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Abstract

Previous modeling of the median lethal dose (oral rat LD50) has indicated that local class-based 

models yield better correlations than global models. We evaluated the hypothesis that dividing the 

dataset by pesticidal mechanisms would improve prediction accuracy. A linear discriminant 

analysis (LDA) based-approach was utilized to assign indicators such as the pesticide target 

species, mode of action, or target species - mode of action combination. LDA models were able to 

predict these indicators with about 87% accuracy. Toxicity is predicted utilizing the QSAR model 

fit to chemicals with that indicator. Toxicity was also predicted using a global hierarchical 

clustering (HC) approach which divides data set into clusters based on molecular similarity. At a 

comparable prediction coverage (~94%), the global HC method yielded slightly prediction 

accuracy (R2 = 0.50) than the LDA method (R2~0.47). A single model fit to the entire training set 

yielded the poorest results (R2 = 0.38), indicating there is an advantage to clustering the dataset to 

predict acute toxicity. Finally, this study shows that dividing the training set into subsets (i.e., 

clusters) improves prediction accuracy but it may not matter which method (expert based or purely 

machine learning) is used to divide the dataset into subsets.
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1. Introduction

Computational chemistry approaches have been increasingly used to predict toxicity and 

mode of action (MOA) in both human health and ecological risk assessment [1, 2]. The 

rodent oral acute toxicity endpoint has received considerable attention because of the large, 

structurally diverse dataset of more than 13,000 chemicals [3]. Attributes of these data 

include differences in median lethal doses that may directly reflect differences in intrinsic 

chemical potency among chemical structures and biological mechanisms because gavage 

dosing is less confounded with dietary intake and bioavailability. QSAR development for 
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this endpoint has continued in part because the large number of animals required for acute 

lethality[4]. For example, rodent acute oral toxicity testing is still required for pesticide 

registration in the United States, although waiving in vivo test requirements is possible [5].

Earlier QSAR modeling of rodent oral acute toxicity was generally restricted to either 

smaller datasets of structurally similar chemicals, or had limited representation of pesticidal 

compounds [6, 7]. Recent global QSAR modeling of a large structurally and toxicologically 

diverse LD50 dataset that included a range of pesticides had limited prediction accuracy that 

declined with an increase in chemical space of the applicability domain. For example, Zhu et 

al. [8] used a combinatorial QSAR approach to develop a global model using a dataset of 

7385 chemicals. A consensus model achieved a prediction accuracy (R2) of 0.42 for a 

prediction coverage (fraction of chemicals which can be predicted) of 74%. If the 

applicability domain was reduced to 19% of the prediction set, R2 increased to 0.71 for the 

consensus model. Sazonovas et al. [7] reported R2 values of 0.30 to 0.56 in global QSARs of 

rat and mice oral acute toxicity data that excluded chemicals outside of the applicability 

domain. Narrowing the applicability domain (reliability index) increased R2 values to 0.81. 

Gonella Diaza et al.[9] used the rat LD50 dataset of Zhu et al.[8] to test the performance of 

five global QSAR modeling tools. R2 values for the external validation set ranged from 0.22 

to 0.60, with R2 values reduced to 0.09 to 0.37 for compounds outside the applicability 

domains of the five models. Overall, these studies suggest that accuracy can be improved by 

limiting the range of chemical structures or the diversity of biological mechanisms 

encompassed within a model dataset [7].

A global consensus model was shown to achieve an R2 value of 0.626 at a coverage of 

98.4% if the LD50 dataset used by Zhu et al. [8] is divided randomly into a training set (80% 

of the overall set) and a prediction set (the remaining 20%) [10]. The poorer prediction 

statistics reported in Zhu et al. [8] may have been due to the fact the dataset was divided 

evenly into the training and prediction sets. Lagunin et al. [11] achieved similar results (R2 = 

0.639, coverage = 95%) for this dataset using a global consensus model. The results of 

Martin et al. [10] and Lagunin et al. [11] indicate that global models can achieve reasonable 

prediction statistics provided multiple models are used to make the predictions.

The objective of this study was to determine if prediction accuracy can be improved using 

training sets of toxicologically similar chemicals. This was explored by focusing on 

pesticidal groups designed against specific target pests. The pesticide toxicity dataset was 

organized by target pest species including fungi, plants, insects, and rodents. In addition, 

chemicals were further categorized by their mode of action (e.g., anticoagulation, 

biosynthesis inhibition, growth regulation, and neurotoxicity). Two dimensional theoretical 

chemical descriptors were computed for each compound using the computational chemistry 

tool T.E.S.T. (Toxicity Estimation Software Tool)[12]. Oral rat acute toxicity was modeled 

using both local and global modeling approaches [1]. In the local approach, linear 

discriminant analysis (LDA) models were first developed to assign chemicals to different 

classes such as pesticide target species, mode of action, or specific target species – mode of 

action combination. Multilinear regression models are then developed for each class. The 

toxicity was predicted by utilizing the LDA models to assign the class and then the 

corresponding toxicity model was used to predict the toxicity. The global models were based 
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on the hierarchical clustering method (in which the training set is divided into multiple 

models based on molecular similarity in terms of two dimensional molecular descriptors) 

and the single model method (where a single multilinear regression model is fit to the entire 

training set). Models were evaluated on prediction accuracy (in terms of the R2 coefficient of 

determination and mean absolute error) and prediction coverage for an external prediction 

set (which was randomly selected from the overall data set).

2. Material and methods

2.1. Data Set Development

Data set development was based on the pesticide target species classification of Russom [13] 

and the Zhu et al. [8] dataset of 7385 experimentally determined oral rat acute toxicity 

compiled from the National Library of Medicine ChemIDplus database [3]. The 

experimental values are in terms of mg chemical/kg rat body weight. Prior to modeling, the 

values were converted to log molar units (-log10(LD50 mol/kg)).

The U.S. EPA Pesticide Acute MOA Database [13] includes classifications of acute mode of 

action in the target pest species for 2683 pesticidal compounds. Target species are classified 

according the taxonomic group of the pest (fungi, plant, nematode, insect/acari, mollusc, 

rodent, other vertebrates), and the biochemical mode of pesticide action within the pest [13]. 

The pesticide MOA dataset was reduced to 1831 chemicals after removing mixtures, metals, 

inorganic compounds, polymers, salts and chemicals containing elements other than C, H, 

O, N, F, Cl, Br, I, S, P, Si, or As. They were removed because of the inability to compute 

molecular descriptors for these compounds. Some chemicals possess target species 

designations (since manufacturers report they kill a certain species) and not modes of action 

because it is unknown how they do it (the MOA).

The workflow for developing the training and prediction sets is given in Figure 1. The 

training and prediction sets for the quantitive prediction of oral rat LD50 were generated as 

follows: (1) if a chemical in the pesticide MOA dataset does have not an LD50 value or the 

MOA is unknown it is omitted; (2) if a chemical possesses a particular target species – mode 

of action combination that is not present in at least ten chemicals it is omitted; (3) for the 

remaining chemicals, chemicals are randomly placed in the training set (80% chemicals) and 

prediction set (20%). The LD50 training and prediction sets contained 566 and 137 

chemicals, respectively.

The training and prediction sets for the LDA models were generated as follows: (1) if a 

chemical possesses target species -mode of action combination not present in the LD50 

training set it is omitted; (2) if a chemical is present in the LD50 training set, it is placed in 

the LDA training set; (3) if a chemical is present in the LD50 prediction set, it is placed in 

the LDA prediction set; (4) remaining chemicals are randomly placed in the training set 

(80%) and the prediction set (20%). The LDA training and prediction sets contained 1052 

and 257 chemicals, respectively. The training and prediction sets for the LDA and LD50 

models are given in the supplemental information.
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The median value and toxicity ranges for the different target species – MOA combinations 

are given in Table 1. Not surprisingly, the chemicals that are targeted towards fungi and 

plants were slightly less toxic towards rodents than chemicals targeted towards insects and 

rodents. In addition, chemicals targeted towards fungi and plants span similar ranges. 

Overall, the toxicity values span about five orders of magnitude.

2.2. Molecular descriptors

For each chemical, a total 797 descriptors were generated from the MDL mol file using 

T.E.S.T. [12]. The descriptor classes included E-state values and E-state counts, 

constitutional descriptors, topological descriptors, walk and path counts, connectivity, 

information content, two-dimensional autocorrelation, Burden eigenvalue, molecular 

properties, Kappa, hydrogen bond acceptor/donor counts, molecular distance edge, and 

molecular fragment counts.[14, 15]

2.3. QSAR Development

2.3.1. Linear discriminant analysis (local) method—A two-step process was used to 

predict acute oral toxicity (see Figure 2a). In the first step, “one against the rest” linear 

discriminant analysis (LDA) models were used to predict a qualitative indicator or class. For 

predicting new chemicals, the maximum score from all the LDA models, is used to assign 

the indicator. The qualitative indicators include the pesticide target species, the target species 

– mode of action combination, or the mode of action. In the second step, a multiple linear 

regression (MLR) model corresponding to the qualitative indicator was used to predict the 

toxicity value.

An LDA model is essentially a multilinear regression model [16]:

(1)

where ai is the fitted constant for the ith molecular descriptor xi, and a0 is the model 

intercept. Chemicals with a given indicator are assigned a score of 1. Chemicals that do not 

have the given indicator are assigned a score of 0. Descriptors are selected (and regression 

constants fitted) so the model can match the experimental values for the training set. 

Typically, if the predicted score for a given model is greater than or equal to 0.5, then that 

indicator is positive. If the score is less than 0.5, then that MOA or target species is not 

indicated. To build the LDA models, a genetic algorithm technique [15, 17, 18] was used to 

select the optimal descriptor set.

Acute toxicity values were predicted using a multilinear regression model for toxicity:

(2)

bi is the fitted constant for parameter i, xi is the ith molecular descriptor, and b0 is the model 

intercept. The descriptors were selected using a genetic algorithm approach as outlined in a 
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previous publication [15]. The minimum ratio of chemicals to descriptors was set at 5:1 for 

QSAR modeling. A separate multilinear regression model was developed for each subset 

(e.g. for each of the fungi, insect, plant, and rodent subsets if the target species is the 

indicator). The toxicity is predicted by utilizing the multilinear regression model 

corresponding to the assigned indicator.

2.3.2. Hierarchical clustering (global) method—The hierarchical clustering (HC) 

method [15] utilizes a machine learning based approach (Ward’s Minimum Variance 

Clustering Method [19]) to divide the training set into subsets (known as clusters). The 

clustering is performed based on similarity (in terms of molecular descriptors) rather than by 

qualitative indicators such as mode of action. Conceptually, hierarchical clustering can be 

considered a local modeling approach where the local domains are derived from molecular 

similarity (i.e., machine learning) rather than from qualitative indicators (i.e., expert based) 

as in the LDA method, above.

After the clustering is complete, the genetic algorithm approach [15] is utilized for 

descriptor selection to develop a QSAR model for each cluster. The predicted value for a 

given test chemical is calculated using the equally weighted average of the model 

predictions from the closest cluster from each step in the hierarchical clustering (see Figure 

2b). Hierarchical clustering models were fit to the training set used for the pesticide LD50 

training set (566 chemicals) and using all of the chemicals that were not present in the 

prediction set for the LDA method (7276 chemicals). This was done to determine whether 

the purely machine-based hierarchical clustering method could obtain comparable results 

when the training set is not limited to pesticides.

2.3.3. Single model (global) method—In the single model method, a single multilinear 

regression (SM) model (see equation 2) is fit to the entire training set (rather using subsets of 

the training set as in the case of the LDA and hierarchical clustering method).

2.3.4. Applicability domain—Before any QSAR model can be used to make a prediction 

for a test chemical, it must be determined whether the test chemical falls within the domain 

of applicability (or AD) for the model. The first constraint, the model ellipsoid constraint, 

checks if the test chemical is within the multidimensional ellipsoid defined by the ranges of 

descriptor values for the chemicals in the training set (for the descriptors appearing in the 

model). The model ellipsoid constraint is satisfied if the leverage of the test compound (h00) 

is less than the maximum leverage value for all the compounds used in the model [20]. The 

second constraint, the Rmax constraint, checks if the distance from the test chemical to the 

centroid of the training set is less than the maximum distance for any chemical in the 

training set to the its centroid. These two constraints were applied to the prediction of 

indicators using the LDA models and the prediction of toxicity using the regression models. 

They were also applied to the individual models for the hierarchical clustering method. The 

final constraint is the training set must contain at least one example of each of the molecular 

fragments that are present in the test chemical [15]. This fragment constraint was applied to 

the hierarchical clustering and single model methods. It was not applied to the LDA method 

because it was not found to improve prediction concordance [2].
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A filter was employed in which the maximum score from all the LDA models must exceed 

0.5 (denoted from here on as the min score filter). The prediction accuracy for the 

compounds that were excluded by this criterion (and by the AD discussed above) was 

assessed to determine if they improve the overall prediction accuracy (by omitting mostly 

incorrect predictions).

3. Results and discussion

3.1. LDA training set statistics

The correlation statistics for the LDA models are given in Table 2. They represent the results 

for correlating binary (positive or negative) values for each indicator (MOA, target species, 

and target species-MOA) for the training set of 1053 chemicals. It was determined that a 

ratio of 40 chemicals to descriptors (26 descriptors per model), yielded the best results (in 

terms of resubstitution sensitivity) for the different indicators. Sensitivity is defined as the 

fraction assigned correctly for the chemicals which possess the indicator. The 40:1 ratio far 

exceeds the minimum recommended ratio of 5:1 [21]. For example, for fungi, there were 

202 positive compounds and 850 negative compounds. The sensitivity of 0.5 indicates the 

model yielded positive scores for half of the chemicals which have fungi as the target 

species (i.e., 101 chemicals). Some of the models had low sensitivities (e.g., respiration 

modulation). This can be explained by the fact that some of these indicators had few positive 

chemicals in the training set (i.e., the dataset is heavily biased) and that sometimes 

chemicals with similar structures can affect multiple target species. Utilizing the target 

species as the indicator for the LDA models yielded a higher average training sensitivity 

(0.78) than using MOA (0.65) or target species-MOA (0.54). This can be explained by the 

fact that as the number of indicator choices increases, some of the indicators have more 

biased training sets.

3.2. LDA prediction set statistics

The prediction statistics for the LDA models are given in Table 3. To make predictions for 

the external set (257 chemicals), the maximum score from all the models is utilized to 

predict the indicator. For all three sets of indicators (target species, MOA, and target species-

MOA), the fraction correct was roughly 87% overall. This result matches the prediction 

accuracies obtained for aquatic toxicity mode of action [1, 2].

The prediction coverage decreased linearly from 86% to 70% as the number of indicator 

categories increased from 4 to 9. This can be attributed to the fact the training sets become 

more biased as the number of categories increases. The fraction correct for each indicator 

was highly correlated with the training set sensitivity for that indicator. This similarity is not 

unexpected because the overall dataset was divided randomly into training and prediction 

sets (with an equal distribution of the target species-MOA indicators).

3.3. LD50 training set statistics

The training set statistics for the multilinear regression models for each indicator are given 

in Table 4. According to the Shapiro-Wilk Test [22], the majority of the subsets (17/20) were 

normally distributed (when toxicity is expressed in terms of -log10(LD50 mol/kg)) with the 
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exception of the subsets dealing fungi / biosynthesis inhibition (i.e. fungi, biosynthesis 

inhibition, and fungi-biosynthesis inhibition). Most of the models had acceptable regression 

statistics (q2>0.5, R2 > 0.6). The fungi target species has the largest difference (0.25) 

between the q2 and r2 value. This can be attributed to the fact that the data set for this target 

species is not normally distributed (outliers can reduce the q2 statistic). The LD50 models 

using target species as the indicator had slightly lower q2 values (on average) than for the 

other two indicators. This would suggest that using target species as the indicator will yield 

larger LD50 prediction errors.

3.4. LD50 prediction set statistics

The prediction results for the LD50 prediction set are given in Table 5. In order for the 

prediction coverage of the LDA method to match that of the HC and SM methods, results 

were presented for the case in which the minimum positive score constraint was omitted. At 

a prediction coverage of ~94%, the LDA based predictions had R2 values (0.46, 0.48, and 

0.47) which were slightly lower than those for the HC method (0.50). The SM method, 

however, had a lower R2 value (0.38) than either method, which illustrates the benefits of 

using multiple models for predicting the rat toxicity. For the methods with a prediction 

coverage of ~94%, the MAE (mean absolute error) values were not found to be statistically 

significant in terms of Welch’s t-test (95% confidence interval) [23]. To the put the MAEs in 

perspective, the MAE is 0.73 if the median toxicity value for the training set is used as the 

predicted value. This MAE value is statistically different to the predictions from the QSAR 

approaches using Welch’s t-test.

Employing the minimum positive score constraint slightly increased the R2 value for the 

LDA method but significantly reduced the prediction coverage (by ~24%). In addition, the 

results for all three sets of indicators were essentially the same. This suggests that as long as 

the data set is divided into manageable subsets, the associated QSAR models can account for 

the differences in molecular structure.

LDA models incorrectly predicted the target species thirteen times. For these compounds, if 

one makes the LD50 prediction utilizing the experimental target species, the mean absolute 

error does not improve (after removing three compounds which cannot be predicted due to 

constraints for the LD50 models). This indicates that improvement in predicting the LDA 

indicators will not significantly aid in improving the prediction of acute rat toxicity.

Utilizing a much larger training set (i.e. not filtering for pesticides) yielded comparable 

results for the HC method (the R2 value was 0.04 higher but the coverage was 0.05 lower). 

This indicates that it may not be necessary to filter the training set in order to make 

predictions for pesticides (as long as multiple models are used to predict the toxicity).

The LD50 prediction set results for all target species and for the fungi, insect, and plant 

target species are given in the Figures 3–6, respectively. A plot was not provided for the rat 

target species because there were only two compounds with this target species in the LD50 

prediction set. These figures illustrate the HC method yields slightly better results than the 

SM and LDA methods overall and for the different individual target species.
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In Figure 7, toxicity is presented as a function of chain length for a series of normal alcohols 

for both acute rat and fish toxicity (in terms of 96 hour fathead minnow toxicity [24]). The 

toxicity values span more than two orders of magnitude for fish toxicity than they do for rat 

toxicity. For fish toxicity, a simple quadratic function of the chain length was able to 

perfectly correlate the data (R2 = 1.00). For rat toxicity, the correlation was much weaker 

(R2 = 0.38). One would expect a better correlation for compounds with presumably the same 

toxicity mode of action. In addition, the default experimental standard deviation of the oral 

rat LD50 test is 0.5 log units[25] whereas the MAE from the predicted values in this study 

range from 0.5–0.6 log units. This illustrates why it is difficult to predict rat toxicity to 

greater accuracy.

4. Conclusions

In this study we investigated whether chemicals are better predicted using models based on 

toxicologically similar chemicals. In the LDA approach, rodent toxicity is predicted using 

the model corresponding to the predicted indicator (i.e. pesticide target species, mode of 

action, or target species – mode of action). The different indicators yielded comparable 

prediction accuracy for predicting rodent toxicity values. In the HC approach, toxicity is 

predicted using the cluster models which are most similar to the chemical in terms of 

molecular similarity (i.e. expert defined indicators are not used to divide the data set into 

subsets). At a comparable prediction coverage, the HC method yielded slightly higher 

prediction accuracy than the LDA method. The SM method yielded the poorest results, 

which indicates there is an advantage to dividing the dataset into clusters or classes to 

predict acute toxicity. The HC method was able to make comparable predictions for the 

prediction set (which contains only pesticides) when a much larger training set (including a 

wide variety of non-pesticides) is used to develop the models.

This study illustrated that dividing the training set into subsets (or clusters) can improve 

prediction accuracy. However, the use of expert defined classes did not yield improved 

prediction statistics over machine based learning methods based purely on molecular 

similarity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow for developing the training and prediction sets
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Figure 2. 
Example prediction of toxicity using the LDA and HC methods.
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Figure 3. 
Results for the LD50 prediction set for all target species.
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Figure 4. 
Results for the LD50 prediction set for the fungi target species.
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Figure 5. 
Results for the LD50 prediction set for the insect target species.
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Figure 6. 
Results for the LD50 prediction set for the plant target species.
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Figure 7. 
Comparison of toxicity values for acute oral rat and acute fathead minnow toxicities for a 

series of n-alcohols.
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Table 2

Training set statistics for LDA models.

Target species n Concordance Sensitivity Specificity

Fungi 202 0.89 0.50 0.98

Insect 402 0.91 0.84 0.96

Plant 433 0.89 0.86 0.91

Rodent 15 1.00 0.93 1.00

Average 0.92 0.78 0.96

MOA n Concordance Sensitivity Specificity

Anticoagulation 15 1.00 0.93 1.00

Biosynthesis inhibition 311 0.86 0.64 0.95

Growth regulation 141 0.94 0.65 0.99

Neurotoxicity 377 0.93 0.88 0.96

Photosynthesis modulation 105 0.95 0.52 0.99

Reactivity 30 0.99 0.57 1.00

Respiration modulation 73 0.96 0.38 1.00

Average 0.95 0.65 0.98

Target species-MOA n Concordance Sensitivity Specificity

Fungi-Biosynthesis inhibition 124 0.92 0.42 0.99

Fungi-Reactivity 30 0.99 0.57 1.00

Fungi-Respiration modulation 48 0.96 0.21 1.00

Insect-Neurotoxicity 377 0.93 0.88 0.96

Insect-Respiration modulation 25 0.98 0.16 1.00

Plant-Biosynthesis inhibition 187 0.90 0.56 0.98

Plant-Growth regulation 141 0.94 0.65 0.99

Plant-Photosynthesis modulation 105 0.95 0.52 0.99

Rodent-Anticoagulation 15 1.00 0.93 1.00

Average 0.95 0.54 0.99
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Table 3

Statistics for LDA prediction set.

Target Species n Fraction
predicted*

Fraction
correct

Training set
sensitivity

Fungi 49 0.73 0.56 0.50

Insect 99 0.88 0.91 0.84

Plant 107 0.90 0.95 0.86

Rodent 2 1.00 1.00 0.93

Overall 257 0.86 0.87

MOA n Fraction predicted* Fraction correct Training set sensitivity

Anticoagulation 2 1.00 1.00 0.93

Biosynthesis inhibition 77 0.75 0.86 0.64

Growth regulation 35 0.71 0.72 0.65

Neurotoxicity 93 0.86 0.96 0.88

Photosynthesis modulation 26 0.65 0.94 0.52

Reactivity 7 0.57 0.25 0.57

Respiration modulation 17 0.47 0.38 0.38

Overall 257 0.75 0.86

Target species - MOA n Fraction predicted* Fraction correct Training set sensitivity

Fungi-Biosynthesis inhibition 31 0.71 0.59 0.42

Fungi-Reactivity 7 0.43 0.33 0.57

Fungi-Respiration modulation 11 0.45 0.40 0.21

Insect-Neurotoxicity 93 0.85 0.98 0.88

Insect-Respiration modulation 6 0.17 0.00 0.16

Plant-Biosynthesis inhibition 46 0.67 0.90 0.56

Plant-Growth Regulation 35 0.60 0.86 0.65

Plant-Photosynthesis modulation 26 0.62 1.00 0.52

Rodent-Anticoagulation 2 1.00 1.00 0.93

Overall 257 0.70 0.87

*
A minimum score of 0.5 was required to make a prediction.
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Table 4

Training set statistics for LD50 models.

Target Species n #descriptors q2* R2*

Fungia 102 13 0.36 0.61

Insect 259 22 0.42 0.52

Plant 193 23 0.55 0.66

Rodent 11 2 0.95 0.98

MOA n #descriptors q2 R2

Anticoagulation 11 2 0.95 0.98

Biosynthesis inhibitiona 139 20 0.49 0.69

Growth regulation 61 10 0.76 0.83

Neurotoxicity 243 23 0.51 0.59

Photosynthesis modulation 61 7 0.55 0.65

Reactivity 22 4 0.57 0.70

Respiration modulation 28 5 0.74 0.82

Target species-MOA n #descriptors q2 R2

Fungi-Biosynthesis inhibitiona 67 13 0.61 0.77

Fungi-Reactivity 22 4 0.57 0.70

Fungi-Respiration modulation 12 2 0.65 0.77

Insect-Neurotoxicity 243 23 0.51 0.59

Insect-Respiration modulation 16 3 0.74 0.86

Plant-Biosynthesis inhibition 70 14 0.77 0.86

Plant-Growth regulation 61 10 0.76 0.83

Plant-Photosynthesis modulation 61 7 0.55 0.65

Rodent-Anticoagulation 11 2 0.95 0.98

a
Not normally distributed according to the Shapiro-Wilk Test [22]

*
q2 = leave one out cross validated R2, R2= coefficient of determination
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