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Abstract

Estimating individualized treatment rules is a central task for personalized medicine. [23] and [22] 

proposed outcome weighted learning to estimate individualized treatment rules directly through 

maximizing the expected outcome without modeling the response directly. In this paper, we extend 

the outcome weighted learning to right censored survival data without requiring either inverse 

probability of censoring weighting or semiparametric modeling of the censoring and failure times 

as done in [26]. To accomplish this, we take advantage of the tree based approach proposed in [28] 

to nonparametrically impute the survival time in two different ways. The first approach replaces 

the reward of each individual by the expected survival time, while in the second approach only the 

censored observations are imputed by their conditional expected failure times. We establish 

consistency and convergence rates for both estimators. In simulation studies, our estimators 

demonstrate improved performance compared to existing methods. We also illustrate the proposed 

method on a phase III clinical trial of non-small cell lung cancer.

Keywords and phrases

Individualized treatment rule; Nonparametric estimation; Right censored data; Excess value 
bound; Recursively imputed survival trees; Outcome weighted learning

1. Introduction

An individualized treatment regime provides a personalized treatment strategy for each 

patient in the population based on their individual characteristics. A significant amount of 

work has been devoted to estimating optimal treatment rules [17, 18, 22, 24, 23]. While each 

of these approaches has strengths and weaknesses, we highlight the approach in [23] 

because of its robustness to model misspecification (this is similarly true of the approach in 

[22]) combined with its ability to incorporate support vector machines through the 

recognition that optimizing the treatment rule can be recast as a weighted classification 

problem. This approach is commonly referred to as outcome weighted learning. In clinical 
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trials, right censored survival data are frequently observed as primary outcomes. Adapting 

outcome weighted learning to the censored setting, [26] proposed two new approaches, 

inverse censoring weighted outcome weighted learning and doubly robust outcome weighted 

learning, both of which require semiparametric estimation of the conditional censoring 

probability given the patient characteristics and treatment choice. The doubly robust 

estimator additionally involves semiparametric estimation of the conditional failure time 

expectation but only requires that one of the two models, for either the failure time or 

censoring time, be correct. Potential drawbacks of these methods are that either or both 

models may be misspecified and inverse censoring weighting estimation can be unstable 

numerically [18, 28].

In this paper, we propose a nonparametric tree based approach for right censored outcome 

weighted learning which avoids both the inverse probability of censoring weighting and 

restrictive modeling assumptions for imputation through recursively imputed survival trees 

[28]. Since the true failure times T are only partially known, they cannot be used directly as 

weights in the outcome weighted learning [23] framework. However, recursively imputed 

survival trees [28] provide an alternative approach to weighting by using the conditional 

expectations of censored observations without requiring inverse weighting. Tree-based 

methods [4, 3] are a broad class of nonparametric estimators which have become some of 

the most popular machine learning tools. Its adaptation to the survival setting has also drawn 

a lot of interests in the literature [14, 9, 11], and it has also been used for interpretable 

prediction modeling in personalized medicine [12]. The recursively imputed survival tree 

approach [28] combines extremely randomized trees with a recursive imputation method, 

which has been shown to improve performance and reduce prediction error while avoiding 

estimation of inverse censoring weights without making parametric or semiparametric 

assumptions on the conditional probability distribution of the failure time. Numerical studies 

demonstrate that the proposed method outperforms existing alternatives in a variety of 

settings.

The proposed method uses these recursively imputed survival trees to impute the survival 

times nonparametrically in a manner suitable for implementation within outcome weighted 

learning. We verify this novel approach both theoretically and in numerical examples. As 

part of this, we also present for the first time consistency and rate results for tree-based 

survival models in a more general setting than the categorical predictors considered in [10].

The remainder of the article is organized as follows. In section 2, we present the 

mathematical framework for individualized treatment rules for right censored survival 

outcomes. In section 3 we establish consistency and an excess value bound for the estimated 

treatment rules. Extensive simulation studies are presented in Section 4. We also illustrate 

our method using a phase III clinical trial on non-small cell lung cancer in Section 5. The 

article concludes with a discussion of future work in Section 6. Some needed technical 

results are provided in the Appendix.
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2. Methodology

2.1. Individualized treatment regime framework

Before characterizing the individualized treatment regime, we first introduce some general 

notation and introduce the value function, and then extend the notation and ideas to the 

censored data setting. Let  be the observed patient-level covariate vector, where  is 

a d dimensional vector space, and let A ∈ {−1, +1} be the binary treatment indicator.  is 

the true survival time, however, we consider a truncated version at τ, i.e., , 

where the maximum follow-up time τ < ∞ is a common practical restriction in clinical 

studies. The goal in this framework is to maximize a reward R, which could represent any 

clinical outcome. Specifically, we wish to identify a treatment rule , which is a map from 

the patient-level covariate space  to the treatment space {+1, −1} which maximizes the 

expected reward. In the survival outcome setting, we use R = T or log(T) as done in [26].

To achieve this maximization, we define the value function as

where I{·} is an indicator function, π(a; X) = pr(A = a|X) > M′ a.s. for some M′ > 0 and 

each a ∈ {+1, −1}. The function π is the propensity score and is known in a randomized trial 

setting, which we assume is the case for this paper, but needs to be estimated in a non-

randomized, observational study setting. The individualized treatment regime we are most 

interested in is the optimal treatment rule  which maximizes the value function, i.e.

(1)

After rewriting the value function as

it is easy to see that

Hence, the definition of  is equivalent to . Instead of 

maximization the objective function in (1), the outcome weighted learning approach 

searches for the optimal decision rule  by minimizing the weighted misclassification 

error, i.e.,

(2)
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In an ideal situation, we would replace R with T or log(T). However, this is not possible 

under right censoring.

2.2. Value function under right censoring

Consider a censoring time C that is independent of T given (X, A). We then have the 

observed time Y = min(T, C), and the censoring indicator δ = I(T ≤ C). Assume that n 

independent and identically distributed copies, , are collected. Since T is 

not fully observed we seek for a sensible replacement which maintains as close as possible 

the same value function. We propose two approaches in the following, denoted as R1 and R2 

respectively. The first approach is to obtain a nonparametric estimated conditional 

expectation . Letting R1 = E(T | X, A) and bringing the expectation of T inside, 

we have

(3)

Another approach is to replace only the censored observations conditioning on the observed 

data. It is interesting to observe that the conditional expectation of T, given Y and δ, can be 

written as

(4)

An important property that we used in the last equality is the conditional independence 

between T and C. With the information of Y = y given, and knowing that δ = 0, the 

conditional distribution of T is defined on (c, τ] with density function proportional to the 

original density of T. In other words, the conditional survival function of T is S(t|X, A)/S(c|

X, A) for t > c, where S(·|X, A) is the conditional survival function of T. Hence, we can 

calculate the expectation of T accordingly. With the definition of R2, it is easy to see that the 

corresponding value function is equivalent to the left side of equation (3) by further taking 

expectations with respect to Y and δ. Note that the above arguments remain unchanged if we 

replace T, C and Y with log(T), log(C), and log(Y), respectively: this equivalence will be 

tacitly utilized throughout the paper, except when the distinction is needed.

With our proposed two reward measures, the remaining challenge is to nonparametrically 

estimate the conditional expectations. To this end, we utilize the nonparametric tree based 

method proposed by [28]. It is worth noting that the conditional expectation of T defined in 

R2 shares the same logical underpinnings as the imputation step in [28]. However, the goal 

of the imputation step is to replace the censored observations with a randomly generated 

conditional failure time which utilizes the same condition survival distribution of T given T 
> C. We will provide details of the estimation procedure in the next section. To conclude this 
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section, we provide the empirical versions of the value function using the two rewards R1 

and R2, respectively, which we solve for the optimal decision  by minimization:

(5)

(6)

2.3. Outcome weighted learning with survival trees

The recursively imputed survival trees method proposed by [28] is a powerful tool to 

estimate conditional survival functions for censored data. A brief outline of the algorithm is 

provided in the following. We refer interested readers to the original paper for details. To fit 

the model, we first generate extremely randomized survival trees for the training dataset. 

Secondly, we calculate conditional survival functions for each censored observation, which 

can be used for imputing the censored value to a random conditional failure time. Thirdly, 

we generate multiple copies of the imputed dataset, and one survival tree is fitted for each 

dataset. We repeat the last two steps recursively and the final nonparametric estimate of 

 is obtained by averaging the trees from the last step.

Following [23], we next use support vector machines to solve for the optimal treatment rule. 

A decision function f(x) is learned by replacing  in Equations (5) or (6) with 

ϕ{Aif(Xi)}, where ϕ(x) = (1 − x)+ is the hinge loss and x+ = max(x, 0). Furthermore, to 

avoid overfitting, a regularization term λn‖f‖2 is added to penalize the complexity of the 

estimated decision function f. Here, ‖f‖ is some norm of f, and λn is a tuning parameter. A 

high-level description of the proposed method is given in Algorithm 1 below. We consider 

both linear and nonlinear decision functions f when solving (7). For a linear decision 

function, f(x) = θ0 + θT x and we let ‖f‖ be the Euclidean norm of θ. For nonlinear decision 

functions, we employ a universal kernel function , such as the Gaussian 

kernel, which is continuous, symmetric and positive semidefinite. The optimization problem 

is then equivalent to a dual problem that maximizes

subject to 0 ≤ αi ≤ γWi/πi and , where Wi is the numerator in either (5) or (6) 

and πi is the respective denominator. Both settings can be efficiently solved by quadratic 

programming. For further details regarding solving weighted classification problems using 

support vector machines, we refer to [23, 26, 5].
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Algorithm 1: Pseudo algorithm for the proposed method—Step 1. Use 

 to fit recursively imputed survival trees. Obtain the estimation 

 for reward R1 or the estimation  for reward R2.

Step 2. Let the weights Wi be either  or , 

depending on which of the two proposed approaches is used. Minimize the following 

weighted misclassification error:

(7)

Step 3. Output the estimated optimal treatment rule .

3. Theoretical results

3.1. Preliminaries

The risk function is defined as

where the reward R = R1 = E(T|X, A) for the first approach, or R = R2 = δY + (1 − δ)E(T|X, 
A, T > Y,Y) for the second one. We define ϕ-risk for both the true and the working model as, 

respectively, Rϕ(f) = E[Rϕ{Af(X)}/π(A; X)] and , where 

 is the estimated value of R based on one of the two proposed methods. We also define the 

hinge loss function for the true and working models as Lϕ(f) = Rϕ{Af(X)}/π(A; X) and 

, respectively.

The proposed estimator , where  is solved by one of the following 

optimization problems within some reproducible kernel Hilbert space :

or
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3.2. Consistency of tree-based survival models

In this section, we provide the convergence bound of a simplified tree-based survival model, 

which is very close to the original algorithm in [28]. The purpose of this section and its main 

result, Theorem 1, is to demonstrate the existence of an accurate estimator of the underlying 

hazard function when tree-based methods are used. An earlier result developed in [10] 

considers only categorical feature variables. To the best of our knowledge, what we present 

below is the first consistency result for a tree-based survival model under general settings 

with restrictions only on the splitting rules, which is interesting in its own right.

For simplicity, we assume in this section that  is the 

training sample, where Xi is independent uniformly distributed on [0, 1]d. The result can be 

easily generated to distributions with bounded support and density function bounded above 

and below. For any fixed x, our goal is to estimate the cumulative hazard function of failure 

time r(·, X, A) = ΛT (·|X, A); hereinafter, we write it as Λ(·|X, A).

A random forest is a collection of randomized regression trees 

, where m is the number of trees. The randomizing 

variable Θ is used to indicate how the successive cuts are performed when an individual tree 

is built. Hence the forest version of the survival tree model can be expressed as

Here, we consider a simplified scenario in which the selection of the coordinate is 

completely random and independent from the training data [1]. We only consider the 

consistency of a single tree and denote our tree estimator as . The result can be 

easily extended to the situation where m is finite.

A brief description of how each individual tree is constructed is provided in the appendix. 

Here we highlight some key assumptions and the main result. Our first assumption puts a 

lower bound on the probability of observing a failure at τ, and the second one assumes the 

smoothness of the hazard and cumulative hazard functions.

Assumption 1—For some M > 0, SY (τ|X, A) > M almost surely.

Assumption 2—For any fixed time point t and treatment decision A, the cumulative 

hazard function Λ(t | X, A) is L-Lipschitz continuous in terms of X, and the hazard function 

λ(t | X, A) is L′-Lipschitz continuous in terms of X, i.e., |Λ(t|X1, A) − Λ(t|X2, A)| ≤ L‖X1 − 

X2‖ and |λ(t|X1, A) − λ(t|X2, A) ≤ L′‖X1 − X2‖, respectively, where ‖·‖ is the Euclidean 

norm.

The following theorem provides the bound of the proposed tree based survival model for 

each X. Details of the proof are collected in the Appendix.
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Theorem 1—Assume that Assumptions 1–2 and the construction of a tree-based survival 

model described in the Appendix. Further assume that kn → ∞ and n/kn → ∞ as n → ∞, 

where kn is a tuning parameter denoting the number of terminal nodes. For any b = nζ, 

where ζ > 0, we have for each X,

where r, u ∈ (0, 1), n ≥ 288b/M4, C is some universal constant, and

The ideal balance happens when . In this case, the optimal rate of the bound is 

close to . The following theorem proves consistency of the proposed tree based 

survival model. Details of the proof are collected in the Appendix.

Theorem 2—Assume that Assumptions 1–2 and the construction of a tree-based survival 

model described in the Appendix. Further assume that kn = nη, where 0 < η < 1. Then the 

estimator of the survival tree model is consistent. Moreover, for any b = nζ, where ζ > 0,

where r,u ∈ (0,1), n ≥ 288b/M4, C is some universal constant, and

3.3. Consistency and Excess Value Bound

Fisher consistency follows directly from Proposition 3.1 in [23], hence the proof is omitted. 

Here we restate the result as the following lemma. For the proposed method, we simply 

replace the reward R in Rϕ(f) with R1 or R2. Note that both versions are equivalent to the 

reward function Rϕ(f) = E[Tϕ{Af(X)}/π(A; X)]:

Lemma 1 (Proposition 3.1 in [23])—For any measurable function , if  minimizes 

Rϕ(f), then .

Provided the Assumptions in Section 3.2 hold, the following lemma ensures the convergence 

of the estimated conditional expectations. The proof is given in Appendix.

Lemma 2—Based on Theorem 1, for each X the estimated conditional expectations 

converge in probability, i.e.,
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for some constant C1, C2 (depending on L, L′, τ, M, d).

We will use the above lemmas to prove our main theorem based on the Gaussian kernel. 

Before we derive the convergence rate and excess value bound, we define the value function 

corresponding to the true and working model as V (f) = E(RI[A = sign{f(X)}]/π(A; X)) and 

, respectively. We further define the empirical L2–

norm, , which also defines an ε-ball based 

on this norm. By Theorem 2.1 in [20], we restate the bound for covering numbers:

Lemma 3 (Theorem 2.1 in [20])—For any β > 0, 0 < v < 2, ε > 0 we have 

, where  is the closed unit ball of 

, and d is the dimension of .

Lastly, for , we define the approximation error function

Then we have following theorem, the proof of which is given in Appendix.

Theorem 3—Based on Theorem 2 and assuming that the sequence λn > 0 satisfies λn → 0 

and λn ln n → ∞, we have that

where f* maximize the true value function V, 

,  and ρ > 0 for both methods; also, Mv is a constant depending on v, 

K is a sufficiently large positive constant, and C is a some large constant depending on d.

The rate consists of two parts. The first part is from the approximation error using . The 

second part controls the approximation error due to using the proposed tree-based method to 

estimate the conditional expectation.
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4. Simulation studies

We perform simulation studies to compare the proposed method with existing alternatives, 

including the Cox proportional hazards model with covariate-treatment interactions, inverse 

censoring weighted outcome weighted learning, and doubly robust learning, both proposed 

in [26]. We use survival time on the log scale log(T) as outcome. We also present for 

comparison an “oracle” approach which uses the true failure time on the log scale log(T) as 

the weight in outcome weighted learning, although this would not be implementable in 

practice. However, this approach is a representation of the best possible performance under 

the outcome weighted learning framework.

We generate Xi’s independently from a uniform distribution. Treatments are generated from 

{+1, −1} with equal probabilities. We present four scenarios in this simulation study. The 

failure time T and censoring time C are generated differently in each scenario, including 

both linear and nonlinear decision rules. For each case, we learn the optimal treatment rule 

from a training dataset with sample size n = 200. A testing dataset with size 10000 is used to 

calculate the value function under the estimated rule. Each simulation is repeated 500 times.

Tuning parameters in the tree based methods need to be selected. We mostly use the default 

values. The number of variables considered at each split is the integer part of the square root 

of d as suggested by [11] and [7]. We set the total number of trees to be 50 as suggested by 

[28] and use one fold imputation. For the alternative approaches such as inverse censoring 

weighted outcome weighted learning and doubly robust learning, a Cox proportional hazards 

model with covariates (X, A, XA) is used to model T and C respectively. Note that when at 

least one of the two working models is correctly specified, the doubly robust method enjoys 

consistency. We implemented outcome weighted learning using a Matlab library for support 

vector machine [5]. Both linear and Gaussian kernels are considered for all methods except 

for the Cox model approach which could be directly inverted to obtain the decision rules. 

The parameter λn is chosen by ten-fold cross-validation.

4.1. Simulation settings

For all scenarios, we generate  and C independently. The failure time . For all 

accelerated failure time models, ε is generated from a standard normal distribution. For all 

Cox proportional hazards models, the baseline hazard function λ0(t) = 2t. For all simulation 

results presented in this section, we consider setting the censoring rates to approximately 

45% for all scenarios. We also perform a sensitivity analysis for different censoring rates 

(30% and 60%) for each scenario. These additional results are presented in the Appendix.

Scenario 1—Both  and C are generated from the accelerated failure time model. τ = 2.5 

and d = 10. The optimal decision function is linear. The value of the optimal treatment rule 

is approximately 0.031:
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Scenario 2—  is generated from a Cox model and C is generated from the accelerated 

failure time model. The optimal decision function is nonlinear. τ = 8 and d = 10. The value 

of the optimal treatment rule is approximately 0.181:

Scenario 3—  is generated from an accelerated failure time model with tree structured 

effects. C is generated from a Cox model with nonlinear effects. τ = 8 and d = 5. The value 

of the optimal treatment rule is approximately 1.079:

Scenario 4—  is is generated from an accelerated failure time model. C is generated from 

a Cox model. τ = 2 and d = 10. The value of the optimal treatment rule is approximately 

−0.389:

4.2. Simulation results

Figure 1 shows the boxplot of values based on the logarithm of T calculated from the test 

data. The mean and standard deviation of values are shown in Table 1. In scenario 1, since 

the model is not correctly specified for inverse probability of censoring outcome weighted 

learning, the doubly robust estimator, or Cox regression, our method performs better than all 

other competitors.

In scenario 2, we added some nonlinear terms into both the Cox and accelerated failure time 

models. The model assumptions for inverse censoring outcome weighted learning and the 

doubly robust estimator are not satisfied. Our estimated treatment rule performs much better 

than these two. Compared with inverse censoring outcome weighted learning and doubly 

robust learning, both our approaches improve more than 0.1 for the mean. Since the true 
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model for the failure time is the Cox model, Cox regression performs better here. In this 

case, the Gaussian kernel performs less well than the linear kernel for most methods since 

the true model structure is linear and the Gaussian kernel is too flexible.

For scenario 3, which has a more complicated tree structure, the Gaussian kernel performs 

better than the linear kernel for all outcome weighted learning approaches. The performance 

of the Gaussian kernel is enhanced since it can better address the true nonlinear model 

structure. We can see that with either a linear or Gaussian kernel, our estimators perform 

better than Cox regression. Compared with doubly robust learning, our two approaches 

improve 0.2 for the mean.

In scenario 4, we see that when the model is correctly specified for inverse probability of 

censoring outcome weighted learning and doubly robust learning, the performances of both 

approaches are satisfactory while our methods seem to be only a little better. The 

performances of our first approach, inverse probability of censoring outcome weighted 

learning and Cox regression are all similar. Our second approach has the best treatment 

effect among all estimators. Note that our second approach appears to perform as well as the 

first, oracle approach. Also, our two proposed methods have smaller standard errors in 

scenarios 1 and 3. The standard error is similar for all outcome weighted learning 

approaches in scenario 2 and 4. Overall, our proposed methods have generally lower 

variances.

Compared with results of censoring rates (30% and 60%) in the Appendix, we can observed 

a consistently pattern that lower censoring rate leads to higher performances in terms of both 

mean value and variance. The relative performances between the proposed and the 

competing methods remain similar across different censoring rates.

5. Data Analysis

We apply the proposed method to a non-small-cell lung cancer randomized trial dataset 

described in [19]. 228 subjects with complete information are used in this analysis. Each 

treatment arm contains 114 subjects. The censoring rate is 29%. Here we use five covariates: 

performance status (119 subjects ranging from 90% to 100% and 109 subjects ranging from 

70% to 80%), cancer stage (31 subjects in stage 3 and 197 subjects in stage 4), race (167 

white, 54 black and 7 others), gender (143 male and 85 female), age (ranging from 31 to 82 

with median 63). The length of study is τ = 104 weeks. We adopt the same tuning 

parameters used in the simulation study for this analysis. The value function is again 

calculated by using the logarithm of survival time log(T) (in weeks) as the reward.

We randomly divide the 228 patients into four equal proportions and use three parts as 

training data to estimate the optimal rule and calculate the empirical value based on the 

remaining part. We then permute the training and testing portions and average the four 

results. This procedure is then repeated 100 times and averaged to obtain the mean and 

standard deviation. To calculate the testing data performance, we consider two different 

measurements, both are calculated based on the formula 
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 for the testing samples, where two versions 

of Ri’s are used. We first consider the procedure proposed in [26], where R is defined as

Here,  and  are estimated from the Cox model for simplicity. 

We also consider a more direct clinical measurement without the double robustness 

correction, which can be interpreted in a similar way as the expected survival time or the 

restricted mean survival time [6, 16, 21]. To be specific, we consider a restricted mean (log) 

survival time truncated at τ defined as δT + (1 − δ)E(T), and use this as a plug-in quantity of 

R in the testing performance calculation. To estimate this quantity, we use a recursively 

imputed survival trees (RIST) method to produce the expected survival time E(T). The 

results are presented in Tables 2 and 3 and Figures 2 and 3.

The value function results are presented in Table 2 and Figure 2. Both proposed methods 

have higher values than the compared methods. Note that for the Gaussian kernel, our two 

new approaches are still better than Cox regression, however, inverse probability of 

censoring outcome weighted learning and doubly robust learning are not much different 

from Cox regression. The standard error is comparable among all four methods using the 

linear kernel. For the Gaussian kernel, the standard errors of the proposed methods and 

inverse probability of censoring weighted learning are similar. The standard error for the 

doubly robust method is slightly worse in this instance. Overall, the proposed methods seem 

to perform best.

The restricted log mean results are presented in Table 3 and Figure 3. Note for the linear 

kernel, the median of the proposed methods are higher than 3.6 and median of both inverse 

probability of censoring outcome weighted learning and doubly robust learning are lower. 

For the Gaussian kernel, the proposed methods are much better than inverse probability of 

censoring outcome weighted learning and doubly robust learning. Interestingly, under this 

measure, the performance of Cox regression is the best. A possible reason is that the true 

underlying model may not deviate much from the proportional hazard model, making the 

Cox model a better choice. This is also reflected by the fact that the results look similar to 

the simulation Scenario 2 plot, where the Cox model performs the best. Another possible 

reason is that the pseudo-outcome estimated from RIST may not be completely accurate and 

favors the Cox model in this particular dataset.

6. Discussion

We proposed a new method that redefines the reward function in a censored survival setting. 

The method works by replacing the censored observations (or all observations) by an 

estimated conditional expectation of the failure time. In practice, the failure time (or 

logarithm of the failure time) is commonly used in defining the reward function R, however, 

this choice could more flexible. For example, we may be interested in searching for a 

treatment rule that maximizes the median survival time or a certain quantile. Under our 

Cui et al. Page 13

Electron J Stat. Author manuscript; available in PMC 2018 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



framework, this is achievable by replacing the censored observations with a suitable estimate 

of the quantile. This part of the work is currently under investigation.

The proposed methods may be improved or extended in multiple ways. The estimated 

treatment rule may be affected by the shift of the outcome. A potential extension is to 

combine our methods with residual weighted learning [27], which has been shown to reduce 

the total variation of the weights and improve stability. Trials with multiple treatment arms 

occur frequently. Thus a potential extension of our method is in the direction of 

multicategory classification [2, 15]. It is also interesting to extend our method to dynamic 

treatment regimes where a sequence of decision rules [17, 24, 13, 25] need to be learned in a 

censored survival outcome setting [8].
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Appendix

A simplified tree-based survival model used in Theorem 1

We consider a simplified version of a tree-based survival model. Starting from the root node 

[0, 1]d, at each internal node, we randomly chose the j-th feature of X to split the node, 

while the splitting point is always at the midpoint of the range of the chosen feature. We 

repeat splitting ⌈log2 kn⌉ times, where kn is a deterministic parameter which we can control. 

Hence, each individual tree has exactly  terminal nodes, which is approximately kn. 

In practice, we always chose kn to go to infinity as n goes to infinity.

After we build an individual tree, let  be the rectangular cell of the 

random partition. We treat observations inside each leaf node as a group of homogeneous 

subjects and compute the Nelson-Aalen estimator  for each leaf node Bi. Hence, our 

estimator is essentially

Proof of Theorem 1

Proof

Since we always assume that the treatment variable A is important, and A has only two 

categories, we force a split on A at the root node. This is equivalent to fitting trees for A = 1 

and A = −1 separately. In a balanced design, the problem reduces to estimating  or 

 with sample size n/2. Without the risk of ambiguities, the following results are 

developed for  with sample size n, where the results can be applied to either A = 1 or 

−1. Our proof utilizes two facts from [1]:
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Fact 1 Let Knj{Bi} be the number of times the j-th coordinate (j = 1, …, d) is split on 

to reach the terminal node Bi, . Conditionally on X, Knj{Bi} is 

Binomial(⌈log2kn⌉, 1/d). Moreover, .

Fact 2 Let Nn(Bi) be the number of data points falling in the cell Bi, 

. Conditionally on Θ, Nn(Bi) follows .

The following lemma, for later reference, provides the deterministic limit of the Nelson-

Aalen estimator in the independent non-identically distributed case. The proof can be found 

in an unpublished technical report by Mai Zhou at the University of Kentucky.

Lemma 4

Suppose we have two sets of non-negative random variables: T1, T2, …, Tn which are 

survival times, independent but non-identically distributed with continuous distribution 

F1(t), F2(t), …, Fn(t); C1, C2, …, Cn which are censoring times, independent but non-

identically distributed with continuous distribution G1(t), G2(t), …, Gn(t). We also assume 

the  and  are independent. The Nelson-Aalen estimator of data Yi = min(Ti, Ci), δi = 

I(Ti ≤ Ci) is . Provided Assumption 1, for b = nζ, where ζ > 0,

(8)

Now we start the proof of Theorem 1. Let the limit of the Nelson-Aalen estimator inside the 

cell Bi,  be

For any t < τ, in order to bound the , we define

Then  can be decomposed as

(9)

We start with the first term in Equation (9). From Fact 2, we know the number of 

observations in each terminal node is . By the Chernoff bound, 

Cui et al. Page 15

Electron J Stat. Author manuscript; available in PMC 2018 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with probability larger than , in one terminal node we have at least 

 observations for some 0 < u < 1.

Combining Equation (8), with probability larger than 

, the following equation holds:

(10)

(11)

Before we bound the second term in Equation (9). We first show the bound for the difference 

between the true cumulative hazard function and aggregated estimator inside the cell Bi, 

, i.e. |I {X ∈ Bi}{Λ*(t| Bi) − Λ(t|X)}.

From Fact 1, we know the number of times the terminal node Bi is split on the j-th 

coordinate (j = 1, ⋯, d) Knj{Bi} is Binomial(⌈log2kn⌉, 1/d). By the Chernoff bound, 

 for some 0 < r < 1. So with 

probability , every dimension of Bi is less 

than . So with probability larger than , for 

arbitrary i, , we have

So for all the observations Xj inside the same cell as X, by Assumption 2, we have

where fX(·) and FX(·) denote the true density function and distribution function at X, 

respectively. Then Λ*(t | Bi) has the upper bound and lower bound

respectively, where
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Hence, |I{X ∈ Bi}{Λ*(t | Bi) − Λ(t | X)}| has the bound

where C is some constant depending on L and L′. We then bound the second term of 

Equation (9) as follows:

(12)

Combining Equation (10) and (12), For each X, we have

where

This completes the proof. □

Proof of Theorem 2

Proof

Based on Theorem 1, we now only need to establish the bound of 

under the event with small probability wn. Noticing that  is simply the Nelson-

Aalen estimator of the cumulative hazard function with at most n terms, for any t < τ we 

have

which implies that

Combining this with Theorem 1 completes the proof. □
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Proof of Lemma 2

Proof

Our survival function estimator is . From Theorem 1, we know that for any t < τ,

It is then easy to see that for R1,

with probability larger than 1 − wn. And for reward R2, we have

Note that we can bound the distance between  and S(Y|X, A) with probability no 

less than 1 − wn, which is further bounded above by

for some constant C2 with probability larger than 1 − 2wn. □

Proof of Theorem 3

Proof

We restate the value function corresponding to the true and working model as
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respectively. Then we have

(13)

We start with the first term in Equation (13). From Lemma 1, we know that 

, where .

Let , then

(14)

By the definition of a(λ), we have

and by Theorem 3.2 in [23], we further have

Cui et al. Page 19

Electron J Stat. Author manuscript; available in PMC 2018 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Combined with (14),

Since

and the estimated value function  is bounded by τ, we know that . 

Furthermore, since

we have . Combining with Lemma 2, (I) and (II) are bounded by 

for both R1 and R2, where C1 is some constant. Following the results in [26], (III) is 

bounded by 

with probability larger than 1 − 2e−ρ, where Mv is a constant depending on v and K is a 

sufficiently large positive constant. Finally, combining (I), (II) and (III), we have
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(15)

where 

.

For the second part in Equation (13),

if R = R1. For R = R2, we have

By Lemma 2,

(16)

where C2 is some constant. Now, combining (15) and (16) we have

where

This completes the proof. □
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Additional simulation results for different censoring rates

We summarize the additional simulation results in this section. For each simulation scenario 

considered in Section 4, we alter the first constant term in the censoring distribution to 

achieve 30% (Table 4 and Figure 4), and 60% (Table 5 and Figure 5) censoring rates.
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Fig 1. 
Boxplots of mean log survival time for different treatment regimes. Censoring rate: 45%. T: 

using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 

respectively as weights, while the conditional expectations are estimated using recursively 

imputed survival trees; ICO: inverse probability of censoring weighted learning; DR: doubly 

robust outcome weighted learning. The black horizontal line is the theoretical optimal value.
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Fig 2. 
Boxplots of cross-validated value of survival weeks on the log scale. RIST-R1 and RIST-R2: 

using the estimated R1 and R2 respectively as weights, while the conditional expectations are 

estimated using recursively imputed survival trees; ICO: inverse probability of censoring 

weighted learning; DR: doubly robust outcome weighted learning.
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Fig 3. 
Boxplots of cross-validated value of survival weeks on the log scale. RIST-R1 and RIST-R2: 

using the estimated R1 and R2 respectively as weights, while the conditional expectations are 

estimated using recursively imputed survival trees; ICO: inverse probability of censoring 

weighted learning; DR: doubly robust outcome weighted learning.
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Fig 4. 
Boxplots of mean log survival time for different treatment regimes. Censoring rate: 30%. T: 

using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 

respectively as weights, while the conditional expectations are estimated using recursively 

imputed survival trees; ICO: inverse probability of censoring weighted learning; DR: doubly 

robust outcome weighted learning. The black horizontal line is the theoretical optimal value.
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Fig 5. 
Boxplots of mean log survival time for different treatment regimes. Censoring rate: 60%. T: 

using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 

respectively as weights, while the conditional expectations are estimated using recursively 

imputed survival trees; ICO: inverse probability of censoring weighted learning; DR: doubly 

robust outcome weighted learning. The black horizontal line is the theoretical optimal value.
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