection.

Go/no-go tasks have been widely used to study inhibitory control in a range of clinical 

disorders, most notably Attention Deficit Hyperactivity Disorder (ADHD) (Metin, Roeyers, 

Wiersema, van der Meere, & Sonuga-Barke, 2012), but also autism (Geurts, van den Bergh, 

& Ruzzano, 2014), bipolar disorder (Elliott et al., 2004), schizophrenia (Ford et al., 2004), 

Tourette’s (Roessner et al., 2008), depression (Boggio et al., 2007), Post Traumatic Stress 

Disorder (PTSD), and mild traumatic brain injury (Dimoska-Di Marco et al., 2011). The 

frequency with which an individual makes a "go" response to a no-go stimulus is taken as an 

index of that individual’s inhibitory control.

Indeed, poor ADHD-related performance on go/no-go tasks (and related stop-signal-reaction 

time tasks) has been instrumental in defining executive dysfunction as a core cognitive 

mechanism in ADHD (Metin, et al., 2012; Nigg, Willcutt, Doyle, & Sonuga-Barke, 2005; 

Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). The source of deficits has not been 

determined, but in this population, poor performance has been variously attributed to deficits 

in arousal (Sergeant, 2000), a motivational aversion to delay (Sonuga-Barke, 2002), and 

executive dyscontrol (Nigg, 2001).

In the standard go/no-go task, the proportion of go stimuli is larger than the proportion of 

no-go stimuli, e.g., up to 80:20. This means that the simplest way for the diffusion model to 

explain the data is to assume bias toward go stimuli. Bias can be implemented in several 
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ways, as we describe below and as are tested in Experiments 1 and 2. We also examined 

another task from clinical research, the continuous performance task (CPT), in which the 

proportion of go stimuli is less than the proportion of no-go stimuli, e.g., as few as 20:80 

(see the meta-analysis by Huang-Pollock, Karalunas, Tam, & Moore, 2012). Thus, for the 

CPT, and in contrast to the go/no-go task, the frequency with which an individual can 

successfully detect a rare target over time represents that person’s ability to maintain a state 

of readiness to respond (i.e., vigilance or sustained attention). Together, the go/no-go and 

CPT tasks are two of the most widely used computer-administered tests of cognitive 

performance in the clinical literature. We conducted experiments using the go/no-go task 

and we used simulations to examine both the CPT task the go/no-go task.

For both the go/no-go task and the CPT, error rates and Signal Detection Theory (SDT) 

parameters (d’ and β) derived from hit and false alarm rates for "go" responses have 

historically been the primary variables of interest. However, in most clinical research, the go 

and no-go stimuli are quite distinctive (e.g., letters versus numbers), with the consequence 

that false alarm and miss rates are often too low for estimates of d’ and β to be reliable (the 

diffusion model can mitigate this problem if there are some conditions with higher error 

rates, Ratcliff, 2008). Furthermore, accuracy and RTs sometimes provide conflicting views 

of performance. A greater bias toward making "go" responses to no-go stimuli (relative to a 

control group or to what might occur in a two-choice version of the task) suggests a deficit 

in performance, but faster responses to go stimuli suggests no deficit or even an advantage. 

Such reduction in RT is often interpreted as indicative of normative performance, or even 

enhanced processing efficiency. Current sequential sampling models like the diffusion model 

can resolve seemingly contradictory results like these. They integrate the two dependent 

variables within a single decision process. For the purposes of clinical research, model-based 

analyses may allow the field to move beyond simply documenting performance deficits to a 

better understanding of the processes responsible for them.

Each of the two experiments we describe here used both the go/no-go and the two-choice 

tasks. Subjects were asked to decide whether the number of asterisks displayed on a PC 

screen was larger than 50 or smaller than 51. For the go/no-go task, the probability of a no-

go ("small") stimulus was .25 and for the two-choice task, the probability of that stimulus 

was .5 (typical values for these two tasks). For no-go decisions, there was a 1500 ms time-

out before the next trial began. The two experiments differed only in that for Experiment 1, 

there was a 300 ms delay between a "go" response and the next stimulus (with an additional 

300 ms after an error), whereas in Experiment 2, a delay was added so that the total time for 

"go" responses from the stimulus to the next trial was the same as for "no-go" responses.

We analyzed the data in two ways. First, we fit the two-choice model to the two-choice data 

and, separately, fit the go/no-go model to the two-choice data. The go/no-go model is the 

same as the two-choice model except that the no-go boundary is implicit, which means it is 

fit to RTs and choice probabilities for go choices but only choice probabilities for no-go 

choices. Because the only difference between the two-choice and go/no-go models is for the 

go/no-go model, choice proportions and not RTs are fit for no-go stimuli, the parameters of 

the models that produce the best fits to the data should be the same (or nearly the same). 

Results showed that the parameters of the go/no-go and two-choice models that produced 
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the best fits to the data were nearly the same. Assuming that the two-choice model recovers 

parameter values well, (as it does when it is fit to simulated data, Ratcliff & Childers, 2015, 

and to experimental data), then if the go/no-go model produces the same values, it can be 

concluded that the go/no-go model, by itself, adequately recovers the parameter values. In 

addition, correlations of the parameter values across subjects should be the high for the fits 

of the two models to the same data (i.e., individual differences should be consistent).

In the experiments reported here, examination of parameter recovery was limited by the 

ranges of individual differences in the experiments. To test the generality of parameter 

recovery beyond that range, we used simulations with a range of parameter values that 

match those that have been found in the fits of the two-choice model to other experimental 

data. The results showed good parameter recovery for both models.

The Standard Two-Choice Diffusion Model

The standard two-choice diffusion model is designed to explain the cognitive processes 

involved in making simple two-choice decisions, decisions that take place in under a second 

or two, and to explain all the data for the decisions: accuracy, mean RTs for correct 

responses, mean RTs for errors, and the full distributions of RTs (their shapes and locations) 

for correct responses and errors. Decisions are made by a noisy process that accumulates 

information over time from a starting point toward one of the two boundaries. The rate of 

accumulation of information is called drift rate and it is determined by the quality of the 

information extracted from the stimulus in perceptual tasks and the quality of match between 

the test item and memory in lexical decision and memory tasks. In Figure 1A, the 

boundaries are a and 0, the starting point is z, and the drift rates are shown for two 

conditions, one for which correct decisions are at the top boundary (drift rate v1) and one for 

which correct decisions are at the bottom boundary (drift rate v2). Processes outside the 

decision process such as stimulus encoding and response execution are combined into one 

component of the model, labeled "nondecision" time, with mean Ter. Total RT is the sum of 

the time to reach a boundary and the nondecision time. The noise in the accumulation of 

information, "within-trial" variability (Gaussian distributed noise), results in decision 

processes with the same mean drift rate terminating at different times (producing RT 

distributions) and sometimes at the wrong boundary (producing errors).

The values of the components of processing are assumed to vary from trial to trial, under the 

assumption that subjects cannot accurately set the same parameter values from one trial to 

another (e.g., Laming, 1968; Ratcliff, 1978). Across-trial variability in drift rate is normally 

distributed with SD η, across-trial variability in starting point is uniformly distributed with 

range sz, and across-trial variability in the nondecision component is uniformly distributed 

with range st. Across-trial variability in drift rate and starting point allow the model to fit the 

relative speeds of correct and error responses (Ratcliff et al., 1999; Ratcliff & McKoon, 

2008). In signal detection theory, which deals only with accuracy, all sources of across-trial 

variability are collapsed into one parameter, the variability in information across trials. In 

contrast, with the diffusion model, the separate sources of across-trial variability are 

identified.
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Boundary settings, nondecision time, starting point, the drift rates for each condition, and the 

across-trial variabilities in drift rate, nondecision time, and starting point, are all identifiable. 

When data are simulated from the model (with numbers of observations approximately those 

that would be obtained in real experiments) and the model is fit to the data, the parameters 

that were used to generate the data are well recovered (Ratcliff & Tuerlinckx, 2002). The 

success of parameter identifiability comes in part from the tight constraint that the model 

account for the full distributions of RTs for correct and error responses (Ratcliff, 2002).

The Go/No-Go Model

Figure 1B illustrates the go/no-go model. Biases toward "go" responses can come about in 

the three ways shown in Figures 1C, 1D, and 1E, or combinations of them. We stress that 

these are biases in the decision process. They are not failures of "executive control," the 

dysfunction often postulated in clinical studies, but rather they are factors that are inherent in 

the decision process. In Figure 1C, the starting point is set closer to the go than the no-go 

boundary, as shown by the dashed line. In Figure 1D, the drift rates are all shifted to be an 

equal amount toward the go boundary; this represents a shift in the criterion that divides 

positive from negative drift rates (a shift in this criterion is the same as a shift in the criterion 

in SDT, Ratcliff, 1985; Ratcliff & McKoon, 2008).

In the data from Experiments 1 and 2, there was both a shift in the drift rate criterion and a 

reduction (relative to the two-choice data) in the differences between drift rates across 

experimental conditions. This is illustrated in Figure 1E. The reduction in the drift rate 

differences is exactly analogous to a reduction in d’ in SDT. It could occur if the need for 

only a single response or the higher proportion of go stimuli led to less effort and hence 

poorer encoding of stimuli.

Experiments 1 and 2

The experiments used the numerosity discrimination task described above (Ratcliff, Thapar, 

& McKoon, 2001, 2010; Gomez et al., 2007, Experiment 5). The advantage of 

discrimination tasks like this is that difficulty can be manipulated so that accuracy varies 

from near-chance to near-ceiling, which provides more constraints on the models than would 

a reduced range. For both experiments, half the trials were two-choice and the other half 

go/no-go.

For the go/no-go trials in the first experiment, the next trial began 300 ms after a "go" 

response was made and so there was a time advantage to making a "go" response. This 

procedure is often used in clinical studies with the intention of encouraging the 

establishment of a bias to produce "go" responses, which has been thought necessary for 

testing inhibitory control. In the second experiment, the time bias for go responses was 

eliminated by introducing a delay after a "go" response that made the total time from the 

onset of one stimulus to the onset of the next the same for go and no-go trials.
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Method

Subjects—College students at The Ohio State University participated in the experiments 

for credit in an introductory psychology class, each for one 60-min session. There were 39 

subjects in Experiment 1 and 31 in Experiment 2. We aimed for 32 in each experiment, but 

the research assistants ran over in the first experiment and did not make 32 in the second. All 

the subject-sessions were completed before the data were examined.

Procedure—Stimuli were displayed on the screen of a desktop computer and responses 

were collected from a keyboard. On each trial, an array of white asterisks was displayed 

against a black background. The asterisks filled random positions in a 10x10 array in the 

center of the screen subtending a visual angle of 17.5 degrees both horizontally and 

vertically. The task was to decide whether the number of asterisks was "small" (39–48) or 

"large" (52–61).

In both experiments, there were 22 blocks of 80 trials per block, 10 for the two-choice task 

and 12 for go/no-go task. For approximately half the subjects, the two-choice blocks were 

administered first in the experiment and then the go/no-go blocks, and for the other half, the 

order was reversed.

For the two-choice task, there were four trials of each number of asterisks per block in 

random order. The correct response was "large" for half the trials and "small" for the other 

half. For the go/no-go task, there were six trials of each number of asterisks for which the 

correct response was "large" and two trials of each number for which the correct response 

was "small," all in random order. The proportions of the stimuli for each task were explained 

to the subjects at the beginning of the experiments and a message reminding them of the 

relevant proportion was given at the beginning of each block.

For the two-choice trials, subjects were instructed to press the "?/" key on the keyboard for 

"large" and the "z" key for "small." For the go/no-go trials, they were instructed to press the 

space bar on the keyboard for a "large" response but to make no response if the number was 

small. Subjects were instructed to respond as quickly and accurately as possible.

For the two-choice task for both experiments, the screen was cleared following a response, 

then there was a 300 ms blank screen, and then, if the response was correct, the next 

stimulus was presented. If the response was incorrect, "ERROR" was displayed for 300 ms, 

then the 300 ms blank screen, and then the next stimulus. To deter fast guessing, a "TOO 

FAST" message was displayed for 500 ms if a response time was under 280 ms.

For the go/no-go task in Experiment 1, if the space bar was pressed in response to a "large" 

stimulus, then there was a 300 ms blank screen and then the next stimulus. If the space bar 

was not pressed for a "large" stimulus, the stimulus remained on the screen until the trial 

timed out at 1500 ms, then "ERROR" was displayed for 300 ms, then a blank screen for 300 

ms, and then the next stimulus. If the RT was under 280 ms, "TOO FAST" was displayed for 

500 ms, then a 300 ms blank screen, and then the next stimulus. If the stimulus was "small" 

and a subject waited out the 1500 ms delay (the stimulus remained on the screen), then after 

the delay, a blank screen was displayed for 300 ms, and then the next stimulus.
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For the go/no-go task in Experiment 2, the amount of time between trials for "go" and "no-

go" responses was equated. The procedure was otherwise the same: If the space bar was 

pressed in response to a "large" stimulus (a correct "go" response), then there was a delay 

until 1500 ms had elapsed since the presentation of the stimulus (the stimulus remained on 

the screen), then there was a 300 ms blank screen, and then the next stimulus. If the space 

bar was not pressed for a "large" stimulus, then the 1500 ms interval was followed by 

"ERROR" for 300 ms, then a blank screen for 300 ms, and then the next stimulus. If there 

was no response to a "small" stimulus, the 1500 ms interval was followed by a blank screen 

for 300 ms, then the next stimulus. If the stimulus was "small" and the space bar was 

pressed, then after the 1500 ms interval, "ERROR" was displayed for 300 ms, and then the 

next stimulus.

Results

Responses with RTs shorter than 300 ms were eliminated from analyses of the data. (For 

cutoffs of 250, 350, and 400 ms, the parameters recovered by the models were almost 

identical to those for 300 ms.) Stimulus conditions were grouped into two easy conditions 

(39–43 and 57–61 asterisks) and two difficult conditions (44–48 and 52–56 asterisks). 

Response proportions and mean RTs for the four conditions for the two-choice and go/no-go 

data for the two experiments are shown in Table 1. Here, we summarize the RT and choice 

probability data and later we describe how the models fit the data.

For the two-choice task in both experiments, there was a slight bias to respond "large" and 

RTs were shorter for correct "large" responses than correct "small" responses. Error 

responses were slower than correct responses except for small stimuli in Experiment 1.

For the go/no-go task in both experiments, mean RTs were shorter for "go" responses 

relative to "large" responses in the two-choice task. There was a strong bias toward "go" 

responses, which might be interpreted in terms of inhibitory control: subjects frequently 

failed in the executive control that should have led them to inhibit "go" responses to small 

stimuli. Below, the diffusion model gives a different interpretation.

Fitting the diffusion model—In fitting the two-choice model, the values of all the 

parameters, including the variability parameters, are estimated simultaneously, for all the 

data from all the conditions of an experiment. To fit the model to the data, the RT 

distributions were represented by 9 quantiles, the .1, .2, .3, …, .9 quantiles. The quantiles 

and the response proportions were entered into the minimization routine and the diffusion 

model was used to generate the predicted cumulative probability of a response occurring by 

that quantile RT. Subtracting the cumulative probabilities for each successive quantile from 

the next higher quantile gives the proportion of responses between adjacent quantiles. For a 

chi-square computation, these are the expected proportions, to be compared to the observed 

proportions of responses between the quantiles (i.e., the proportions between 0, .1, .2, …, .9, 

and 1.0, which are .1, .1, .1, …, and .1). The proportions are multiplied by the number of 

observations in the condition (this produces values of the proportions weighted by accuracy) 

to give observed (O) and expected (E) frequencies and summing over (O-E)2/E for all 

conditions gives a single chi-square value to be minimized. The number of degrees of 
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freedom in the data are the 20 proportions between and outside the quantiles (10 each for 

correct and error responses) minus 1 (because the sum must equal 1) multiplied by the 

number of conditions in the data. The model was fit to the data for each subject individually 

using a chi-square minimization method as described by Ratcliff and Tuerlinckx (2002). 

Later we use a G-square statistic that is asymptotically equivalent to the chi-square statistic, 

G2=2ΣOln(O/E).

A difference in this method of fitting the data and that used by Gomez et al. (2007) is that 

they used 5 quantile RTs but we used 9 quantiles. Ratcliff and Childers (2015) compared the 

use of 5 versus 9 quantile RTs and found little difference in parameter recovery for the two-

choice model. This suggests that any differences between this study and that of Gomez et al. 

are not likely due to the number of quantiles used in fitting.

When the number of observations for a condition was less than 11 (usually for error 

responses), the RT distribution for a condition was divided at its median and the model was 

fit by predicting the cumulative probability of responses above and below the median. This 

reduced the number of degrees of freedom from 10 to 2 for that condition.

For the go/no-go model, the fitting method was the same except that for "no-go" responses 

(correct "no-go" responses and error "go" responses), a single bin was used for the 

contribution to chi-square, namely, (O-E)2/E, where O is the observed frequency of "no-go" 

responses and E is the expected frequency of "no-go" responses. Thus, for each condition, 

the number of degrees of freedom was 10-1 for the RT bins for the "go" responses plus 1 for 

the "no-go" responses. We also used this single bin when the number of observations in an 

error condition was less than 4.

In fits to both go/no-go and two-choice data, with stimuli of all levels of difficulty 

intermixed within blocks of trials, the only parameter that can differ across difficulty levels 

is drift rate. To change boundary settings, subjects would have to discover what level of 

difficulty a stimulus represented, then change the boundary settings, and then run the 

decision process. This is implausible in tasks with RTs in the hundreds of ms. So parameters 

other than drift rates are set to the same values across conditions of the experiment.

There is one complication that occurs when the best-fitting parameters of the model predict 

RTs for "go" responses longer than the no-go time out value, 1500 ms. Strictly speaking, the 

probability density for these responses should be moved to the no-go category. This would 

have the effect of reducing the predicted .9 quantile RTs (especially for the misses in the .9 

quantiles for the larger values). But in the fits reported here (Figures 2 and 3), there were 

only 15/693 and 24/ 479 0.9 quantile RTs greater than 1400 ms, so there would be little 

effect on parameter values. If there were more predicted values near the no-go time out 

value, the modeling would have to be adjusted.

Fitting the two-choice model and the go/no-go model to the two-choice data: The 

question for this analysis was whether the go/no-go model could recover parameter values 

that were close to those from the two-choice model, as it should, given that it is applied to 

the same data as the two-choice model except that only choice probability is used for no-go 
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responses. We addressed this first by fitting the two-choice model to the two-choice data and 

found that it fit the data well (as described later). Then we fit the go/no-go model to the two-

choice data and compared the best-fitting parameter values from the two models. We found 

that they were nearly the same, and so concluded that the go/no-go model does, in fact, 

recover values that are consistent with the two-choice model. In the next paragraphs, we give 

these results in detail.

The parameter values from the best fits to the data are shown in Table 2. Although some of 

the differences between the parameters for the two-choice model and those for the go/no-go 

model were significant, as listed below, they were small relative to the sizes of their values. 

The reason for differences was that there were less data for the go/no-go model (no RTs for 

no-go decisions).

We used t-values to test for significance of the differences for all model parameters except 

drift rates. The degrees of freedom for paired t-tests were 38 for Experiment 1 and 30 for 

Experiment 2, with critical values for a two-tailed test of 2.02 and 2.04, respectively. The 

differences in boundary separation between the two models (0.003 and 0.004 for 

Experiments 1 and 2, respectively) were significant for both experiments (t= 2.05 and 2.22 

for the two experiments, respectively). The small differences in starting points between the 

two models (0.004 for Experiment 1, 0.000 for Experiment 2), were significant only for 

Experiment 1 (t=3.00 and t=0.17, for the two experiments, respectively). The small 

differences in nondecision times (17 ms and 10 ms for the two experiments, respectively) 

were also significant for Experiment 1 but not Experiment 2 (t=4.83 and t=1.97, 

respectively.) There were no significant differences in the across-trial variability parameters 

(these parameters have more variability in their estimates, Ratcliff & Tuerlinckx, 2002).

For drift rates, two-factor within-subject ANOVA’s were carried out. One factor was 

difficulty: drift rates were lower for the difficult conditions than the easy conditions for both 

experiments (F= 383.83, df=3,114, for Experiment 1 and F=332.53, df=3,90, for Experiment 

2). The other factor was the two models. The interactions between difficulty and the two 

models were not significant ((F=1.71, df=3,114, for Experiment 1 and F=0.20, df=3,90 for 

Experiment 2).

For Experiment 1, the differences between the models in drift rates were modest (relative to 

the sizes of the drift rates) but significant. The differences were 0.022 for v1, 0.030 for v2, 

0.044 v3, and 0.034 for v4 (F=49.15, df=1,38). The differences were approximately the same 

size across difficulty (as shown by the non-significant interaction), indicating a shift in the 

drift rate criterion toward go responses but not a decrease in discriminability (Figure 1D, not 

Figure 1E). For Experiment 2, the differences between the two models were close to zero: 

0.012 for v1, 0.011 for v2, 0.014 v3, and 0.007 for v4 (F=1.84, df=1,30).

To further test the equivalence of the parameter estimates, we examined effect size using 

Rouder et al’s (2009) online Bayesian t-test which provides a convenient way of assessing 

evidence for and against the null hypothesis based on effect size assumptions. For Ns of 39 

and 31, a t of 2 gives about equal evidence for the null and alternative hypotheses, a t of 0.3 

gives a Bayes factor of about 5 in favor of the null, and a t of 3 gives a Bayes factor of about 
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10 in favor of the alternative (using Rouder et al.’s default effect size). These values lead to 

the same conclusion as for the tests above, that there is relatively weak evidence for the 

alternative hypothesis for most of the differences in recovered parameters between the two 

models.

Fitting the two-choice model to the two-choice data and the go/no-go model to the 
go/no-go data: In this section we examine which parameters change between the go/no-go 

and two-choice tasks. For the go/no-go task relative to the two-choice task, the main results 

were shorter nondecision times, wider boundary separation, and smaller differences between 

the drift rates for the different conditions.

For Experiment 1, comparing the go/no-go task to the two-choice task, nondecision times 

were shorter, the starting point moved modestly closer to the go boundary (Figure 1C), and 

boundary separation was modestly larger. For drift rates there were two differences (Figure 

1E): the differences between drift rates for the four conditions of the experiment were 

smaller for the go/no-go than the two-choice data and they were shifted toward the go 

boundary (i.e., a change in the drift criterion). Experiment 2 differed from Experiment 1 

only in that the starting point did not move significantly closer to the go boundary.

For boundary separation, the difference between the two models was 0.018 for Experiment 1 

and 0.031 for Experiment 2, and t=5.59 and t=8.18 for the two experiments, respectively. For 

starting points, the differences between the two models were 0.017 for Experiment 1 and 

0.015 for Experiment 2, t=5.18 and t=4.63, respectively. For nondecision times, the 

differences were 63 ms and 70 ms and t=9.98 for t=8.93, for the two experiments, 

respectively. The differences in all of the across-trial variability parameters in Experiment 1 

were significant, t=3.73, 4.85, and 2.12 for η, sz, and st, respectively). For Experiment 2, 

only the st difference was significant, t=1.84, 1.95, and 2.80 for η, sz, and st, respectively).

The Bayesian t-tests suggest that there is strong evidence for the alternative hypothesis for 

most of the differences between model parameters for the fits of the go/no-go model to the 

go/no-go data and the two-choice model to the two-choice data.

The differences between the models in their estimates of drift rates were 0.111 for v1, 0.107 

for v2, 0.088 for v3, and 0.067 for v4 for Experiment 1 and 0.137 for v1, 0.101 for v2, 0.055 

for v3, and 0.019 for v4 for Experiment 2.

The drift rates differed significantly across the four conditions as would be expected, 

F=574.64, df=3,114, for Experiment 1 and F=341.58, df=3,90, for Experiment 2. They also 

differed significantly between the two tasks, F=155.52, df=1,38 for Experiment 1 and 53.19, 

df=1,30, for Experiment 2, and the interaction between conditions and tasks was significant, 

(F=3.00, df=3,114 for Experiment 1, and F=12.81, df=3,90 for Experiment 2). This shows a 

reduction in the differences between drift rates for the go/no-go task relative to the two-

choice task which represents poorer evidence being used in the decision (the effect was 

relatively small for Experiment 1 and larger for Experiment 2).

Quality of fits—The behaviors of model parameters can only be interpreted if the model 

fits the data adequately. Figures 2 and 3 show the experimental values and the models’ 

Ratcliff et al. Page 10

Decision (Wash D C ). Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predicted values for accuracy and the .1, .5, and .9 quantile RTs for Experiments 1 and 2, 

respectively. There is one slightly misleading aspect of the figures, which is that the density 

of points along the diagonal is quite high and this makes it look as though there are many 

deviations. However, the proportions of misses were low. For example, for the .1 quantile, 

almost all of the predictions matched the data within 40 ms. For Experiment 1, there were 37 

misses of more than 40 ms out of 290 data points for fits of the two-choice model to the two-

choice data, 11 out of 151 for fits of the go/no-go model to the two-choice data, and 10 out 

of 152 for fits of the go/no-go model to the go/no-go data. The corresponding results for 

Experiment 2 were 24 out of 235, 4 out of 122, and 11 out of 122.

There were 76 degrees of freedom in the data used for fitting for the two-choice task and 40 

for the go/no-go task. These come from 10 bins between the 9 quantiles for the four 

conditions (plus one for the go/no-go task because the proportion of errors is also fit). There 

are 11 parameters for both models: four drift rates, boundary separation (a), starting point 

(z), nondecision time, and across-trial variability in drift rate, starting point, and nondecision 

time. The 11 parameters reduce the degrees of freedom to 65 for the two-choice model and 

29 for the go/no-go model. The critical chi-square value for a one-tailed test is 89.2 for the 

two-choice model and 45.7 for the go/no-go model. The mean chi-square values in Table 2 

are close to the critical values. These are quite reasonable fits relative to other published 

results (e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff et al., 2010, 2011).

We also estimated a parameter for the proportion of responses delayed by processes other 

than those of interest, for example, losses of attention (Ratcliff & Tuerlinckx, 2002). The 

estimates of the proportions of them for the experiments here did not exceed .005, so they 

are not mentioned further.

The main systematic deviations between predictions and data were for fits of the go/no-go 

model to the .9 quantile go/no-go RTs for Experiment 2, for which the predicted values were 

larger than the data. This is likely because subjects tended to respond before the time-out at 

1500 ms (some of the predicted values are larger than this time-out value). We discuss this 

further later.

Correlations among model parameters—When the go/no-go and two-choice models 

are fit to two-choice data, the only difference is that the go/no-go model uses only choice 

proportions for the no-go boundary, not RTs. It follows that the parameter values recovered 

for the two models should be nearly the same, which the results above indicated they are. 

Another way to verify that the recovered values are nearly the same is to examine 

correlations between them, which can be done because the differences among subjects in the 

values of the parameters were larger than the variability in the estimates.

The correlations are shown in Table 3. The correlations between parameters for Experiments 

1 and 2, were, for boundary separation .91 and .91, for nondecision time .93 and .80, for 

starting point .77 and .60, and the correlations between the eight drift rates (correlations 

were computed for each drift rate separately for each experiment) were greater than .61. The 

smallest correlation for the six across-trial variability parameters (three parameters for each 

of the two experiments) was greater than .59. These strong correlations support the 
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conclusion that the go/no-go model applied to the two-choice data recovers parameter values 

similar to those recovered by the two-choice model: the go/no-go model produces parameter 

values that maintain all of the correct relationships among conditions and individuals that the 

two-choice model does.

When the go/no-go model was fit to the go/no-go data and the two-choice model was fit to 

the two-choice data, there was also reasonable consistency in drift rates (correlations 

averaging .46) for the conditions in which the correct response was "large" for the two-

choice data and "go" for the go/no-go data. For the conditions in which the correct responses 

were "small" and "no-go," there was less consistency (correlations averaging .28) because 

RT data were not fit for the "no-go" response and there were fewer observations for the no-

go stimuli. The correlations, shown in Table 3, for Experiments 1 and 2, were, for boundary 

separation .39 and .34, for nondecision time .65 and .55, for starting point −.07 and −.22, 

and for the eight drift rates, they were between .04 and .52. The correlations for the six 

across-trial variability parameters were between −.28 and .25. The inconsistency for the 

across-trial variability parameters is expected because the standard deviations on their 

estimates are much larger than those for the other parameters (Ratcliff & Tuerlinckx, 2002).

The results for the fits to the go/no-go data and two-choice data show consistency in 

nondecision time and drift rates (especially the go drift rates, v3 and v4, see Table 3), and to 

a smaller degree, boundary separation. This suggests consistency in the main model 

parameters which suggests similar processing in the two tasks across individuals (see also 

Gomez et al., 2007).

Simulation Study: To examine whether the go/no-go model could fit data with wider ranges 

of parameter values than for the two experiments presented here, we conducted a simulation 

study using the 18 combinations of parameter values shown in Table 4 to generate two-

choice data. The values were chosen to span much of the range of values that has been 

observed in fits of the two-choice model to two-choice data in other experiments (e.g., 

Matzke & Wagenmakers, 2009; Ratcliff & Childers, 2015).

In clinical uses of the go/no-go task, the number of observations for go trials is usually 

larger than the number for no-go trials, as it was in our experiments, and in uses of the CPT 

task, the number for go trials is smaller than the number for no-go trials. In order to produce 

simulated data that could mimic the proportions of trials for both tasks, we generated data 

with 350 trials for one stimulus type and 175 trials for the other type. For the go/no-go task, 

the 350 trials were treated as go stimuli and the 175 as no-go. For the CPT, it was the 

reverse, the 350 trials were treated as no-go stimuli and the 175 as go. For the go/no-go task, 

both accuracy and RTs were examined for the 350-trial stimuli and only accuracy for the 

175-trial stimuli. For the CPT, both were examined for the 175-trial stimuli and only 

accuracy for the 350-trial stimuli. (Unequal probabilities have also been examined in two-

choice tasks, Leite & Ratcliff, 2011; Mulder et al., 2012; Ratcliff, 1985.) To anticipate, we 

found that fits to the go/no-go data (larger numbers of observations) produces parameter 

values with a little more variability than the two-choice model, but fits to the CPT data 

(smaller numbers of observations) produces values with substantially more variability.
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We generated 64 sets of simulated two-choice data for each of the 18 combinations of 

parameter values, a total of 1050 observations (using the random walk method, Tuerlinckx et 

al., 2001; Ratcliff & Childers, 2015). For each of the parameters for each of the 

combinations, we computed the mean and standard deviation of the recovered value. These 

are plotted in Figure 4. The value of the parameter used to generate the data is located on the 

y-axis, the mean of the recovered value is plotted on the x-axis, and plus and minus 1 SD 

error bars are plotted over the mean of the recovered value. When a parameter is estimated 

accurately, the points will lie on the diagonal line (intercept 0, slope 1) and the error bars 

will be small. When there is bias in an estimated value, the points will lie to the left or right 

of the diagonal line. When the parameters are estimated with high variability, the vertical 

error bars will be large.

We first fit the two-choice model to the data (accuracy and RTs for both types of stimuli). 

Boundary separation, starting point, nondecision time, and drift rates were recovered well. 

There were some biases in across-trial variability in drift rate and the SDs were larger for the 

across-trial variability parameters than the other parameters.

We fit the go/no-go model to quantile RTs for the stimulus type with the higher probability 

(correct responses for the conditions with drift rates v3 and v4) and accuracy for the stimulus 

type with the lower probability v1 and v2, "go/no-go task"). There was somewhat more 

variability in the recovered values than for the two-choice model, but the important result is 

that biases in the values were not greater than for the two-choice model.

For the CPT task, we reversed the application of the go/no-go model-- the model was fit to 

accuracy only for the stimulus type with the higher probability and RT quantiles for the 

stimulus type with the lower probability. This meant that, compared to the go/no-go task, 

there was half as much data for the stimulus type for which both accuracy and RTs were 

used. This led to larger standard deviations in the recovered parameter values and biases in 

nondecision times (the recovered values were longer than the generating values by up to 50 

ms) and in across-trial variability in nondecision time.

To summarize, with 1050 observations and a 2:1 ratio of go stimuli to no-go stimuli, the 

model parameters were recovered almost as well for the go/no-go model as for the two-

choice model. But the model parameters were less well recovered for the simulated CPT 

data.

Fitting Two-Choice and Go/No-Go Data Simultaneously

Gomez et al. (2007) fit the diffusion model to two-choice and go/no-go data at the same 

time. They found that drift rates were the same for the two tasks or were shifted only by a 

constant, that boundary separation and starting point were either the same or only modestly 

different, and that nondecision time was shorter for the go/no-go task. These findings are 

somewhat different from what we found in Experiments 1 and 2 when we applied the two-

choice model to the two-choice data and the go/no-go model to the go/no-go data. We found 

a reduction in the differences in drift rates across conditions for the go/no-go data but not the 

two-choice data, a bias toward the go boundary for the go/no-go data, and shorter 

nondecision times for the go/no-go data. The difference in the findings for the starting point 
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is likely due to a difference in the probability of go stimuli, .50 for Gomez et al. and .75 for 

our experiments. However, the differences in drift rates require further examination.

For comparison to Gomez et al., we performed the same analysis they did for Experiments 1 

and 2 except that we fit the data for individual subjects, not averaged data. We used the G-

square multinomial likelihood goodness of fit statistic to allow likelihood ratio tests as well 

as AIC and BIC tests, which penalize goodness of fit to different degrees as a function of 

number of parameters. AIC = −G2+2k, where k, where k is the number of parameters, and 

BIC = −G2+kln(N), where N is the number of observations.

We compared three sets of assumptions (similar to those in Gomez et al.) to determine which 

gave the best fits of the model to the data; in each, across-trial variability in drift, 

nondecision time, and starting point were assumed to be the same across tasks. The first set 

(A) assumed that nondecision time, starting point, and boundary separation but not drift 

rates were different between the two tasks; the second set (B) assumed that nondecision 

time, starting point, and boundary separation were different and drift rates were assumed 

different by a constant amount that was the same for all conditions (i.e., a change in drift 

criterion); and the third set (C) assumed that nondecision time, starting point, and boundary 

separation were different and drift rates were allowed to be unconstrained-- they could be 

the same or different between the tasks and they could be different by different amounts for 

different conditions. The pattern we found for Experiments 1 and 2 when we fit the go/no-go 

model to the go/no-go data and the two-choice model to the two-choice data is consistent 

with C; the differences in drift rates between conditions were smaller for go/no-go than two-

choice.

The results of fitting the two-choice and go/no-go data together are shown in Tables 5 and 6. 

Mean G-square goodness of fit and AIC preferred the set with free drift rates (set C), but 

BIC penalizes goodness of fit more heavily than AIC for numbers of parameters and it 

preferred drift rates the same for Experiment 1 (set A) and different by only a constant 

amount for Experiment 2 (set B). Thus the results for BIC match those of Gomez et al.

These issues become more complicated when fits to individual subjects are examined. 

Strictly speaking, model selection should be done on a subject-by-subject basis and there is 

no consensus on how to combine AIC or BIC values across subjects. This means that the 

data from some subjects would be assumed to come from one set of assumptions and the 

data from other subjects from a different set, as shown by the results in Table 6.

It might appear that hierarchical models could provide a way out of this problem, but they 

assume that all subjects behave in the same way and so impose the same set of assumptions 

on all subjects. It may be possible to use mixed models in which different subjects use 

different processes (e.g., Bartlema et al., 2014), but to implement such modeling would 

require a great deal of new research to develop the method and examine whether it works in 

the framework of diffusion models of RT and choice.

In much modeling in cognitive psychology, the exact absolute values of parameters are 

rarely important, but relative values are. In neuropsychological and educational testing, 

reliable values for individuals are necessary for comparisons to individual-difference 
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measures. The relevant issue here is whether fitting the go/no-go and two-choice tasks 

together distorts differences among individual subjects compared to fitting the data 

separately. To address this, we computed correlations between parameters for the two cases-- 

the parameter values for fitting them together in Table 5 and the parameter values for fitting 

them separately in Table 2. The result was strong positive correlations: for boundary 

separation, the mean of the correlations for Experiments 1 and 2 was 0.81; for nondecision 

time, it was 0.79; and for drift rates, it was 0.66 (we correlated the drift rates for each of the 

four difficulty levels for the two tasks and two experiments and then took the mean of those 

16 values).

There are three important results from these analyses. First, estimates of the values of the 

diffusion model parameters produced by fitting the go/no-go and two-choice models 

together are quite similar to the values produced when they are fit separately. Second, the 

findings here are similar to those in Gomez et al. (2007) in that BIC preferred models with 

constant differences across conditions in drift rates for go/go-no and two-choice data, but 

here we show that the AIC and G-square statistics preferred a model in which differences in 

drift rates were lower for the go/ no-go task. Third, these choices as a function of the statistic 

were different for different subjects. Fourth, it should be stressed that estimates of the values 

of the diffusion model parameters produced by fitting the go/no-go and two-choice models 

together are quite similar to the values produced when they are fit separately and individual 

differences are consistent across the two fitting methods.

Discussion

With the research in this article, we successfully modeled behavior for the go/no-go and 

CPT tasks, two widely used tasks in the clinical and cognitive literatures. The go/no-go 

model that we used is the same as the standard two-choice model except that subjects are to 

make no response to no-go stimuli so the data for them are only choice probabilities, not 

RTs. The question with which we began was whether application of the go/no-go model to 

go/no-go data could recover parameter values for individual subjects -- drift rates, boundary 

separation, starting point, and nondecision time-- and whether it could do so without the 

constraints imposed by fitting go/no-go data simultaneously with two-choice data.

We showed good recovery of parameters in three ways. First, when the go/no-go model is 

applied to two-choice data, it should recover the same (or nearly the same) parameter values 

as the two-choice model applied to the two-choice data and we found that this was the case 

(correlations in drift rate, boundary separation, and nondecision times all between .60 and .

93). Second, when go/no-go data are collected in the same experiment with the same 

subjects as two-choice data, the recovered parameter values should correlate, and they did 

(correlations in drift rates for "go" responses, boundary separation, and nondecision time 

were all between .33 and .65). Third, when we tested the model with simulations across a 

greater range of parameter values than in Experiments 1 and 2, it recovered the values that 

generated the simulated data well (Figure 5). We also conducted simulations of data from 

the CPT procedure and found again that parameter values were well-recovered, although 

with more variability than the go/no-go and two-choice procedures.
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In the two experiments we conducted, there was a bias to respond "go" to no-go stimuli, that 

is, subjects were more likely to respond "go" to a no-go stimulus than they were to the same 

stimulus in the two-choice task. In the diffusion model, this bias can be realized in several 

ways (Figure 1C, 1D, and 1E). For Experiment 1, where the next trial began immediately 

after a "go" response, the starting point moved toward the go boundary, drift rates shifted 

toward the go boundary, and the differences among the drift rates were reduced. For 

Experiment 2, where there was a delay after a "go" response that made the total time 

between trials the same as for "no-go" responses, both boundaries moved away from the 

starting point and there was a reduction in the differences among drift rates. For both 

experiments, drift rates for "no-go" responses were closer to zero than for the two-choice 

task (similar to Figure 1E). For both experiments, nondecision times were shorter for the 

go/no-go task than for the two-choice task.

The diffusion model’s explanation of bias toward "go" responses contrasts with that in the 

clinical literature where the bias has usually been interpreted in terms of a failure of 

inhibition. By the diffusion model account, the go bias is a quantitative bias expressed within 

the decision process and not a modulation of an inhibitory control process, although it might 

be possible to make the two accounts compatible if the inhibitory control process was 

defined as one which modulates decision criteria and biases drift rates.

The diffusion model integrates all the data from two-choice, go/no-go, and CPT tasks into 

the same decision process and, in so doing, it accounts for all the data: the shapes and 

locations of the distributions of correct and error RTs, accuracy, and the relative speeds of 

correct and error responses. When the go/no-go and CPT tasks are used in the clinical 

literature, typically only accuracy data are considered. However, as pointed out above, 

accuracy and RT data can lead to different conclusions about performance.

A key additional feature of diffusion model analyses is that they recover parameters for 

individual subjects (Ratcliff, Thapar, & McKoon, 2006, 2010; Ratcliff & Childers, 2015). 

This is an important advance because it allows the possibility of examining relationships 

among model parameters across subjects to explain, for example, why speed and accuracy 

are often not correlated across subjects (Ratcliff et al., 2010; Ratcliff, Thompson, & 

McKoon, 2015) and it gives a means of examining relationships between model parameters 

and clinical outcome or neuropsychological measures for both normal and special 

populations.

There is one aspect of the go/no-go task that could be problematic with clinical populations 

(or uncooperative subjects). There appears to be no way to detect a strategy in which 

subjects hit the go button on some proportion of the trials without processing the stimulus, in 

other words a biased (to go responses) guessing strategy. In the two-choice task, such fast 

guesses produce chance accuracy for responses under some lower cutoff, for example, 300 

ms. In data analyses with the two-choice task, we would eliminate subjects if they had more 

than 5 or 10% of responses lower than 300 ms with chance accuracy. Perhaps one way to see 

if this might be a problem for go/ no-go data would be to run the two-choice task with some 

subjects and make sure that the estimate of non-decision time was not more than 50–80 ms 

shorter for the go/no-go data versus the two-choice data. At the very least, if a subject 
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produced a number of responses with RTs less than say 150–200 ms, then RT distributions 

need to be examined. If they show bimodality or a long flat left tail, then it may be possible 

to place a cutoff that eliminates those fast responses. Such data should be treated with 

caution and the subject possibly eliminated from modeling. On the other hand, it may be 

possible to make assumptions about the distribution of fast guesses and develop a mixture 

model that allows estimates of the proportion of fast guesses (see the contaminant 

distribution assumptions in Ratcliff & Tuerlinckx, 2002, and the random guess contaminant 

assumption in Ratcliff & Van Dongen, 2009).

Huang-Pollock et al. (2012) conducted a meta-analysis of CPT data for ADHD individuals 

and applied the diffusion model to the data. They found that sustained attention deficits in 

that population could be attributed to lower drift rates. However, they used the EZ-diffusion 

technique (Wagenmakers, van der Maas, & Grasman, 2007; see also Ratcliff, 2008) to model 

the data. The EZ technique’s estimates of parameter values are based only on the mean and 

variance of RTs for correct responses and the probability of an error for each condition of an 

experiment separately, and it produces estimates of only drift rates, boundary separation (not 

bias) and nondecision time. The EZ technique lends itself well to situations (as in a meta-

analysis) in which full RT distributions are not available, but it cannot be falsified because it 

exactly transforms the three data values into the three model parameters. Furthermore, 

contrary to go/no-go findings, the technique requires the assumption that the decision 

boundaries are equidistant from the starting point. Thus, although slower drift rates for 

ADHD individuals have now been documented in several studies (Karalunas & Huang-

Pollock, 2013; Karalunas, Huang-Pollock, & Nigg, 2012; Weigard & Huang-Pollock, 2014; 

Weigard, Huang-Pollock, & Brown, 2016), it is now possible to obtain a more conclusive 

interpretation of the cause of ADHD-related poor vigilance in CPT tasks using the full 

go/no-go diffusion model to directly fit RT distributions (Endres, Donkin, & Finn, 2014).

Huang-Pollock et al. (in press) used the diffusion model methods and tasks presented here to 

compare children with ADHD and non-ADHD control children. They manipulated the rate 

of events in two experiments. In one experiemnt, the next stimulus was presented 

immdiately after a response, in the other experiment, there was a time out after a go response 

to make the total time from the stimulus onset to the next trial the same for go and no-go 

trials as in Experiments 1 and 2 here. Diffusion model fits were conducted as for 

Experiments 1 and 2. For children with ADHD versus controls at the slow event rate, drift 

rate for go stimuli and starting point were lower and for the fast event rate, drift rates were 

lower for no-go stimuli (leading to an increased error rate, "go" responses, on no-go trials). 

For the slow versus fast event rate, for children with ADHD, nondecision time, boundary 

separation, and drift rate for no-go stimuli were lower and there was an increased bias 

toward the go boundary in the starting point. For the control children, there was only a 

decrease in nondecision time. Thus, although faster event rates increased bias towards go 

decisions, children with ADHD, the decrease in drift rate for ‘Äúno-go’ Äù decisions results 

in an increase of incorrect "go" responses.

Gomez et al. (2007) also examined a single-boundary model in which there was a boundary 

for go decisions but no boundary for no-go decisions. They found that relative to parameters 

for fits of the two-choice model to two-choice data, drift rates were much higher for the 
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single boundary model, across trial variability in drift rate was higher, and the model 

predicted wider RT distributions than occurred in the data. We performed a similar analysis 

on the data from Experiment 2 by fitting the go/no-go model with the no-go boundary a 

large distance from the starting point (which means that almost no processes terminated at 

this boundary). Boundary separation a=0.6, and starting point z was allowed to vary freely 

(a-z is the distance to the go-boundary). Results were very similar to those in Gomez et al. 

with parameters shown in the bottom row of Table 2. Drift rates for no-go conditions were 

dramatically more negative and goodness of fit was considerably worse than those for fits to 

the data of the two-choice model and the go/no-go model with an implicit boundary. More 

negative drift rates imply that no-go stimuli would generate twice as much negative evidence 

than for the two-choice task. Examination of RT distributions showed that the mean .9 

quantile RT for the one boundary model missed the data by about 300 ms. Thus, our 

analyses of the single boundary model (cf. Trueblood et al., 2011) were quite similar to 

those in Gomez et al. (2007).

Our results provide the basis for model-based analyses of go/no-go data from a variety of 

tasks that use the go/no-go procedure (e.g., memory, lexical decision, numeracy, Gomez et 

al., 2007) without the need to collect two-choice data. The results also show that the go/no-

go model recovers individual differences that are needed in clinical and neuropsychological 

applications. This modeling approach offers different interpretations of differences in go/no-

go performance with disorders such as ADHD by suggesting that they may result from 

biases in processing rather then some failure of inhibitory processing. It also may be that 

other tasks that seem to require conflict or inhibition mechanisms can be reinterpreted in 

different ways with model based analyses (e.g., White, Ratcliff, & Starns, 2011). These 

results show that it will be possible to provide a theoretically based analysis of deficits 

measured by using the go/no-go task that resolves the differences in interpretations provided 

by accuracy and RT measures.
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Figure 1. 
An illustration of the two-choice model (A) and the go/no-go model (B). In the go/no-go 

model, when the implicit boundary is reached, the subject waits until the next trial begins. 

The starting point is at z, the boundaries at 0 and a, and the drift rates are v1 and v2. For the 

go/no-go model, trials with drift rate v1 have correct responses that are go trials and trials 

with drift rate v2 have error responses that are go trials. Panels C, D, and E show some of the 

main ways that model parameters might change to account for the difference between the 

two-choice task and the go/no-go task (dotted lines). C shows a change in starting point to 

bias to the go boundary. D shows a bias in drift rates with the go drift rates (v1g and v2g) 

with an added constant relative to the two-choice versions (v1 and v2). E shows a bias and a 

reduction in discriminability (the dotted lines show a small difference in drift rates than the 

solid lines). Results from experiments can have combinations of these as well as changes in 

the nondecision time.
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Figure 2. 
Plots of accuracy and the .1, .5 (median), and .9 RT quantiles for data (x-axis) and predicted 

values from fits of the diffusion model (y-axis) for Experiment 1. The points are the values 

for individual subjects and for conditions for correct and error responses with more than 11 

observations per value. The left column shows plots for the fits of the two-choice model to 

two-choice data, the middle column shows fits of the go/no-go model to half the two-choice 

data, and the right column shows fits of the go/no-go model to go/no-go data. The N in the 

column head represents the number of points in the plots in the column.
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Figure 3. 
The same plot as that in Figure 2 for Experiment 2.
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Figure 4. 
Plots showing parameter recovery for the simulation study. On the x-axis is plotted the mean 

of the parameter values and on the y-axis, in a horizontal row at the value of the parameter 

used to generate the simulated data is plotted 1 SD error bars. Movement away from the 

vertical line on the x-axis represents bias in the recovered parameter values and a large 

spread of the error bars represents high variability in the recovered parameter values.
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