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Abstract

Randomized controlled trials provide essential evidence for the evaluation of new and existing 

medical treatments. Unfortunately, the statistical analysis is often complicated by the occurrence 

of protocol deviations, which mean we cannot always measure the intended outcomes for 

individuals who deviate, resulting in a missing-data problem. In such settings, however one 

approaches the analysis, an untestable assumption about the distribution of the unobserved data 

must be made. To understand how far the results depend on these assumptions, the primary 

analysis should be supplemented by a range of sensitivity analyses, which explore how the 

conclusions vary over a range of different credible assumptions for the missing data. In this article, 

we describe a new command, mimix, that can be used to perform reference-based sensitivity 

analyses for randomized controlled trials with longitudinal quantitative outcome data, using the 

approach proposed by Carpenter, Roger, and Kenward (2013, Journal of Biopharmaceutical 
Statistics 23: 1352–1371). Under this approach, we make qualitative assumptions about how 

individuals’ missing outcomes relate to those observed in relevant groups in the trial, based on 

plausible clinical scenarios. Statistical analysis then proceeds using the method of multiple 

imputation.

Keywords

st0440; mimix; clinical trial; protocol deviation; missing data; multiple imputation; sensitivity 
analysis

1 Introduction

Randomized controlled trials that collect longitudinal response data are widely used in 

medical research because they provide essential evidence for the evaluation of new and 

existing treatments. Unfortunately, protocol deviations—such as treatment withdrawal, 

unblinding, or loss to follow-up—are unavoidable during the full course of a trial. 

Consequently, we often cannot measure what we intended for deviating individuals. Planned 
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outcomes may be unobtainable because of the type of deviation. In addition, depending on 

the nature of the analysis, even values that were recorded postdeviation may be best regarded 

as missing. The result is a missing-data problem, complicating the analysis.

Complexity arises because—as in any analysis with missing data—we are forced to make an 

assumption about the distribution of the unobserved data that crucially cannot be verified 

from the observed data. Therefore, to understand how far the results depend on these 

assumptions, the primary analysis should be supplemented by a range of sensitivity analyses, 

which explore how the conclusions vary over a range of different credible assumptions for 

the missing data (White et al. 2011).

The importance of sensitivity analysis in this context is highlighted in recent regulatory 

guidelines from the European Medicines Agency (Committee for Medicinal Products for 

Human Use 2010) and the U.S. National Research Council (2010), which recommends that 

“examining sensitivity to the assumptions about the missing data mechanism should be a 

mandatory component of reporting.” Ideally, inferences will be stable across sensitivity 

analyses, indicating that the impact of the missing data does not seriously affect the 

interpretation of results. However, it is even more important to report the results of 

sensitivity analyses when they are contradictory.

When framing a sensitivity analysis, we need to consider carefully both the quantity we wish 

to estimate and the population for which we wish to estimate it. Following the National 

Research Council (2010) report, the term estimand is used to describe both the target of 

inference and the population in which this is estimated. Thus, with missing observations, we 

need to specify the statistical distribution of individuals’ postdeviation responses. This is 

often done by specifying one or more parameters that relate individuals’ predeviation and 

postdeviation data (for example, see Carpenter and Kenward [2013, chap. 10]). However, 

with reference-based sensitivity analysis, such statements are made by reference to other 

groups of individuals in the trial (typically to individuals in different treatment arms), 

obviating the need for explicit parameter specification (Carpenter, Roger, and Kenward 

2013).

Before describing this approach further, we follow Carpenter, Roger, and Kenward (2013) 

and distinguish between two main classes of estimands. The first considers the estimated 

treatment effect when we assume that postdeviation individuals continue to follow the trial 

“rules”—that is, abide by the protocol. This is referred to as a de jure estimand. The second 

explores robustness of inferences to various assumptions about what might have happened—

in other words, various de facto scenarios.

Under both de jure and de facto assumptions, we specify the joint distribution of each 

individual’s predeviation and postdeviation data by reference to relevant groups of 

individuals in the study. We can then calculate the distribution of each individual’s 

postdeviation data given his or her predeviation data and use this to multiply impute m 
completed datasets, fitting our substantive scientific model to each in turn and combining the 

results for inference using Rubin’s rules (Rubin 1987; Carpenter and Kenward 2013).
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A natural assumption for the de jure estimand is that, in each treatment arm, conditional 

distributions of later follow-up data given earlier follow-up data are the same, whether or not 

an individual deviates. This corresponds to Rubin’s (1976) missing at random (MAR) 

assumption that, conditional on observed variables, missing data are equal in distribution to 

observed data. Under MAR, it is assumed that postdeviation individuals continued to abide by 

the protocol. Hence, we refer to it as “randomized-arm MAR” below. Under this assumption, 

the resulting estimates and inferences may also be obtained by fitting a saturated repeated-

measures model with separate covariance matrices for each treatment arm (Carpenter and 

Kenward 2007, chap. 3).

For de facto estimands, we may wish to explore a range of assumptions, described in more 

detail below. For example, we may assume that postdeviation individuals behave as if they 

were on a reference (or control) treatment or that the responses stabilize postdeviation. In 

this context, a distinct advantage of multiple imputation (MI) is that it provides a convenient 

pathway for sensitivity analysis, because the imputation model need not be formally 

consistent with the analysis model. Thus, Carpenter, Roger, and Kenward (2013) extend the 

usual MAR-based MI approach and build on the ideas of Little and Yau (1996) to define a 

collection of MI methods for the inference under a range of contextually relevant de facto 

assumptions.

The approach falls into the pattern-mixture modeling framework (Little 1993, 1994), where 

different distributions are specified for fully and partially observed cases such that the 

overall outcome distribution is a mixture of the two. Each de facto assumption typically 

corresponds to a different missing not at random data mechanism (Rubin 1976), where 

conditional distributions of later follow-up data given earlier follow-up data differ between 

individuals who do and do not deviate. In this setting, some thought has to be given to the 

appropriate variance of the MI estimator. We have argued elsewhere (Carpenter et al. 2014) 

that Rubin’s (1987) rules give an appropriate estimate of the variance, inflating the variance 

that would have been seen—had postdeviation data followed the assumption and been 

observed—to allow for the information lost because of the missing data.

The purpose of this article is to describe a new command, mimix, that can be used to 

implement the reference-based sensitivity analyses described by Carpenter, Roger, and 

Kenward (2013) for quantitative longitudinal data. This command can therefore be used to 

perform sensitivity analyses for longitudinal continuous clinical trials under a range of 

qualitative assumptions about the postdeviation behavior.

In the next section, we give more details about the methodology of Carpenter, Roger, and 

Kenward (2013) and present their generic algorithm for a continuous outcome. In section 3, 

we outline the syntax of the mimix command. In section 4, we demonstrate the mimix 

command by using data from a randomized double-blind controlled trial of budesonide 

delivered by Turbuhaler for the treatment of adult patients with chronic asthma. We discuss 

and conclude in section 5.
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2 Methodology

In this section, we present the methodology of Carpenter, Roger, and Kenward (2013) 

underlying the mimix command.

Consider a randomized clinical trial with continuous longitudinal follow-up and two 

treatment arms, active and reference. Let i = 1, … , n index individuals, and let Ti denote the 

randomized treatment arm. Let j = 0, … , J index the J scheduled observation times, with j = 

0 denoting the baseline; then, the outcome for each individual i at time j we denote by Yij. 

We assume that all individuals are observed at baseline, and following protocol deviation, 

data are missing. For simplicity, we also assume that there are no interim missing values, 

that is, no individuals with missing data at some point in the follow-up that are later 

observed. Define Di as the last observation time prior to deviation for each individual; Di 

therefore can take values 0, … , J. The column vector YOi = (Yi0, … , YiDi)
T denotes an 

individual’s observed outcomes up to Di, and if Di < J, then the column vector YMi = 

(Yi(Di+1), … , YiJ)T denotes the missing outcomes at times Di + 1, … , J.

For imputation, for each deviating individual where Di < J, we require the distribution of 

missing outcomes given their observed outcomes, treatment arm, and deviation time, 

denoted as

(1)

where η are the parameters of this distribution whose values we must first estimate before 

we can impute missing data from (1). Under MAR, (1) does not depend on Di and is simply 

(YMi|YOi, Ti, η). However, where missing data are missing not at random, this distribution 

will depend on Di, and we define a form for (1) that reflects a specific assumption. Given 

this, MI is used for inference (Rubin 1987; Schafer 1997). That is, we create m complete 

datasets by drawing from the appropriate Bayesian posterior distribution of (η|YO), and we 

then draw the missing data from (1) by using the current draw of η.

To obtain η, we must choose a model for the observed data. With quantitative longitudinal 

response data measured at scheduled times, we assume the data can be modeled using the 

multivariate normal (MVN) distribution. In particular, we assume an unstructured MVN model, 

with a separate mean for each timepoint in each arm and a separate unstructured covariance 

matrix in each arm, to allow for the correlation between repeated measures.

The generic algorithm of Carpenter, Roger, and Kenward (2013) that is implemented by the 

mimix command can be summarized as follows:

1. Separately for each treatment arm, take all the observed data, assume MAR, and fit 

an MVN distribution with an unstructured mean (that is, a separate mean for each 

of the baseline and the postrandomization observation times) and a variance– 

covariance matrix using a Bayesian approach with an improper prior for the 

mean and an uninformative Jeffreys prior for the covariance matrix.
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2. Draw a mean vector and covariance matrix from the posterior distribution for 

each treatment arm. Specifically, we use the Markov chain Monte Carlo (MCMC) 

method to draw from the appropriate Bayesian posterior, with a sufficient burn-

in, and we update the chain sufficiently in between to ensure that subsequent 

draws are independent. The sampler is initiated using the expectation 

maximization (EM) algorithm. Refer to Carpenter and Kenward (2013) and Gilks, 

Richardson, and Spiegelhalter (1996) for a more in-depth discussion of MCMC 

methods and their applications to missing data, and refer to Schafer (1997) for a 

description of the applicable EM algorithm.

3. Use the draws in step 2 to form the joint distribution for each deviating 

individual’s observed and missing outcome data as required. This can be done 

under a range of assumptions to explore the robustness of inference about 

treatment effects. The five options available in the software are described in 

detail in section 2.1.

4. Construct the conditional distribution of missing (postdeviation) given observed 

outcome data (1) for each individual who deviated, using the individual’s joint 

distribution formed in step 3. Sample the missing postdeviation data from this 

conditional distribution to create a completed dataset.

5. Repeat steps 2–4 m times, resulting in m imputed datasets.

We use this algorithm to generate m imputed datasets. The substantive model of interest is 

then fit to each imputed dataset in turn, and the results are summarized for inference using 

Rubin’s rules. For example, the substantive analysis model is often an analysis of covariance 

in which the final outcome is regressed on a randomized group and adjusted for baseline. 

For a single scalar parameter of interest, θ, estimates θ̂m are obtained with standard error 

σ̂m. Results across imputations can then be combined using Rubin’s (1987) rules to estimate 

the overall treatment effect and its associated standard error under the given assumption.

Because Rubin’s rules condition on the number of imputations, estimates, confidence 

intervals, and inferences will be sensible with two or more imputations. However, with a 

small number of imputations, results will be imprecise (Rubin 1987). As discussed by 

Carpenter and Kenward (2007), 5–10 imputations is sufficient to get a reasonably accurate 

answer for most applications. For more critical inferences, at least 100 imputations are 

recommended (Carpenter and Kenward 2013).

2.1 Constructing the joint distributions

The proposed framework revolves around the construction of appropriate joint distributions 

for the observed and unobserved data for deviating individuals. These joint distributions 

imply conditional distributions for the missing data given the observed data, which are 

required for imputation (1). The five options described below were proposed by Carpenter, 

Roger, and Kenward (2013), and they are available in the software.

Randomized-arm MAR. The joint distribution of an individual’s observed and missing 

outcome data is MVN with a mean and covariance matrix from the individual’s randomized 

treatment group. This option is natural for a de jure estimand.
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Jump to reference (J2R). The joint distribution of an individual’s observed and missing 

outcome data is MVN with a mean vector from the individual’s randomized group up to his or 

her last observation time before deviating. Postdeviation, the individual’s mean response 

profile follows that observed for a reference (typically the control) group. The covariance 

matrix matches that from the randomized arm for the predeviation measurements and the 

reference arm for the conditional components for the postdeviation given the predeviation 

measurements. For individuals in the reference group with missing data, this means that the 

joint distribution of those individuals’ observed and missing outcome data is formed as MVN 

with a mean and covariance matrix from the individual’s randomized treatment for 

predeviation and postdeviation measurements (as under randomized-arm MAR). This option 

is appropriate when the postdeviation individuals ceased their randomized treatment and 

started treatment similar to that available in one of the other trial arms (the reference).

Last mean carried forward. The joint distribution of an individual’s observed and missing 

outcome data is MVN with a mean vector from the individual’s randomized group up to his or 

her last observed time before deviating. Postdeviation, the individual’s means are set equal 

to the value of the marginal mean for his or her randomized treatment group at the last 

predeviation measurement. The covariance matrix remains that from the individual’s 

randomized treatment group. This is an appropriate option when the effect of treatment is 

maintained, on average, postdeviation.

Copy increments in reference (CIR). The joint distribution of an individual’s observed and 

missing outcome data is MVN with a mean vector from the individual’s randomized group up 

to his or her last observation time before deviating. Postdeviation, the individual’s mean 

increments follow those from a reference (typically the control) group. The covariance 

matrix is the same as for J2R. For individuals in the reference group with missing data, this 

means that the joint distribution of those individuals’ observed and missing outcome data is 

formed as under randomized-arm MAR. This is an appropriate assumption when we wish to 

assume that, postdeviation, the disease resumes the course observed in the reference arm.

Copy reference (CR). The joint distribution of an individual’s observed and missing 

outcome data is MVN with a mean and covariance matrix from a reference (typically the 

control) group, regardless of deviation time. For individuals in the reference group with 

missing data, this means that the joint distribution of those individuals’ observed and 

missing outcome data is formed as under randomized-arm MAR. This is a natural option for 

individuals who in fact followed a different (reference) treatment from their randomized 

allocation.

For the J2R, CIR, and CR options, we need to specify a reference group (typically the control 

arm). In many settings, it is then appropriate to impute missing data for individuals in the 

reference group under randomized-arm MAR, and this is the default in the software.

Full technical details on the construction of the appropriate covariance structure can be 

found in Carpenter, Roger, and Kenward (2013) and Carpenter and Kenward (2013). There 

is great flexibility for contextually appropriate sensitivity analysis because different 

assumptions about the missing data can be made for different groups or specific individuals.
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We have not yet discussed interim missing data, which is when individuals have missing 

data at some point in the follow-up but data are observed later. Interim missing values can 

also be imputed under any of the assumptions outlined above following the generic 

algorithm of Carpenter, Roger, and Kenward (2013). In some circumstances, the assumption 

made for interim missing values may be different from that specified for postdeviation data, 

and mimix allows for this. Interim missing observations may often be reasonably imputed 

under randomized-arm MAR.

3 The mimix command

3.1 Syntax

The mimix command conducts MI under the distinct treatment arm–based assumptions for 

missing data outlined in section 2.1. Optionally, two substantive models can also be fit to 

each imputed dataset and the results summarized using Rubin’s (1987) rules. The two 

substantive model options in mimix are a) a linear regression of the final timepoint on 

treatment and baseline or b) a saturated repeated-measures model (that is, including 

treatment crossed with visit and baseline crossed with visit) with separate covariance 

matrices for each treatment arm. Other substantive models can be fit to the imputed data in 

the usual way by using mi estimate.

The syntax of the mimix command is the following:

mimix depvar treatvar, id(varname) time(varname) [clear

      saving(filename[ , replace ]) covariates(varlist) interim(string)

      iref(string) {method(string) | methodvar(varname)} mixed

      {refgroup(string) | refgroupvar(varname)} regress burnbetween(#)

      burnin(#) m(#) seed(#) ]

Data are required in long format with one record per individual per timepoint, where depvar 
is the numeric outcome variable with missing data in the existing dataset and treatvar 
identifies the treatment group variable in the existing dataset and may be either a numeric or 

string variable.

id(varname) specifies the variable identifying individuals in the existing dataset. id() is 

required and may be either a numeric or a string variable.

time(varname) specifies the variable identifying units of time in the original dataset. 

time() is required and must be a numeric variable.

clear specifies that the original data in memory be cleared and replaced by the imputed 

dataset. The imputed dataset must be saved manually if required. One of clear or 

saving() is required.
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saving(filename[ , replace ]) saves the imputed datasets. A new filename is required 

unless replace is also specified. replace allows the filename to be overwritten with new 

data. One of clear or saving() is required.

covariates(varlist) specifies any additional baseline covariates to be included in the MI 

model and analysis if either the regress or the mixed option is specified. Any specified 

covariates must be fully observed numerical variables. Dummy variables must be generated 

for any factor covariates.

interim(string) specifies an alternative imputation method for all interim missing values 

(where the individual has data observed later). string may be mar, j2r, lmcf, cir, or cr 

(not case sensitive). See section 3.3 for further details on specifying the imputation method.

iref(string) specifies the level of treatvar chosen for the reference for all interim missing 

values (where the individual has data observed later). iref() is required when using the 

j2r, cir, or cr imputation method. See section 3.3 for further details on specifying the 

imputation method.

method(string) defines the imputation method for all individuals. string may be mar, j2r, 

lmcf, cir, or cr (not case sensitive). method() and methodvar() are mutually exclusive; 

specifying both will return an error message. See section 3.3 for further details on specifying 

the imputation method.

methodvar(varname) specifies the variable in the original dataset that contains the 

individual-specific imputation method(s). This option should be used if different imputation 

methods are required for different individuals. methodvar() must be a string variable 

containing one of mar, j2r, lmcf, cir, or cr (not case sensitive) for each individual. 

methodvar() and method() are mutually exclusive; specifying both will return an error 

message. See section 3.3 for further details on specifying the imputation method.

mixed uses mi estimate with Stata’s default options to fit a saturated repeated-measures 

model using restricted maximum likelihood—with a separate mean for each treatment and 

time, full covariate–time interactions for any included covariates(), and a separate 

unstructured covariance matrix for each arm—to each of the imputed datasets. mixed 

combines results using Rubin’s (1987) rules for inference. This option may add substantially 

to the postimputation computation time if a large number of imputations have been 

specified.

refgroup(string) specifies the level of treatvar chosen for the reference for all individuals. 

This option is required when using the j2r, cir, or cr imputation method. refgroup() 

and refgroupvar() are mutually exclusive; specifying both will return an error message. 

See section 3.3 for further details on specifying the imputation method.

refgroupvar(varname) specifies the variable in the original dataset that identifies the level 

of treatvar chosen for the reference for each individual. This option is required when using 

the j2r, cir, or cr imputation method. refgroupvar() and refgroup() are mutually 

Cro et al. Page 8

Stata J. Author manuscript; available in PMC 2018 February 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



exclusive; specifying both will return an error message. See section 3.3 for further details on 

specifying the imputation method.

regress uses mi estimate with Stata’s default options to fit a linear regression of depvar 
at the final timepoint on treatvar, and any included covariates(), to each of the imputed 

datasets. It combines results using Rubin’s (1987) rules for inference.

burnbetween(#) specifies the number of iterations between pulls for the posterior in the 

MCMC. The default is burnbetween(100).

burnin(#) specifies the number of iterations in the MCMC burn-in. The default is 

burnin(100).

m(#) specifies the number of imputations required. The default is m(5).

seed(#) specifies the seed for the random-number generator. The default is seed(0), 

meaning that no seed is specified by the user and so the current value of Stata’s random-

number seed will be used; this will result in different sets of imputations for multiple 

program runs. To reproduce a set of imputations, the same random-number seed should be 

used with the original data sorted in exactly the same order.

3.2 Implementation details

Required data format—Data are required in long format with one record per individual 

per timepoint. If data are in wide format, consult [D] reshape to convert data into long 

format.

Baseline covariates—Any additional included baseline covariates are required to be 

complete. Individuals with missing covariate information will be highlighted for the user by 

mimix and will be discarded in the imputation process and any requested analysis.

Potential error with sparse data—Stata’s mi impute mvn command (which uses the 

MCMC method initialized by the EM algorithm to impute missing values) is used to complete 

steps 1 and 2 of the general procedure, as detailed in section 2. If the response variable of 

interest is measured at an occasion with only a few complete cases, mi impute mvn may 

terminate with an error message if there is not enough information in the observed data to 

reliably estimate aspects of the covariance structure in the required MVN model. If this is the 

case, we advise the user to explore an alternative viable MVN model for the data by using the 

mi impute mvn command. The response at the occasion with few observed outcomes may 

need to be excluded from the analysis and mimix rerun.

Data output—The imputed datasets are produced in long format, with one record per 

individual per timepoint per imputation, and are mi set in flong style, ready to analyze 

using mi estimate. The imputed datasets are output in memory if clear is specified, and 

they are saved in filename.dta if saving() is specified.
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Analysis options—If the regress or mixed analysis option is specified, Stata’s mi 

estimate command is used with default options to fit the specified analysis model to each 

imputed dataset and to combine results using Rubin’s (1987) rules (see [MI] mi estimate). 

The usual output will be displayed in the Results window. If alternative mi estimate 

options or other substantive models are required following the completion of mimix, then mi 

estimate can be used in the usual way for further analysis.

Use of data preserve—Because of extensive manipulation of the data, mimix uses the 

preserve and restore commands. While mimix can be successfully run on data that are 

already preserved, we recommend that users cancel any previous data preserve by using 

restore, not to ensure the clear and saving() options of mimix work as intended.

3.3 Specifying the imputation method

The mimix command must contain either the method() option or the methodvar() 

option. method() indicates which imputation method should be employed for all 

individuals, while methodvar() indicates which imputation method should be employed 

for each individual. method() and methodvar() are mutually exclusive options; 

specifying both will return an error message.

If the method() option is used to request the same imputation method for all individuals, 

then values specified in method() must be one of those presented in table 1 (not case 

sensitive). If the methodvar() option is used to request different imputation methods for 

different individuals, then a new variable that contains individual-specific imputation 

methods must be generated and specified in methodvar(). The variable that holds the 

individual imputation methods must only contain values presented in table 1 (not case 

sensitive), and the method specification cannot vary within an individual over time.

If the j2r, cir, or cr imputation method is used, then either the refgroup() option must 

also be used to specify the reference level of the treatvar for all individuals or the 

refgroupvar() option must also be used to indicate the reference level of the treatvar for 

each individual. Together, these variables allow for the required assumptions outlined in 

section 2.1. If one of the imputation methods that includes a reference group is specified for 

all individuals (or for specific individuals via methodvar()), then missing data for 

individuals in that reference group (with the reference-imputation specification) are imputed 

under randomized-arm MAR.

The interim() option specifies the imputation method for all interim missing values. If 

this option is not used, any interim missing values will be imputed following the method 

specified by the methodvar() or method() option, in the same way as missing 

postdeviation data.

3.4 Stored results

mimix stores the following in r():
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Scalars

      r(N) total sample size

      r(Nmiss) total number of individuals with incomplete data

      r(Ncomp) total number of individuals with complete data

      r(M) number of imputations

      r(burnin) number of MCMC burn-in iterations

      r(bbetween) number of MCMC burn-between iterations

Macros

      r(depvar) name of dependent variable

      r(treatvar) name of treatment group variable

      r(covariates) names of covariates

      r(method) imputation method (with method() only)

      r(methodvar) imputation method variable (with methodvar() only)

      r(rgroup) name of reference group (with refgroup() only)

      r(rgroupvar) name of reference group variable (with refgroupvar() only)

      r(rseed) random-number seed

Matrices

      r(Ntreat) sample size in each treatment group

      r(Ntreat_mis) number of individuals with incomplete data in each treatment group

      r(Ntreat_comp) number of individuals with complete data in each treatment group

      r(Ntreat_pat) number of unique missing-value patterns in each treatment group

      r(niter_em) number of iterations EM takes to converge in each treatment group

      r(lpobs_em) observed log posterior in EM in each treatment group

      r(conv_em) convergence flag for EM in each treatment group

If the regress or mixed analysis option is used, then mi estimate is called within the 

program run and the associated mi estimate results will also be stored in e() (see [MI] mi 

estimate). If both regress and mixed are specified, then only the mi estimate results of 

mixed will be stored in e().

4 Example

Here we demonstrate the mimix command with data from a randomized double-blind 

clinical trial of budesonide delivered by Turbuhaler for the treatment of adult patients with 

chronic asthma (Busse et al. 1998). A total of 473 individuals were randomized to a daily 

dose of either 200, 400, 800, or 1,600µg of budesonide or a placebo. The primary outcome—

measured at weeks 0 (baseline), 2, 4, 8, and 12—was forced expiratory volume in one 

second (FEV1), recorded in liters (L); however, several individuals deviated and did not 

complete the full 12-week follow-up.
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In this article, we focus our attention on only the placebo and the lowest dose active arm 

(200µg budesonide) for sensitivity analysis. The observed mean profiles by treatment arm 

and the various missing-data patterns are shown in figure 1. Only 38 of the 92 individuals in 

the placebo arm (41%) and 72 of the 91 individuals in the active arm (79%) remained in the 

trial at 12 weeks; 3 individuals (2 placebo and 1 active) had interim missing data.

The primary analysis of the original trial consisted of a linear regression of the 12-week FEV1 

outcome on the treatment group, adjusted for baseline FEV1, using data from the 110 

individuals measured at week 12. This gives a treatment effect of 0.239 L, p = 0.017. We 

will use mimix to assess the robustness of the results to various postdeviation assumptions 

outlined in section 2.1. The interim missing outcomes will be imputed under MAR.

In the following output, we describe the variables in the asthma trial dataset and list their 

contents for one arbitrarily selected deviating individual.

. use asthma

. describe

Contains data from asthma.dta

  obs:           732

 vars:             5                  12 Feb 2015 10:18

 size:        11,712 

variable name
storage

type
display
format

value
label variable label

id      int %8.0g Patient ID

time      byte %9.0g Measurement time (weeks)

treat      byte %8.0g treat1 Randomised treatment assignment

base      double %12.0g Baseline FEV1 (L)

fev      float %9.0g FEV1 (L)

Sorted by: id

. list in 37/40, noobs sepby(id) 

id time treat base fev

5030 2 Placebo 1.14 .85

5030 4 Placebo 1.14 1.51

5030 8 Placebo 1.14 .

5030 12 Placebo 1.14 .

id is the unique individual identifier, and treat is the randomized treatment assignment to 

placebo (treat = 2) or active (treat = 3). fev is the postbaseline FEV1 measurement (L), 

and time is the time of the FEV1 measurement in weeks. base is the baseline FEV1 

measurement. The dataset is already in long format with one observation per individual per 
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timepoint, as required for mimix. We can see that the selected individual deviated sometime 

between week 4 and week 8; consequently, the individual has missing outcomes for weeks 8 

and 12.

4.1 Sensitivity analysis using the mimix command

In this section, we perform a sensitivity analysis using each of the five options listed in 

section 2.1 for constructing joint distributions. Results of these analyses are summarized in 

table 2.

We first analyze the data under the randomized-arm MAR assumption for all individuals, in 

other words, the de jure assumption that—postdeviation—individuals continued on their 

randomized treatment as specified in the protocol. We create 50 imputations and take the 

default MCMC burn-in of 100 iterations and burn-between of 100 iterations. We include the 

baseline FEV1 measure in the imputation model as a covariate, but if this fully observed 

variable were used as an outcome, the results would be stochastically identical. We use the 

regress option to specify that the substantive analysis is a linear regression of 12-week 

FEV1 on randomized treatment and baseline FEV1. Imputation with the (randomized-arm) mar 

option automatically means the interim missing values will be imputed under MAR in each 

treatment group.

. mimix fev treat, id(id) time(time) method(mar) covariates(base) regress 

m(50)

> clear seed(101)

Performing imputation procedure for group 1 of 2…

Performing imputation procedure for group 2 of 2…

Performing regress procedure …

i.treat              _Itreat_2-3          (naturally coded; _Itreat_2 

omitted)

Multiple-imputation estimates                Imputations      =        50

Linear regression                            Number of obs      =       183

                                                Average RVI       =    0.4106

                                                Largest FMI       =    0.3495

                                                Complete DF      =       180

DF adjustment:     Small sample                    DF:    min      =     

91.39

                                                        avg      =     99.15

                                                        max      =    105.79

Model F test:        Equal FMI                    F(    2, 149.8)   =     

40.69

Within VCE type:          OLS                    Prob > F      =     0.0000 

fev Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Itreat_3 .3230728 .1042794 3.10 0.002 .1163241 .5298215
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base .7240691 .0861441 8.41 0.000 .5531672 .8949709

_cons .3959986 .1971734 2.01 0.048 .0043602 .787637

Imputed dataset now loaded in memory

Imputed data created in variable fev using mar

The output displays the results from the requested analysis, along with a description of the 

variable that now contains imputed data. Under randomized-arm MAR, the treatment estimate 

is increased from the complete records regression reported above, to 0.323 L with a p-value 

of 0.002. The results of this analysis are shown in the top panel of figure 2.

Because we used the clear option, the imputed dataset is stored in memory. The imputed 

data are output using mi set flong. Note that the imputed dataset has not yet been saved. 

If the saving() option is specified, then the imputed data will be saved when the command 

is executed.

We now reimpute the asthma trial under the J2R assumption for all individuals, with the 

placebo arm (treat = 2) first set as the reference. The interim() option is included to 

impute the interim missing values under randomized-arm MAR. Including the interim() 

option here does not actually affect the results because our substantive model of interest 

considers the treatment effect at the final timepoint. Imputation of interim values under MAR 

will have an impact when the mixed option is specified to fit a saturated repeated-measures 

model, using all follow-up outcomes, to estimate a separate baseline-adjusted treatment 

effect at each follow-up time.

. mimix fev treat, id(id) time(time) method(j2r) refgroup(2) covariates(base)

> interim(mar) regress m(50) clear seed(101)

Performing imputation procedure for group 1 of 2…

Performing imputation procedure for group 2 of 2…

Performing regress procedure …

i.treat              _Itreat_2-3          (naturally coded; _Itreat_2 

omitted)

Multiple-imputation estimates                Imputations      =       50

Linear regression                            Number of obs      =      183

                                                Average RVI       =    0.4483

                                                Largest FMI       =    0.3510

                                                Complete DF       =       180

DF adjustment:   Small sample                   DF:     min       =     91.07

                                                        avg       =    109.09

                                                        max       =    140.18

Model F test:       Equal FMI                   F(   2,  156.9)   =     32.45

Within VCE type:          OLS                   Prob > F          =    0.0000 
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fev Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Itreat_3 .2261827 .1028346 2.20 0.029 .0228754 .42949

base .6894261 .0933944 7.38 0.000 .5040403 .8748119

_cons .4669997 .2112431 2.21 0.030 .0473954 .8866041

Imputed dataset now loaded in memory

Imputed data created in variable fev using j2r

Interim missing data imputed using mar

The results of the J2R analysis with placebo as the reference are summarized in table 2 along 

with the results of a J2R analysis with active as the reference. These address the de facto 

assumption, when postdeviation individuals not randomized to the reference treatment 

change to the reference treatment. Both of these analyses result in a reduced treatment 

estimate relative to the de jure randomized-arm MAR assumption. However, while J2R with 

placebo as the reference still gives a treatment effect that is statistically significant at the 5% 

level, J2R with active as the reference does not. This is because more individuals deviate in 

the placebo arm than in the active arm (figure 1), and they tend to be individuals whose lung 

function is lower. The effect of this versus analysis under randomized-arm MAR is shown in 

figure 2. The change in placebo individuals under J2R-active reduces the treatment estimate 

by the greatest amount.

Our next analysis is last mean carried forward. Figure 1 shows that the arm-specific means 

begin to stabilize quite early in the follow-up. It is therefore to be expected that last mean 

carried forward gives a slightly reduced estimate relative to randomized-arm MAR, with a 

slightly higher p-value (see table 2). If we wish to assume that individuals’ lung function at 

deviation is broadly maintained postdeviation, then last mean carried forward would be 

appropriate.

The next two analyses are both CIR. In the first, the reference is the placebo, and in the 

second, the reference is the active arm. Because more individuals deviate in the placebo arm 

than in the active arm and because the placebo arm profiles tend to decrease while those of 

the active arm increase, we again see a slightly larger treatment estimate when the reference 

arm is placebo (see table 2). CIR with placebo reference is appropriate if, postdeviation, we 

wish to assume that active individuals’ lung function starts to decline from its current value 

at the same rate as seen in the placebo arm. CIR with active reference is appropriate if, 

postdeviation, we wish to assume that postdeviation placebo individuals access an active 

treatment and their lung function increases from its current value at the rate seen in the 

active arm.

Finally, we consider CR with placebo reference and with active reference. Under this 

assumption, an individual’s postdeviation data are imputed as if they had always belonged to 

the reference arm. CR with placebo reference may be an appropriate de facto assumption for 

individuals who could not tolerate the active treatment. Under CR, predeviation individual-

specific residuals about the mean are typically greater than under J2R. This means that 

Cro et al. Page 15

Stata J. Author manuscript; available in PMC 2018 February 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



postdeviation profiles typically change less abruptly than with J2R, which is what we observe 

here (see table 2). For CR with active reference, the treatment estimate is greater than both 

treatment estimates under J2R but less than the treatment estimates for all the other de facto 

assumptions.

We therefore conclude that if, postdeviation, medication has a comparable effect with the 

lowest active dose, then individuals will have comparable lung function at the end of the 

study. Otherwise, the sensitivity analysis is consistent with the primary analysis of the trial 

in identifying a significant beneficial effect of treatment relative to placebo.

5 Discussion

In this article, we introduced the mimix command to implement the reference-based 

sensitivity analysis approach described by Carpenter, Roger, and Kenward (2013). This 

approach sets out to provide contextually relevant sensitivity analysis of a longitudinal 

clinical trial with continuous outcome data subject to individual deviation. As we described, 

the approach constructs each individual’s joint predeviation and postdeviation data 

distribution by reference to treatment groups and then imputes the individual’s missing 

postdeviation data accordingly. The mimix program automates the steps of constructing the 

required joint distributions and the corresponding imputation distributions under a range of 

assumptions. Further, if desired, the program will automatically fit one of two substantive 

models to the resulting imputed data and combine the results by using Rubin’s (1987) rules. 

The available substantive models are either a linear regression of the final timepoint on 

baseline or treatment or a saturated repeated-measures model, as detailed above.

This method is appealing for sensitivity analysis because it does not require the formal 

specification of any sensitivity parameters, which is notoriously difficult (White et al. 2007). 

Rather than requiring quantitative assumptions, it asks for qualitative assumptions in respect 

to certain study arms. The associated quantitative assumptions are then estimated from the 

data and used to produce imputations. Different qualitative assumptions can be made for 

different individuals (or similar groups of individuals), and the mimix command allows this 

flexibility through the methodvar() option, providing contextually plausible sensitivity 

analyses.

Interim missing data, which in practice are likely to be inevitable to some extent, are also 

accommodated by mimix. These may be imputed under randomized-arm MAR (often the 

most appropriate assumption) or one of the alternative reference-based assumptions.

The approach can be used for individuals who deviate immediately, that is, for those who 

have no outcome data, as long as these individuals are included in the original dataset. The 

relevant postdeviation distribution is constructed as outlined in section 2 for such 

individuals, and all outcome data are imputed from it.

Recall that we are modeling data from a clinical trial where patient outcome data are 

collected according to a prespecified common schedule. The imputation model is MVN, with 

a separate unstructured covariance matrix for each trial arm and a separate mean for each 

timepoint. This is the most general, and by far the most appropriate, model for such data 
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(Molenberghs and Kenward 2007, chap. 5.6). If individual patients’ data are collected 

irregularly, the unstructured covariance matrix is no longer as natural of an option, and other 

options may be considered. While it is possible that this may encounter convergence 

difficulties with a very large number of timepoints and limited number of patients, in our 

experience this is not common. In such situations, one may need to consider alternative, 

more structured, forms of covariance matrix, but this is beyond our current scope. If the data 

are skewed, one can consider transformation to approximate normality, and then impute and 

transform back. Schafer (1997, chap. 6.4), however, reports simulations showing that 

imputation drawn under the MVN model are robust to moderate skewness.

If we have several baseline covariates on which we wish to condition the imputations, then a 

current restriction is that these must be fully observed. Moreover, at the imputation step they 

are formally treated as continuous in the MVN imputation. Fully binary variables can simply 

be included as they are (however they are coded). However, fully observed c-level 

categorical variables must be included as (c − 1) dummy indicator variables.

Following the general algorithm of Carpenter, Roger, and Kenward (2013), separate models 

for the predeviation data are required in each treatment arm. Any covariates potentially 

including the baseline response are consequently fit separately in each arm prior to the 

construction stage, where the treatment arm parameters may be mixed for subsequent 

imputation. If the covariates are markedly imbalanced across treatment arms, this may result 

in inappropriate data distributions. However, in the randomized controlled trial setting, the 

expected distribution of the covariates in the two arms will be the same. Randomization 

should therefore ensure any covariates are well matched and clinically similar in the two 

arms.

Throughout this article, we focused on the two-arm randomized clinical trial setting; 

however, this is not a constraint. mimix can be used to conduct reference arm–based 

imputation for trials with more than two arms.

To summarize, the mimix command provides a computationally accessible tool for 

reference-based sensitivity analysis. The assumptions available in the program correspond to 

both de jure and de facto estimands, allowing sensitivity analysis that explores the effect of 

contrasting assumptions concerning the individual’s postdeviation outcomes. We hope that 

this implementation will remove a barrier to trialists performing sensitivity analysis in 

practice.
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Figure 1. 
Observed mean FEV1 by treatment arm and deviation profile against time. Solid lines join 

observed means at each timepoint for the various deviation (withdrawal) patterns; dashed 

lines join observed means of the three individuals with interim missing data. Numbers 

indicate the counts of individuals with the associated profile.
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Figure 2. 
Mean FEV1 against time, by treatment arm, for the four different deviation (withdrawal) 

patterns under randomized-arm MAR (top panel) and J2R (bottom panel). Solid lines join 

observed means before deviation, and dashed lines join the means of the imputed data for 

that pattern.
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Table 1

Specifying the imputation method

Method name Name to specify in method() or methodvar()

Randomized-arm MAR mar

Jump to reference j2r

Last mean carried forward lmcf

Copy increments in reference cir or ciir

Copy reference cr
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Table 2

Sensitivity analysis results

Analysis Treatment estimate (L) Standard error p-value

De jure

    Primary analysis (analysis of covariance) 0.239 0.099 0.017

    Randomized-arm MAR 0.323 0.104 0.002

De facto

    Jump to placebo 0.226 0.103 0.029

    Jump to active 0.128 0.095 0.181

    Last mean carried forward 0.296 0.096 0.003

    Copy increments in placebo 0.281 0.103 0.007

    Copy increments in active 0.277 0.082 0.001

    Copy placebo 0.289 0.101 0.005

    Copy active 0.251 0.082 0.003
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