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Abstract

Since Royston and Altman’s 1994 publication (Journal of the Royal Statistical Society, Series C 
43: 429–467), fractional polynomials have steadily gained popularity as a tool for flexible 

parametric modeling of regression relationships. In this article, I present fp_select, a 

postestimation tool for fp that allows the user to select a parsimonious fractional polynomial 

model according to a closed test procedure called the fractional polynomial selection procedure or 

function selection procedure. I also give a brief introduction to fractional polynomial models and 

provide examples of using fp and fp_select to select such models with real data.
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1 Introduction

Since Royston and Altman’s 1994 publication, fractional polynomials (FPs) have steadily 

gained popularity as a tool for flexible parametric modeling of regression relationships in 

both univariable and multivariable settings. A recent inquiry in Google Scholar (17 January 

2017) yielded 1,289 citations of Royston and Altman (1994) to date. For those unfamiliar 

with FPs, I provide a brief introduction below. For a much wider view, please see Royston 

and Sauerbrei (2008), the multivariable fractional polynomials website at http://

mfp.imbi.uni-freiburg.de, and the articles cited therein.

An FP is a special type of polynomial that might include logarithms, noninteger powers, and 

repeated powers. Every time a power repeats in an FP function of x, it is multiplied by 

another ln (x). One may write an FP in x as

where the positive integer m is known as the degree or dimension of the FP. For example, an 

FP in x with powers (−1, 0, 0.5, 3, 3) and coefficients β has the following form:
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In the above example, the dimension of the FP is m = 5.

Despite their somewhat dry definition, FPs are not just a mathematical abstraction. With a 

suitable range of powers, they provide a considerable range of functional forms in x that are 

useful in regression models of real data. The default set of powers from which FP powers are 

selected is {−2, −1, −0.5, 0, 0.5, 1, 2, 3}, with 0 signifying log (that is, ln). In practice, even 

FP1 and FP2 functions (FPs of dimension 1 and 2) offer much more flexibility than 

polynomials of the same degree, that is, linear or quadratic functions. See, for example, 

figure 1, which shows schematically some FP2 functions with various powers (p1, p2) and 

coefficients (β1, β2).

The aim of flexible regression models for a single continuous covariate x is to provide a 

succinct and accurate approximation of the relationship between x and a response y without 

resorting to “categorization” (discretization) of the covariate into groups. Further material on 

FPs, including a discussion of the pitfalls of categorization and the motivation and potential 

advantages of FPs, may be found at http://mfp.imbi.uni-freiburg.de/fp, along with a real 

example.

Univariable FP regression models have been available in official Stata for two decades 

following the release of the fracpoly command in Stata 5 (1997). After a ground-up 

rewrite, the current official implementation of univariable FPs as fp appeared in Stata 12 

(2011). Using a revised command syntax and FP search algorithm, fp extended the types of 

regression model in which FPs could be fit.

An important concept in flexible regression modeling is “parsimony”: the need to remove 

“dead wood” from a model, mainly to avoid overfitting and improve the inter-pretability of 

the selected model. An example of dead wood in univariable FP modeling is the inclusion of 

high-dimensional FP terms not supported by the data. Such terms would likely produce 

“wiggly” fit curves that exhibit uninterpretable local features (recognized as an issue also 

when fitting standard polynomials of high dimension). For an example of the curve 

instability that can result from overfit spline models (another type of smoother), see Royston 

and Sauerbrei (2008) figure 3.3.

With FP modeling, one can use the function selection procedure (FSP), which, if possible, 

simplifies an FP model to one of lesser complexity by appropriate statistical testing. In this 

article, I outline how the FSP works and introduce a new fp postestimation command, 

fp_select, that implements the FSP. I illustrate fp_select in an example with real data.

2 The FSP

An important (default) option of fp is compare. The table of FP model comparisons 

presented with compare contains all the elements needed to select a preferred model 

according to the FSP, an ordered sequence of hypothesis tests. The FSP has the flavor of a 
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closed test procedure (Marcus, Peritz, and Gabriel 1976) that (approximately) protects the 

“familywise” type 1 error probability for selecting an FP transformation of x at some nominal 

value, α, such as 0.05. For further details of the closed test aspect, see the description of the 

FSP in Ambler and Royston (2001), there called “procedure RA2”. Although fp (and 

fracpoly) supply the necessary information on which the FSP operates, neither program 

actually indicates which model the FSP would choose at a given α level.

The FSP starts with an FP model of maximal allowed complexity, defined by its dimension, 

say, m0. By default in fp, m0 = 2, that is, an FP2 (FP of dimension or degree 2). The FSP 

attempts to simplify the model to an FP1 or linear function of x by applying a specific 

sequence of tests. The sequence of tests for m0 = 2 is described under the heading Methods 
of FP model selection in the Stata manual entry for mfp (see [R] mfp). See also Royston and 

Sauerbrei (2008, 82–84).

In general terms, the FSP has two parts. The maximum permissible FP degree, m0, is chosen 

by the analyst a priori and is usually 2. The first part of the FSP is a test for including an FP-

transformed continuous covariate x in the model. Let us call the corresponding significance 

level αselect. Conventionally, if αselect = 1, no test occurs and x (possibly FP transformed) is 

included in the model anyway, with the final choice of the functional form being determined 

by the subsequent steps of the FSP. If αselect < 1, the best-fitting FPm0 model is tested against 

the model omitting x on 2m0 degrees of freedom (d.f.) at significance level αselect. If the test 

is significant, the algorithm continues as described below; otherwise, x is “omitted” (taken 

as uninfluential) and the procedure ends.

Let the critical significance level for the tests of functional form in the FSP be α (0 < α < 1). 

Assuming the inclusion test at level αselect is “passed”, the remaining steps for general m0 ≥ 

1 are as follows:

1. Test FPm0 against linear (a straight line) in x on 2m0 − 1 d.f. at level α. If 

significant, continue; otherwise, stop, with the chosen model for x being a 

straight line.

2. If m0 > 1, test FPm0 against FP1 on 2 (m0 − 1) d.f. at level α. If significant, 

continue; otherwise, stop, with the chosen model for x being FP1.

3. If m0 > 2, test FPm0 against FP2 on 2 (m0 − 2) d.f. at level α. If significant, 

continue; otherwise, stop, with the chosen model for x being FP2.

4. Continue in this manner until the test of FPm0 against FP(m0 − 1). If significant, 

the selected model is FPm0; otherwise, it is FP(m0 − 1). This is the end of the 

procedure.

In some situations, one might have reason to vary the significance levels αselect and α, the 

two “tuning” constants of the FSP. In an observational study, for example, where possible 

overfitting of the variables in a confounder model is not necessarily a critical issue, one 

might choose αselect = 1 and α = 0.2 to select the functional form for a continuous 

confounder.
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3 Example

3.1 Data and preliminary analysis

As an example, I use the IgG data (Isaacs et al. 1983), which may be loaded into Stata by 

typing webuse igg. The aim is to model y = sqrtigg, the square root of the serum 

immunoglobulin-G (IgG) concentration in 298 children as a function of x = age, a child’s 

age in years. I square-root transform the response to stabilize the variance and normalize the 

residuals.

Figure 2 is a smoothed scatterplot of y against x.

The solid line is a local polynomial fit created by Stata’s lpolyci graph subcommand with 

a relatively narrow bandwidth of 0.2, hence the rather “wiggly” curve. Nevertheless, a visual 

indication of nonlinearity is present. The dashed line is the best-fitting FP2 curve as 

computed by the fpfit subcommand. The commands that created the figure are as follows:

     . webuse igg

     . set scheme sj

     . graph twoway (lpolyci sqrtigg age, bwidth(0.2)) (fpfit sqrtigg age)

     > (scatter sqrtigg age, msymbol(o) msize(*0.75))

A biological argument suggests that because IgG is a blood protein reflecting the maturity of 

the immune system from birth on, the underlying curve should be monotone increasing. The 

fit FP2 curve is in fact monotone. It indicates a rapid rise in IgG in the youngest children 

followed by a gentler rate of increase. By contrast, the “nonparametric” local polynomial fit 

is nonmonotone, with local features that evidently are present in the data but are unlikely to 

be real in the population.

3.2 FP model selection

I now consider FP model selection for the IgG dataset. Below is the output from running fp 

with the default dimension(2) setting.

     . fp <age>: regress sqrtigg <age>

     (fitting 44 models)

     (....10%....20%....30%....40%....50%....60%....70%....80%....90%....

100%)

     Fractional polynomial comparisons: 

age df Deviance Res. s.d. Dev. dif. P(*) Powers

omitted 0 427.539 0.497 108.090 0.000

linear 1 337.561 0.428  18.113 0.000 1

m = 1 2 327.436 0.421  7.987 0.020 0

m = 2 4 319.448 0.416  0.000 -- −2 2
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(*) P = sig. level of model with m = 2 based on F with 293 denominator dof. 

Source SS df MS Number of obs = 298

F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000

Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995

Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coef. Std. Err.      t P > |t| [95% Conf. Interval]

age_1 −.1562156   .027416 −5.70 0.000 −.2101713 −.10226

age_2 .0148405 .0027767  5.34 0.000  .0093757 .0203052

_cons 2.189242  .0473835 46.20 0.000  2.095989 2.282495

As seen for m = 2 in the table titled Fractional polynomial comparisons, the best-

fitting FP2 powers of age are (−2, 2). This FP2 transformation of age is represented by the 

two variables age_1 and age_2 that appear in the table of regression estimates.

Although the results are suggestive, the output is not explicit as to whether an FP2 model is 

really needed or whether a simpler model (FP1 or linear) would suffice at significance level 

0.05. Using fp_select (described in section 4) with αselect = α = 0.05 immediately after 

fp, we obtain the following result:

     . fp_select, alpha(.05) select(.05)

     selected FP model: powers = (-2 2), df = 4

The output confirms that when m0 = 2, an FP2 model is selected at the 0.05 significance 

level. The selected model can be fit as follows using results (best FP powers) stored by 

fp_select in ‘r(powers)’:

     . fp <age>, fp(‘r(powers)´) replace: regress sqrtigg <age>

     -> regress sqrtigg age_1 age_2 

Source SS df MS Number of obs = 298

F(2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000

Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995

Total 73.2523469 297 .246640898 Root MSE = .41566
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sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

age_1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226

age_2 .0148405 .0027767 5.34 0.000 .0093757 .0203052

_cons 2.189242 .0473835 46.20 0.000 2.095989 2.282495

Because in this case the FP2 model was not simplified by fp_select, the result is the same 

as that reported by fp for the default m0 = 2 model.

3.3 Impact of complexity on model selection

Let us see what happens if a more complex model with m0 = 4 is taken as the starting point 

for model selection:

     . fp <age>, dimension(4) replace: regress sqrtigg <age>

     (fitting 494 models)

     (....10%....20%....30%....40%....50%....60%....70%....80%....90%....

100%)

     Fractional polynomial comparisons: 

age df Deviance Res. s.d. Dev. dif. P(*) Powers

omitted 0 427.539 0.497 109.795 0.000

linear 1 337.561 0.428 19.818 0.007 1

m = 1 2 327.436 0.421 9.692 0.149 0

m = 2 4 319.448 0.416 1.705 0.798 -2 2

m = 3 6 319.275 0.416 1.532 0.476 -2 1 1

m = 4 8 317.744 0.416 0.000 -- 0 3 3 3

(*) P = sig. level of model with m = 4 based on F with 289 denominator dof. 

Source SS df MS Number of obs = 298

F(4, 293) = 32.63

Model 22.5754541 4 5.64386353 Prob > F = 0.0000

Residual 50.6768927 293 .172958678 R-squared = 0.3082

Adj R-squared = 0.2987

Total 73.2523469 297 .246640898 Root MSE = .41588

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]
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age_1 .8761824 .1898721 4.61 0.000 .5024962 1.249869

age_2 -.1922029 .0684934 -2.81 0.005 -.3270044 -.0574015

age_3 .2043794 .074947 2.73 0.007 .0568767 .3518821

age_4 -.0560067 .0212969 -2.63 0.009 -.097921 -.0140924

_cons 2.240866 .1019331 21.98 0.000 2.040252 2.44148

The m0 = 4 model has powers (0, 3, 3, 3). Next, we apply model selection:

     . fp_select, alpha(0.05) select(0.05)

     selected FP model: powers = (0), df = 2

Instead of FP2, the selected model is now an FP1 with power (0), that is, β0 +β1 ln (x).

Table 1 shows p-values from the FSP with increasing maximum complexity. Taking αselect = 

α = 0.05, it shows model comparisons in the FSP pathways for m0 = 1, 2, 3, 4.

For all four values of m0, the test of FPm0 against x “Not in model” is highly significant (p < 
0.0005)—see the third row of table 1. This confirms that sqrtigg is associated with age. 

All tests of FPm0 against linear (fourth row) are also significant, providing evidence that the 

relationship is nonlinear.

With maximum complexity m0 = 2, the test of FP2 against FP1 is significant at the 5% level, 

resulting in the selection of an FP2 model (as already seen). This is not the case for m0 = 3 

and m0 = 4, where an FP1 model is chosen instead. However, there is no evidence that more 

complex models with dimension 3 or 4 fit better than FP2. For example, a test of m = 3 

against m = 2 has p = 0.919, and a test of m = 4 against m = 2 has p = 0.798 (see table 1).

The reason why an FP1 function, rather than an FP2 function, is selected when m0 > 2 is 

presumably an increase in the type 2 error probability (that is, reduced statistical power) 

because of redundant parameters being estimated in the models with dimensions greater than 

2. See Royston and Sauerbrei (2008, sec. 4.16) for further discussion of the power issue.

4 The fp_select command

4.1 Syntax

The syntax of fp_select is as follows:

fp_select, alpha(#) [select(#)]

You must run fp to fit FP models before using fp_select.

4.2 Description

Taking the results from the most recent run of fp, fp_select tries to simplify the most 

complex reported FP model by applying an ordered sequence of significance tests. The aim is 
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to reduce possible overfitting. The sequence, known as the FSP, approximates a closed test 

procedure. See the foregoing sections for further details.

4.3 Options

alpha(#) defines the significance level for testing less complex models against the most 

complex FP model that was fit, FPm0. A typical value of # might be 0.05 or 0.01. alpha() is 

required.

select(#) defines the significance level for testing whether the covariate is influential. 

Specifically, if m0 is the dimension (degree) of the most complex fit FP model, the test is of 

FPm0 against the “null” model that omits the covariate. If the covariate is not significant at 

level # < 1, the procedure terminates. Otherwise, testing continues. The default is 

select(1), meaning the selection test is not performed and the covariate is automatically 

included.

4.4 Examples

Fit default FP2 model:

   webuse igg

   fp <age>: regress sqrtigg <age>

   fp_select, select(0.05) alpha(0.05)

   display "‘r(powers)´"

Fit a more complex FP model:

 fp <age>, dimension(4) replace: regress sqrtigg <age>

 fp_select, alpha(0.2)

 display "‘r(powers)´"

A multiequation example:

 sysuse auto

 fp <weight>: sureg (price foreign <weight> length) (mpg foreign 

<weight>) ///

   (displ foreign <weight>)

 fp_select, select(0.05) alpha(0.05)

 display "‘r(powers)´"

5 Comments

fp_select fills a gap in the ability of fp to select a parsimonious model. It removes the 

need to use mfp (searching on one continuous covariate) to select such a model. Note that fp 

requires that a model return a log likelihood, whereas mfp can fit some additional models 

(see help on mfp).
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Figure 1. 
Examples of some functional forms available with FP2 functions with various powers (p1, p2)
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Figure 2. 
IgG data with local polynomial and FP smoothing
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Table 1

p-values and selected models arising from FP model comparisons with the IgG data

Comparisons with
FPm0 model

Maximum FP complexity, m0

1 2 3 4

Not in model 0.000 0.000 0.000 0.000

Linear 0.002 0.000 0.003 0.007

m = 1 − 0.020 0.092 0.149

m = 2 − − 0.919 0.798

m = 3 − − − 0.476

Selected model m = 1 m = 2 m = 1 m = 1
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