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Abstract

Segmentation of the geometric morphology of abdominal aortic aneurysm is important for 

interventional planning. However, the segmentation of both the lumen and the outer wall of 

aneurysm in magnetic resonance (MR) image remains challenging. This study proposes a 

registration based segmentation methodology for efficiently segmenting MR images of abdominal 

aortic aneurysms. The proposed methodology first registers the contrast enhanced MR 

angiography (CE-MRA) and black-blood MR images, and then uses the Hough transform and 

geometric active contours to extract the vessel lumen by delineating the inner vessel wall directly 

from the CE-MRA. The proposed registration based geometric active contour is applied to black-

blood MR images to generate the outer wall contour. The inner and outer vessel wall are then 

fused presenting the complete vessel lumen and wall segmentation. The results obtained from 19 

cases showed that the proposed registration based geometric active contour model was efficient 

and comparable to manual segmentation and provided a high segmentation accuracy with an 

average Dice value reaching 89.79%.
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1. Introduction

Abdominal Aortic Aneurysm (AAA) is the direct cause of more than 15,000 deaths each 

year in the United States and is the cause of 1.3% of all deaths among men aged 65–85 years 
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in developed countries (Sakalihasan et al., 2005; Upchurch and Schaub, 2006). Most AAAs 

are not detected because AAA disease is usually asymptomatic; patients generally exhibit no 

major symptoms until the aneurysm ruptures (Cornuz et al., 2004). As the abdominal aorta is 

the largest blood vessel in the body, rupture can lead to massive internal bleeding and 

mortality rates approach 90% if rupture occurs outside of the hospital setting (Mozaffarian et 

al., 2016).

Surgical planning, such as surgical resection or percutaneous stent-graft deployment, is 

highly dependent on the geometric characteristics of the aneurysm (Whitaker, 2001; 

Czermak et al., 2001; Malaspinas et al., 2016). Segmentation of AAA for evaluating its 

geometric characteristics therefore plays an important role in medical treatment. It enables 

the reconstruction of three-dimensional (3D) patient-specific geometries, which can help 

provide measurements at various stages of treatment. In particular, these geometries can 

facilitate the assessment of rupture risk, which is normally based on aneurysm size and 

shape. Additionally, the change in aneurysm volume can be used as an indicator of rupture 

risk in preoperative or postoperative follow-up studies (Wever et al., 2000; Pollock et al., 

2002).

Two-dimensional ultrasound, Computed Tomography Angiography (CTA) and Magnetic 

Resonance Imaging (MRI) are widely used in the diagnosis, treatment evaluation, and 

monitoring of AAAs (US Preventive Services Task Force, 2005). However, 2D ultrasound is 

limited by inter-operator variability and is limited in capturing 3D anatomy; CTA requires 

radiation and iodinated contrast, and therefore is not a suitable imaging modality for 

longitudinal monitoring; traditional MRI has limited coverage, coarse through-plane 

resolution and degraded image quality due to flow artifacts (Nguyen et al., 2014; Richards et 

al., 2011; Liu et al., 2017). In distinction to that, 3D black-blood MRI is promising for the 

assessment of the AAA wall as it is non-invasive, provides high isotropic resolution, and 

allows volumetric measurements of the lumen and outer wall (see Fig. 1), which have been 

shown to be more predictive of clinical outcomes (Mihai et al., 2010; Zhu et al., 2014). 

Therefore, segmentation of the lumen and outer wall from 3D black-blood MR images is an 

important step in generating volumetric measurements of AAA. However, a slice-wise 

manual delineation and segmentation of the aneurysm lumen and outer wall from high 

resolution MR black-blood image is extremely time-consuming, tedious, and, as it can take a 

skilled radiologist more than 30 minutes (Dehmeshki et al., 2009), is prone to fatigue errors. 

Accordingly, development of an efficient computer-aided method for AAA lumen and outer 

wall segmentation is important for clinical evaluation and treatment.

1.1. Previous studies

Algorithms for segmenting aneurysms can be broadly divided into two categories: methods 

that segment only the lumen boundary (Loncaric et al., 2000), and techniques that segment 

both the lumen and the outer wall (including the thrombus) (de Bruijne et al., 2004; Wang et 

al., 2011, 2016). The focus of this work is on methods for multilevel segmentation of AAAs. 

(de Bruijne et al., 2002) used an active shape model for segmenting lumen and thrombus in 

AAAs from CTA data. (Olabarriaga et al., 2005) proposed using a gray-level modeling 

approach with a non-parametric pattern classification technique to segment thrombus. That 
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system estimates a rough initial surface, and then refines it using a level set segmentation 

scheme and was reported in (Zhuge et al., 2006). A method based on intensity histograms 

and neural networks involving segmentation of contrast enhanced CTA was proposed in 

(Shum et al., 2010). In the recent work of (Chen et al., 2014), the Lattice Boltzmann 

Geodesic Active Contour Method (LBGM) was used on the anisotropic diffusion of the 

filtered CTA image to detect the lumen and thrombus.

All the methods mentioned above have been applied to CTA data for aneurysm 

segmentation. Aneurysm segmentation from MRI is much more difficult than from CTA, 

because the MR wall boundary is not as distinct as it is on CTA. Only one recent study 

(Ukwatta et al., 2015) has been reported using black-blood MR data. That study proposed a 

semi-automated algorithm to jointly segment the lumen and outer wall from 3D femoral 

artery black-blood MRI. To the best of our knowledge, the work from our group (Zhu et al., 

2016) was the first study evaluating 3D black-blood MRI techniques in patients with AAA 

disease. This report is the first to investigate segmentation of the AAA lumen and outer wall 

using 3D black-blood MR images.

1.2. Contributions

The present paper is focused on the segmentation of both the lumen and outer wall of AAAs. 

We propose a multilevel segmentation methodology based on the combined use of the 

mutual information and the geometric active contour (GAC) to segment the lumen and outer 

wall. In this approach, the mutual information based registration equation is adapted to 

image segmentation problems by integrating an extra term in the GAC model. More 

precisely, we first segment the lumen of AAAs using GAC from the CE-MRA; once the 

lumen is segmented, we then perform the segmentation of the outer wall with the aid of the 

registration based GAC method. In this study, segmentation accuracy was assessed using 

manual segmentation as the reference standard. Furthermore, two previously published 

segmentation methods were compared with our proposed registration based geometric active 

contour (RGAC) method on the same data sets.

2. Segmentation methodology

2.1. Overview of the segmentation scheme

The methodology proposed herein consists in first co-registering CE-MRA and black-blood 

MR images using a Siemens LEONARDO workstation (Syngo software, Siemens 

Healthineers, USA) and then segmenting the aneurysm (both lumen and outer wall as 

indicated in Fig. 1) using the GAC and RGAC methods, respectively.

The proposed multilevel segmentation methodology first uses the Hough transform (Hough 

and Paul, 1962) and GAC to segment the lumen directly from the CE-MRA images. The 

gray level values of the lumen region are then replaced with the mean value outside it. This 

operation gives gray level values similar to the total aneurysm, which makes it easier to 

segment the aneurysm as one object. The outer wall is a diffuse object with low contrast 

relative to neighboring tissues, and it is therefore difficult to delineate the outer wall. The 

proposed RGAC method is then used to segment the outer wall of AAAs. After manual 
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delineation of the outer wall in the first slice, the method automatically detects the contour in 

subsequent slices, using the result from the previous slice as a reference. If an obtained 

contour is not sufficiently accurate, the user can intervene and provide an additional manual 

reference contour. The segmentation scheme is shown in Fig. 2.

2.2. Co-registration

Black-blood MRI of the aneurysm vessel wall and CE-MRA of the lumen were acquired in 

succession to minimize the effect of patient motion between scan acquisitions. In order to 

correct for any motion that may have occurred, a semiautomatic registration was performed 

using the Siemens LEONARDO workstation with Syngo software (Siemens Healthineers, 

USA). First, both black-blood MRI and CE-MRA image sequences were imported and 

overlaid in InSpace, an interface for manual and automatic registration. Window and level 

were adjusted for each sequence to appropriately visualize the lumen and vessel wall. Next, 

an automatic registration and a manual refinement were performed using a series of 

incremental translations and rotations to ensure that the lumen, as measured by the CE-

MRA, was completely confined to the area within the vessel wall, as depicted by the black-

blood MRI. In this step, the 3D/3D registration we used between black-blood MRI and CE-

MRA is only a rigid registration. For this registration, the selected features are anatomical 

landmarks such as the renal arteries, celiac and SMA arteries. Finally, after the two 3D 

image volumes were satisfactorily aligned from the level of the renal arteries to the iliac 

bifurcation, axial reformats were generated for each image sequence using 1.3mm image 

spacing (this amounts to 85–100 slices, depending on the coverage needed between the 

anatomical landmarks). These co-registered, axial reformats were used as the input for the 

subsequent image segmentation.

2.3. Image pre-processing and segmentation

Pre-processing such as denoising, and contrast enhancement may greatly improve the 

segmentation results. Since the Signal-to-Noise Ratio (SNR) from black-blood MR images 

of AAA is high (Zhu et al., 2016), in the present study we only use the image processing 

function to enhance the contrast level. The global contrast enhanced filter applied the same 

level of enhancement for all CE-MRA images for both lumen segmentation and on the filled 

images (shown in Fig. 2) for outer wall segmentation.

The first step for image segmentation is to locate the center point of the vessel of interest. 

We use the Hough transform to find lumen locations with near circular contours in the 

middle slice of the image. Once that location is found, it is used as the initial contour in the 

GAC segmentation method to obtain the entire luminal region.

2.3.1. GAC segmentation

In a recent study (Chen et al., 2014), the authors segmented the lumen and thrombus using a 

GAC related method. After comparing different methods, they suggested that the GAC 

related method has higher accuracy for aneurysm segmentation. In (Caselles et al., 1997), 

the authors defined the GAC model as energy-minimizing splines guided by external 

constraint forces that pull them toward features such as edges. They also defined an internal 

energy term that is used to impose a smoothness constraint on the moving curve. The GAC 
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is based on designing a speed term such that the evolving front gradually attains zero speed 

as it gets closer to the object boundaries and eventually comes to a stop. The speed term may 

depend on the boundary of the front while it can also make use of the information inside the 

region enclosed by the evolving front. We briefly describe the GAC model. Let C(q) : [0, 1] 

→ R2 be a parameterized planar curve and let I : [0, a] × [0, b] → R+ be a given image in 

which we want to detect the object boundaries. In the GAC formalism, the evolving curve C 
is represented as the zero level set of a Lipschitz-continuous function ϕ (subsequently used 

in eq.(4) and eq.(9)) that satisfies

(1)

where Iin and Iout are regions inside and outside the closed contour C. The classical GAC 

approach associates the curve C with an energy given by

(2)

where α and λ are real positive constants. The first term controls the smoothness of the 

contours to be detected (internal energy), while the second term is responsible for attracting 

the contour towards the object in the image (external energy). By minimizing the functional 

eq.(2), we try to locate the curve at the points of maxima |∇I|, while keeping certain 

smoothness in the curve. Eq. (2) can be extended by generalizing the edge detector part in 

the following way: Let g : [0,+∞] → R+ be a strictly decreasing function such that g(r) → 
0 as r → ∞. Hence, −|∇I| can be replaced by g|∇I|2, obtaining a general energy functional 

given by

(3)

This energy functional can be minimized by solving the following gradient flow (Li et al., 

2010)

(4)

where μ, λ and ν are coefficient for each term. Δ is the Laplacian operator and g is the edge 

indicator function defined by

(5)
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where Gσ is the Gaussian kernel with standard deviation σ. In eq.(4), the first term is a 

penalty term used to penalize the deviation of ϕ from a signed distance function during its 

evolution, and the other two terms represent the gradient flow of the energy function.

2.3.2. Gray level replacement

According to the GAC segmentation method, the lumen region marked as L is segmented. In 

order to segment the entire AAA (outer wall segmentation) as one object, the gray level of 

the vessel wall is assigned to region L. We first add a one-pixel-thick layer to L to create a 

new region D (note that for simplicity, only a one-pixel-thick layer is needed). Following 

that, the gray level values of region L are replaced by the mean value of region B, where B = 

D\L. For each pixel, the new gray level of the lumen can be defined as follows

(6)

where lnew represents the mean gray level for each pixel from region L, bi represents the 

gray level for each pixel from region B, ε is an infinitesimally small number and R is 

random noise.

2.3.3. RGAC segmentation

It is difficult to generate an outer wall delineation because of the low contrast with respect to 

neighboring tissues. In the present study, we propose a new RGAC model to estimate the 

outer wall with the energy formulation of RGAC that can be expressed by adding a 

registration-based term and a prior shape term to the GAC formulation

(7)

where r, c and s are the weights, which correspond to the positive parameters that balance 

the influence of these three terms. EGAC controls the contour of the segmentation moving 

towards a local minimum of energy (see eq.(4)), Eregistration controls the registration between 

the previous reference slice and subsequent slice on the filled image (shown in Fig. 2) 

(Thirion, 1998; Wang et al., 2005)

(8)

with M the moving image (the subsequent slice), S the static image (the previous reference 

slice), transformation field describing the translation in m and n of every pixel from its 

original position x and y. Esimilarity represents the shape term. The shape term we 

incorporate in the energy functional measures the non-overlapping areas between the prior 

shape and the evolving shape. ϕe and ϕ denote the distance function of the prior shape and 

the evolving level set shape representation. This energy function can be expressed as 

(Riklin-Raviv et al., 2007)
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(9)

where H is the Heaviside function.

3. Experiments and results

The experiments were performed on an OS X system with an Intel Core i7 CPU and 8 GB 

RAM. The data were processed using in-house developed MATLAB® software. Manual 

segmentation, including drawing contours (Region of Interest- ROI) of the lumen and outer 

wall in axial slices, was performed using MeVisLab software by a trained radiologist with 6 

years of experience.

3.1. Patient MR imaging data

A total of 19 datasets, comprised of 3D CE-MRA and 3D black-blood MR images, were 

acquired from 10 patients with AAA (9 patients had 6 month follow up studies). All the 

patient studies were conducted following IRB approval of the University of California San 

Francisco (reference number: 10-03248). All patients underwent 3D CE-MRA and 3D T1 

weighted black-blood MR on a 3T Siemens Skyra scanner (Siemens Healthcare, Germany) 

(Zhu et al., 2016). The acquisition parameters for 3D CE-MRA were:TR/TE=3.09ms/

1.11ms, band width=500Hz/pixel, 88 coronal slices, 38×38cm2 field of view, 1.2mm slice 

thickness and 320×320 image matrix, scan time 30 seconds; the scan parameters for black-

blood imaging were: TR/TE=800~1040/20ms, band width=781Hz/pixel, echo train length 

(ETL)=60, echo spacing=3.58ms, duration of echo train=215ms, 44~60 coronal slices, 

32×32cm2 field of view, 1.3mm slice thickness and 256×256 image matrix, scan time 7.1~9 

minutes.

3.2. Parameter settings for segmentation

According to (Li et al., 2010), we set μ = 0.2, λ = 5, ν = −3.0 and the time step as 1 in eq.

(4). The other parameters in eq.(4), such as δ, div and Δ, were chosen as Dirac function, 

divergence operator and Laplacian operator. The parameters in eq.(6) and eq.(7) should be 

chosen carefully, since they can influence the accuracy of the final results. The parameter 

settings used in this study were chosen empirically by processing images with three types of 

aneurysms (occlusive thrombus, initial thrombus and no thrombus) from 6 aneurysm cases 

(3 intracranial, 3 AAA, 60 slices in total). By testing on different slices, it was found that the 

given set of parameters in Table 1 can be used for images over a broad range of image 

characteristics. For eq.(6), random noise was added and ε was set to 15% of the mean value 

of region B. For eq.(7), r, c and s are the weights that balance the influence of the 

registration-based term, gradient-based term, and shape-based term, respectively. The 

parameters should be determined based on specific aims. For this study, the segmentation of 

ellipse-like objects (i.e. 2D AAA and intracranial aneurysm (IA) images), r and c need to be 

larger than s. Reasonable ranges for r and c are ≥ 0.5 while s and ε should be < 0.3. The 

settings of all the parameters are summarized in Table 1.
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In addition to the manual segmentation and the proposed RGAC segmentation algorithm, we 

also applied two other previously developed segmentation algorithms for comparison. Based 

on a recent study (Chen et al., 2014), anisotropic diffusion preprocessing together with the 

LBGM was proposed for estimation of the aneurysm edges, which is the main challenge in 

aneurysm delineation. They first compared the LBGM method with GAC and Distance 

Regularized Level Set Evolution (DRLSE), and showed both DRLSE and LBGM can 

generate similar segmentation results and regulate the level set functions effectively. They 

then compared the LBGM method with the narrow-band level set method and the Chan-Vese 

model on aneurysm cases, and demonstrated the LBGM method provides the best 

segmentation result. Since the previous comparison were performed on different types of 

method (region-based segmentation, gradient-based segmentation and local-based 

segmentation), we chose the best two methods including DRLSE and LBGM used for 

segmentation of lumen and thrombus. Some of the crucial algorithm parameters are listed as 

follows:

DRLSE: The coefficients of the distance regularization, weighted length, and area 

terms are 0.2, 5, and −3, respectively.

LBGM: The D2Q5 model is used in the lattice Boltzmann method (LBM) simulation. 

The segmentation scheme we used to compare with the proposed methodology is the 

same one proposed in the study (Chen et al., 2014). The anisotropic diffusion is first 

implemented for image denoising and the Canny operator is used to detect the edge 

map of the denoised image. After this preprocessing, the LBGM is implemented to 

segment the lumen and thrombus.

3.3. Evaluation criteria

The results are evaluated by comparing the proposed segmentation with the reference 

standard using the “Dice coefficient” defined as the fraction of the intersection of RA and 

RM to their sum (Dice, 1945)

(10)

where RA is the proposed segmentation result and RM is the reference standard from manual 

segmentation. | | denotes the number of pixels in the corresponding volume. The greater the 

Dice coefficient is, the better the match of segmentation results between two methods (1 

indicates perfect overlap, and 0 means no overlap). Moreover, the coefficient of variation 

(CV) was also calculated, which is a statistical measure of the precision of segmentation.

(11)

where d represents the standard deviation and a is the average Dice value. Also, the volume 

difference ϒ was defined as follows
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(12)

where VA is the volume of the proposed segmentation result and VM is the volume of the 

reference standard.

3.4. Repeatability and reproducibility

Manual registration and an initial manual contour are used in this proposed method, which 

may potentially influence the final results. However, we note that manual registration and 

the initial manual contour do not affect the lumen segmentation, which is delineated prior to 

this step. The coefficients of repeatability and reproducibility were computed from the 

standard deviations of the differences between the results made with different manual 

registrations and initial manual contours.

Following automatic registration using Syngo software, two investigators manually refined 

the registration results twice. The proposed methodology was performed on these four co-

registered CE-MRA and black-blood MR images. The Dice value of outer wall segmentation 

for these four cases is 93.24% in our experiments, which indicates negligible influence 

caused by manual processing.

In order to test the influence of dependence of outer wall segmentation on the selection of 

the initial manual contour, we performed an experiment that consisted of generating four 

different initial manual contours. This was performed on one randomly selected slice from 

our database. An initial manual contour was drawn by our primary radiology reader 

(Contour 1), and independently by a second radiologist (contour 2). In addition, we 

processed Contour 1 by eroding it by one pixel (to form Contour 3) and dilating it by one 

pixel (to form Contour 4). We then performed a quantitative comparison of the generated 

areas of the adjacent slices that resulted from these four different initial manual contours 

(Table 2). The average Dice value and CV value for these different contours are 

92.46±1.11%. This indicates that the proposed method has good repeatability and 

reproducibility.

Fig. 3 (a–c) illustrates the intermediate results of the proposed segmentation method. As can 

be observed, after the GAC segmentation (with an initial contour obtained from the Hough 

transform), the lumen contour is obtained from CE-MRA images (Fig. 3a). With CE-MRA 

and black-blood images co-registered using the Siemens LEONARDO workstation, the 

segmented lumen contour from the CE-MRA can be superimposed on the black-blood MR 

image as shown in Fig. 3b. The lumen region in the black-blood MR image was filled with a 

gray level replacement (Fig. 3b), which makes the lumen and outer wall a single entity. The 

outer wall contour can then be generated using the proposed RGAC segmentation in Fig. 3c.

We performed experiments to test the impact of selecting different initial contours for the 

proposed RGAC segmentation, including manually drawing the initial contour or 

automatically obtaining the initial contour using the Hough transform. Two different slices, 
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one with a nearly circular contour and the other non-circular, were selected as initial slices 

for the Hough transform. The corresponding RGAC segmentations using these initial 

contours were compared with the manual segmentation, and their Dice values were 92.27%, 

90.37% and 84.16% respectively. This demonstrates that the segmentation that uses the 

automatic initial contour based on the Hough transform might be heavily dependent on the 

vessel shape (Dice value of 84.16% vs 90.37%). In this study, we therefore chose to use the 

manual contour as the initial contour in the proposed RGAC segmentation to assure high 

accuracy and less dependence on the vessel geometry.

Currently manual segmentation has been used as the gold standard (and is used as the 

reference standard in this study). The adequacy of using manual measurements of AAAs for 

determining truth has been shown in (Weiss et al., 2001) and (Li et al., 2004). In this study, 

two radiologists have reached consensus on the definition of contours by drawing manual 

contours for 25 slices selected from 5 AAA cases, and briefly reviewing all 19 cases. 

Subsequently, one radiologist drew manual contours for each slice of all AAA cases. There 

were nearly one hundred slices for each AAA case, and nearly two thousand slices for all 

cases. We have implemented a MevisLab (http://www.mevislab.de/) based tool to help the 

radiologists draw the manual contours. The radiologist drew the manual contours two times 

for all 19 cases. The intra-observer variability was 5.07 ± 3.74% and 5.98 ± 4.11% for 

lumen and outer wall respectively.

We then applied the above-illustrated RGAC segmentation algorithm to 19 AAA cases 

(nearly two thousand slices). Both AAA lumen and outer wall were successfully segmented 

using the proposed RGAC method with results similar to those with the manual delineation, 

as demonstrated in Fig. 4, which shows segmentations obtained with the manual and the 

proposed methods from 5 representative patients. For quantitative comparison, the average 

Dice and CV values reached 89.79% and 2.46% respectively, which demonstrated 

comparable and stable segmentation was achieved with the proposed method compared to 

the manual segmentation on different cases. For extreme cases, the radiologist needed to 

take several neighboring slices into consideration in order to segment one slice. 

Segmentation of only the AAA outer wall on one slice took a radiologist up to as much as 

1.5 minutes, while the algorithm proposed here can achieve a comparable contour within 35 

seconds (on a 2.2 GHz Intel laptop with 8GB RAM).

We defined the lumen volume and the outer wall volume as the volumes enclosed in the 

lumen and outer wall boundaries, respectively. The vessel wall volume refers to the volume 

enclosed between the lumen boundary and the outer wall boundary. The volume and volume 

difference between the proposed segmentation and manual segmentation were also 

compared in the present study. The Bland-Altman (Bland and Altman, 1999) and the linear 

regression plot of the volume measurements were used to evaluate the association and 

difference between the two segmentation results. The correlation coefficients, linear fitting 

slope and offsets, mean bias and confidence intervals (±1.96×std) were calculated and 

reported in Fig. 5. The P-value was used to determine statistical significance (Fig. 5).

Fig. 6 shows the segmentations that were obtained with DRLSE, LBGM, proposed RGAC 

and manual segmentation methods from a representative case. Compared to manual 
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segmentation, the proposed method achieved similar segmentation results on both the lumen 

and outer wall, while DRLSE did not locate the vessel wall and LBGM had obvious errors at 

the vessel wall edge where the signal ambiguity is high and difficult to segment. The 

quantitative evaluation for different segmentation methods is summarized in Table 3. Based 

on Dice and CV, all methods achieved similar performance on lumen segmentation, while 

the proposed RGAC method outperformed the other two methods on vessel wall 

segmentation (average Dice and CV values on vessel wall segmentation were 

55.56±24.74%, 78.58±6.92% and 89.79±2.46% for DRLSE, LBGM and RGAC 

respectively).

Fig. 7 shows the 3D volume rendering visualization of segmentation of the AAA lumen and 

outer wall, as well as the fused display based on the two segmentations.

4. Discussion

It has been well demonstrated that the rupture risk, surgical planning and postoperative 

follow-up of an AAA depends strongly on its geometry (Mozaffarian et al., 2016). The 

segmentation of an AAA provides quantitative measurements of the geometrical 

characteristics, including the aneurysm diameter and volume, which are the critical 

parameters clinicians use for making decisions on whether to pursue clinical interventions or 

monitor aneurysm growth.

In this study, we proposed a multilevel segmentation method to assess the geometrical 

characteristics of AAAs including the lumen from CE-MRA and the outer wall from black-

blood MR images. The low contrast between surrounding tissue and vessels that are close to 

the outer wall are the principal cause of difficulty in the segmentation of AAA. The 

proposed RGAC method was developed to address this problem: a registration term and a 

similarity term are added to the original GAC energy formulation. The GAC term is used to 

control the main segmentation contour based on the image gradient, while the registration 

and similarity terms are used to control the segmentation contour based on the correlation 

between the current and reference contours. The latter two terms were intentionally used to 

separate the outer wall from the surrounding vessels. Bland-Altman and linear regression 

plots of the volume measurements of lumen, outer wall and vessel wall demonstrated that 

volume measurements by the manual and by the proposed segmentation methods are 

significantly correlated. The volume differences between the manual and proposed 

segmentation methods are not significant.

We generated the lumen segmentation from CE-MRA instead of black-blood MR because 

the former is used clinically for estimating luminal diameters. To improve the outer wall 

segmentation, which is initialized using the lumen segmentation, we co-registered the CE-

MRA and black-blood MR images using a Siemens LEONARDO workstation. The co-

registration took no more than two minutes for each case.

The results obtained from 19 cases showed that the RGAC model was efficient and provided 

comparable segmentation to that obtained with the manual method, by providing a high 

segmentation accuracy with an average Dice value of 89.79 ±2.46%. Computation times for 
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the DRLSE, LBGM and RGAC models are of the order of 20s, 35s, and 35s per slice, 

respectively. Although the DRLSE method has the shortest computation time, it is 

ineffective in segmenting the outer wall. The LBGM and RGAC models are similarly 

effective in AAA segmentation, but the latter provided better accuracy.

We are aware that our method has some limitations. First, the proposed RGAC algorithm 

requires manual delineation of the outer wall of an initial contour in the first slice. In this 

study, we have used a manual initial contour for AAA segmentation but, in the future, will 

further explore how to achieve an accurate automatic initial contour regardless of the vessel 

geometry. One approach would be to automatically generate this initial contour, as in the 

work of (Adame et al., 2006), where an ellipse was used to match the outer wall and the 

contour was then refined by means of dynamic programming. Since accuracy is important 

for providing clinical guidance, and manual contouring of the initial slice has been 

demonstrated to be reproducible, we employed manual initial contouring in the present 

study. Second, the proposed RGAC algorithm detects the outer wall contour in subsequent 

slices, relying on the result from the previous reference slice. An accumulating error could 

occur and affect the accuracy. In future, to reduce this error, we plan to investigate the use of 

multiple location initial reference contours or the development of an adaptive iterative 

algorithm to find more accurate contours for local reference slices.

We also plan to evaluate our developed method on a larger patient data base to reach a better 

understanding of the generalizability of the approach and to explore its potential for 

providing improved accuracy of measurements for better treatments in other anatomic 

regions, such as IAs. This methodology will be applied to assess how aneurysms evolve over 

time, using objective measures of the change of the lumen and outer wall volumes as a 

determining metric.

5. Conclusions

The segmentation of AAAs that assesses both the lumen and the outer wall remains a 

challenge because of the high-intensity lumen and the adjacent low-contrast outer wall. To 

solve this problem, we have proposed a RGAC segmentation method to efficiently delineate 

the entire lumen and the contour of the outer wall. Our results show that the proposed 

method accurately segments both the lumen and the outer wall. Visually, the segmented 

aneurysm contours are similar to those defined by radiologists. Quantitatively, the average 

segmentation marching factor (SMF) value obtained with the proposed method reaches a 

Dice value of 89.79 ±2.46%, demonstrating good segmentation accuracy.
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Highlights

• MR image segmentation is performed on abdominal aortic aneurysm lumen 

and outer wall.

• Novel segmentation is proposed using image registration and shape terms in 

the model.

• The repeatability and reproducibility of the proposed method are validated.
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Figure 1. 
Typical diseased aortas taken from three types of images: CTA, CE-MRA and black-blood 

MR, respectively. From CE-MRA, the shape, the size and the grayscale of the lumen are 

easy to detect. The lumen and the thrombus can be segmented from the CTA image. Lumen, 

fresh thrombus, old thrombus and the outer wall can be differentiated in black-blood MR 

images.
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Figure 2. 
Lumen and Outer wall segmentation scheme. The scheme consists of two parts: co-

registration and image segmentation.
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Figure 3. 
a. AAA lumen segmentation contour obtained using the GAC method on CE-MRA images; 

b. lumen region shown in black-blood MR image after CE-MRA and black-blood image co-

registration; c. the outer wall contour obtained using the RGAC segmentation method on 

black-blood MR image.
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Figure 4. 
AAA lumen (top row) and outer wall (bottom row) segmentations. The blue and red 

contours correspond to the lumen and outer wall segmentations respectively using the 

proposed RGAC method; and green contours correspond to the manual segmentations.
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Figure 5. 
Bland-Altman and linear regression plots of the volume measurements of lumen, outer wall 

and vessel wall obtained with manual and proposed segmentation methods on the 19 AAA 

cases.
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Figure 6. 
Lumen (top row) and outer wall (bottom row) segmentation results with different methods 

(columns). a&c: DRLSE, b&f: LBGM, c&g: the proposed method, and d&h: manual.
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Figure 7. 
AAA 3D volume rendering achieved with the proposed RGAC segmentations on lumen 

(left), and outer wall (middle). Also shown is the fused display.
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Table 1

List of segmentation parameters

μ = 0.2, λ = 5, ν = −3.0, timestep = 1, 

, r = 1, c = 0.5, s = 0

The first S is from manual segmentation.
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Table 2

Quantitative comparisons (Dice and CV) for each slice with different manual initial contour.

Dice value Contour 1 Contour 2 Coutour 3 Coutour4

Slice No. 63 93.19 92.92 92.46 93.26

64 93.93 94.18 93.79 94.70

65 92.15 92.59 92.13 93.20

66 91.58 92.02 90.99 93.06

67 92.73 92.81 91.94 93.36

68 100 95.11 88.94 92.25

69 90.45 89.74 91.90 89.77

70 92.78 92.56 91.07 92.97

71 92.71 92.20 91.77 92.90

72 91.55 91.33 90.67 92.26

73 92.47 92.25 91.11 93.00

Dice±CV 93.04±7.83 92.51±4.38 91.52±3.82 92.79±3.76
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