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Abstract

Ability to track provenance is a key feature of scientific workflows to support data lineage and 

reproducibility. The challenges that are introduced by the volume, variety and velocity of Big 

Data, also pose related challenges for provenance and quality of Big Data, defined as veracity. The 

increasing size and variety of distributed Big Data provenance information bring new technical 

challenges and opportunities throughout the provenance lifecycle including recording, querying, 

sharing and utilization. This paper discusses the challenges and opportunities of Big Data 

provenance related to the veracity of the datasets themselves and the provenance of the analytical 

processes that analyze these datasets. It also explains our current efforts towards tracking and 

utilizing Big Data provenance using workflows as a programming model to analyze Big Data.
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I. Introduction

Generally speaking, provenance in the digital context is about the origin and various 

transformations of data [1]. In the context of scientific computation and workflows, 

provenance usually means the lineage and processing history of a data product, and the 

record of the processes that led to it [2, 3]. Provenance is critical to many capabilities 

including experiment reusability [4] and reproducibility [5], fault tolerance [6], process 

optimization and performance prediction1.
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Big Data provenance [7, 8] is a type of provenance to serve scientific computation and 

workflows that process Big Data. In the Big Data era, the volume, velocity and/or variety of 

the data to be processed increase tremendously, bringing fundamental changes to data 

provenance tracking and usage [9] which is often referred to by a fourth V, the veracity of 

Big Data. [10] defines veracity as the quality and provenance of Big Data. In this paper, we 

focus on the second part of this veracity definition: the challenges posed by capturing the 

provenance of Big Data and some technical opportunities to tackle these challenges.

The ability to capture a holistic view of Big Data provenance depends on our ability to 

understand the Big Data ecosystem including the platforms and tools used for Big Data 

management and analysis. First, Big Data processing platforms, like Hadoop2 and Spark3, 

and their associated stacks of tools become indispensible components in the overall system 

to provide efficient and robust processing. A provenance-aware view over these Big Data 

platforms is needed for in-depth tracking of data being processed in these platforms. 

Secondly, workflows and other platforms that process Big Data often require distributed 

execution with high-volume and/or high-velocity data, making continuous tracking and 

integration of provenance in a centralized fashion inefficient. So Big Data provenance often 

needs to be recorded and retrieved in a distributed environment. Thirdly, the variety of 

security policies and quality evaluations on the analyzed Big Data sets poses challenges to 

collection of in-depth provenance tracking, requiring a black-box approach to data 

provenance.

The contributions of this paper are three-fold. First, we analyze the challenges of Big Data 

provenance and the gaps identified in existing systems based on these challenges (Section III 

and IV). Second, we layout a set of opportunities of Big Data provenance (Section V). 

Third, to better address the challenges and opportunities, we propose a reference architecture 

and present our in-progress efforts (Section VI and VII). We hope that this paper starts a 

further discussion on Big Data provenance, an important area of Big Data research for 

quality, validation and reproducibility of the products of Big Data analysis.

II. Big Data Workflow Systems

We focus on provenance that can be recorded by workflow systems. In this section, we 

survey several workflow systems that support Distributed Data-Parallel (DDP) patterns, such 

as Map, Reduce, Match, CoGroup and Cross [11]. We call them Big Data workflow systems 
since DDP is the core mechanism for Big Data processing.

Several systems have been developed on top of the Hadoop stack to support workflows by 

the Hadoop community. Pig Latin is a dataflow programming language for expressing data 

processing tasks [12]. Pig Latin programs are compiled into MapReduce jobs for Hadoop. 

The Nova workflow system is designed for batched, incremental processing of large datasets 

[13], and is built on Pig and Hadoop. Oozie4 is a workflow scheduler system to manage 

1http://hpc.pnl.gov/IPPD/
2http://hadoop.apache.org/
3http://spark.apache.org/
4http://oozie.apache.org/
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Hadoop jobs, where each workflow is a Directed Acyclic Graph (DAG) of actions. The 

Cascading project5 supports dataflow using DDP patterns such as Each, GroupBy, and 

CoGroup, and transforms user-generated dataflows into MapReduce jobs for Hadoop.

Newer generations of Big Data systems with further support for efficient data-parallel 

processing patterns were introduced, among which Spark and Flink 6 are two representative 

open source platforms. Both Spark and Flink (prior name Stratosphere) are suitable for 

scalable batch and stream Big Data processing. Spark system expresses each spark job as a 

DAG of operations. The data is split and computed across computing nodes to achieve 

distributed data-parallel execution. Flink provides a streaming dataflow engine that provides 

data distribution and communication for distributed computations over Big Data streams.

Evolving from traditional scientific workflow systems, Kepler supports Big Data by running 

Kepler workflows within Hadoop, Spark and Stratosphere platforms [11]. Kepler defines a 

set of higher-order components (called actors in Kepler) representing DDP patterns for users 

to build sub-workflows as UDFs. Each DDP actor corresponds to a particular DDP pattern. 

By expressing DDP sub-workflows in Kepler, the same workflow can be executed on top of 

different Big Data engines, i.e., Hadoop, Spark or Stratosphere.

III. Challenges of Big Data Provenance

There are many challenges for data provenance at large. Although the provenance of 

workflow-driven analysis is related to this global view of data provenance, there are specific 

challenges posed by the complex nature of workflows including data and compute systems, 

application specific legacy tools, and distributed large datasets. We first analyze some 

scenarios on Big Data provenance usage. Then we focus on a subset of these challenges 

posed by such scenarios.

A. Usage Scenarios

From our experience with real projects, we present four scenarios requiring Big Data 

provenance:

Scenario 1: Many scientific programs have adopted MapReduce programming 

models to process large volumes of data where each execution in Map/Reduce 

function only processes a fraction of data. The overall execution numbers of user 

defined Map/Reduce function (UDF) could easily go above millions. For instance, 

our experiments on a MapReduce based bioinformatics tool show one application 

execution could have up to 11 billion UDF executions [23]. Scientists find a very 

valuable record from the overall result. They want to know the input data of the UDF 

function execution generated this record and reproduce this specific execution.

Scenario 2: A number of online streaming Big Data sets are used in an analytical 

workflow application with many steps. Faulty datasets could lead to incorrect 

scientific conclusion or even catastrophic results [31]. In addition, the pre-processing 

5http://www.cascading.org/
6https://flink.apache.org/
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steps to reduce the high-dimensionality of the big datasets potentially introduce 

errors. So the application builder is trying to assess the quality of the integrated 

dataset and the final products. Since the input data quality might changes over time, 

how can application provenance help assessing data quality changes of final products 

from data qualities of input datasets?

Scenario 3: Cloud resources are becoming increasingly popular for scientific Big 

Data applications as their execution environments [25, 26]. The workload for these 

applications varies over time. Because of monetary costs of the Cloud recourse usage, 

the resource manager wants to adopt Cloud resource provisioning based on 

application requests without violating their execution deadlines. How can provenance 

be utilized to calculate the minimal resource requirement for each application 

request?

Scenario 4: The CAMERA project hosts 800 data sets over 800 metagenomic and 

genomic data sets (>48 billion base pairs, 120 million reads) and around 20 

workflows based scientific applications [24]. These scientific applications run on a 

computer cluster against the huge reference dataset. Each application will be executed 

repeatedly by many scientists using different query datasets. Scientists want to know 

the estimated time for their submitted execution requests. How can the provenance 

recorded from existing executions be utilized to predict the execution time for a new 

execution?

These four scenarios demonstrate both computing and data oriented nature of provenance 

information related to Big Data analysis. The first two are more concerned by the data 

lineage of big datasets. The last two are more concerned by the performance issues using 

provenance.

B. Challenges

Several challenges of Big Data provenance arise from the above scenarios:

Challenge 1: The provenance data from Big Data workflows is too large. To get a 

fine-grain provenance tracking of a workflow execution like above scenario 1, the 

recorded provenance could easily be several times larger than the original data to be 

processed [7]. This large provenance data should either be saved efficiently, or 

reduced without comprising its targeted capabilities.

Challenge 2: Provenance collection overhead during workflow execution is too 

much. There is always an execution overhead when recording provenance on top of 

the computation cost related to the analysis. This overhead problem often gets worse 

for Big Data workflows due to their distributed nature. A challenge is to minimize the 

provenance collection overhead. This challenge is related to all four scenarios in 

previous sub-section.

Challenge 3: It is hard to store and integrate distributed provenance. The provenance 

of UDFs running on Big Data systems is often initially saved on distributed non-

permanent nodes. The information collected needs to be either communicated as the 

analysis is happening or stitched together in the end. The first choice generates a lot 
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of communication overhead, but is useful to monitor the application progress. The 

second choice is more efficient, but requires an additional step to upload the 

information before freeing the computation nodes. The stitching of the data to be 

centralized in both choices requires additional integration steps. This challenge is 

related to all four scenarios in previous sub-section.

Challenge 4: It is hard to reproduce an execution from provenance for Big Data 

applications. Many existing provenance systems only record intermediate data 

generated during execution and their dependencies. Execution environment 

information, which is also important for reproducibility, is often neglected. Execution 

environment information includes the hardware information and parameter 

configurations of Big Data engines. We have found this information is not only 

critical to execution performance but also could affect the final results. For instance, 

our application in [14] partitions data across multiple nodes and ensemble the results 

in the end using a voting mechanism. The same voting mechanism might get different 

results depending on how data is partitioned. This challenge is related to the first 

scenario in previous subsection.

IV. State of the Art in Big Data Provenance

There have been a few key studies to explore modeling and capturing provenance 

information for Big Data workflows. In this section, we provide a short summary of the 

efforts that tackle the challenges summarized in previous section. Some other studies on Big 

Data provenance [8, 27, 28, 29] are not detailed here since we focus on those that are in the 

context of DDP and have experimental analysis.

Kepler Distributed Provenance Framework [7] is our previous work on Big Data 

provenance. The paper proposes a data model that is able to capture provenance inside 

MapReduce jobs as well as the provenance of non-MapReduce workflow tasks. It utilizes 

the Kepler DDP architecture to record and query provenance in a distributed fashion on a 

MySQL Cluster. It also provides an API to query the collected provenance. The scalability 

of collecting and querying provenance is evaluated using the WordCount application and a 

bioinformatics application called BLAST.

RAMP (Reduce And Map Provenance) [15, 16] is an extension to Hadoop that supports 

provenance capture and tracing for MapReduce workflows. RAMP captures fine-grained 

provenance by wrapping Hadoop APIs. This automatic wrapper-based approach is 

transparent to Hadoop and users. RAMP imposes some time and space overhead during 

provenance capture and enables efficient backward tracing.

HadoopProv [17] modifies Hadoop to implement provenance capture and analysis in 

MapReduce jobs. The target is to minimize provenance capture overheads. It traces treats 

provenance in Map and Reduce phases separately. It also defers construction of the 

provenance graph to the query stage by joining intermediate keys of the Map and Reduce 

provenance files.
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Pig Lipstick [18] proposes a provenance framework that combines database-style (fine-

grained dependencies) and workflow-style provenance (coarse-grained dependencies) on top 

of Pig Latin. It proposes a comprehensive and compact graph-based representation of fine-

grained provenance for workflows which yields a richer graph model than the OPM standard 

[19] used for workflows. It defines three graph transformation operations to enable novel 

workflow analysis queries.

We summarize the above related work in Table I, from which we can see that there are still a 

few limitations. First, these studies focus on a specific Big Data engine. It is not easy for 

applications that want to track provenance with another Big Data engine. Second, none of 

the systems record environment information in provenance so far, which is difficult or 

impossible to reproduce workflow execution. Third, the usages of provenance are limited to 

querying and data lineage building. We will explain more provenance utilization 

opportunities, such as provenance mining, in the next section.

V. Opportunities for Big Data Provenance

From our analysis of the scenarios and challenges presented in Section III and related work 

summary in Section IV, we have formulated several research opportunities in the area of Big 

Data provenance. In this section, we categorize those opportunities into seven sub-sections. 

To illustrate how these opportunities could help with day-to-day applications, Table II lists 

which Big Data provenance capabilities are required for the scenarios described in Section 

III. The following paragraphs identify some of the research opportunities to start building 

these capabilities.

A. Big Data Provenance Model

Current provenance models and standards like OPM [19] might need to be extended for Big 

Data provenance. Additional information could be part of provenance model includes data 

quality, data compression and execution environment information. Also, provenance data for 

tasks inside of DDP patterns need to be linked with provenance for tasks outside of DDP 

patterns. Further, provenance model needs to be flexible or extensible to fit different specific 

environments and/or heterogeneous datasets.

B. Big Data Provenance Recording

Current provenance recording approaches mainly listen to the notifications of internal state 

changes. We argue that this internal provenance should be combined with external 

provenance to be more complete and useful for Big Data provenance. External provenance 

includes static and runtime dynamic software and hardware information, parameter 

configurations of Big Data engines. For instance, Hadoop has more than 200 parameters, 

many of which will determine not only an execution’s performance but also whether it can 

finish successfully. The external provenance often can be collected by third-party tools, such 

as software profiling tools like gprof7 and valgrind8, and system monitoring tools [30]. The 

external provenance is often at external locations, such as Big Data configuration and log 

7https://sourceware.org/binutils/docs/gprof
8http://valgrind.org
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folder. The internal provenance recording components need to integrate third-party tools and 

provenance data to get holistic provenance information.

Provenance recording also needs to address the size, overhead and storage challenges listed 

in Section III. It needs to know whether and how to record the whole input data at 

provenance storage, whether and how to record the data partitions distributed across 

computing nodes, how to minimize the provenance recording overhead. Further, real-time 

data ingested for analytics may be large and ephemeral. Novel techniques are needed for 

provenance recording of real-time data that are not possible for batch data.

C. Big Data Provenance Query and Sharing

Additional provenance query APIs might be needed for Big Data provenance. For example, 

we need either different query APIs for different levels of capture and granularity, or query 

APIs that can specify granularity level. From performance perspective, distributed file and 

database systems can be utilized to achieve scalable provenance query. For provenance 

sharing, service based queries will be more efficient than direct data transfer for large 

provenance data.

D. Big Data Workflow Execution Reproducibility based on Provenance

We need to know the minimal provenance information requirement to reproduce a Big Data 

workflow execution. Since Big Data workflow execution might take a long time in a very 

large environment, reproducing the whole execution with identical environment and 

parameter settings might be too costly or impossible. Simulation based reproducibility or 

partial reproducibility are often more practical. Users might be only interested in the last a 

few steps or the whole workflow execution with only partial input data. Smart re-run 

techniques are often useful to determine the minimal steps to run or minimal provenance to 

record for each reproduce requirement [20].

E. Provenance based Big Data Workflow Performance Prediction

One capability of mining Big Data provenance is to predict future workflow execution 

performance. If a system records provenance of all workflows it supports, we could use all 

provenance together to predict the performance of a future workflow execution. There have 

been some Big Data application performance analytics models [21, 22]. By combining these 

models and provenance data, we could have more accurate prediction.

F. Provenance based Big Data Workflow Provisioning and Scheduling

Provenance could also be used to help find the best computing resource allocation 

requirement and scheduling plan for a new workflow execution. Users may have some 

objectives for their workflow executions, such as execution deadline, monetary cost or both. 

By looking into the provenance data on execution times, execution costs and environments 

used by previous workflow executions, we could use machine learning techniques to model 

the correlation between execution objectives and resource allocations for each workflow. 

With allocated resources, we could further utilize provenance to help with scheduling each 

task of the workflow and determining Big Data parameter configurations.
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G. Provenance based Data Quality Analysis and Management

Data lineage from provenance has always been a good approach to measure data quality 

based on input data and data transformation [32, 33]. Current approaches normally use 

process-based analysis to tell how one dataset’s quality depends on which other datasets. In 

the Big Data era, data quality issues are more challenging because the huge volume and 

wide variety of data used in an application. Overall quality assessment of a very large dataset 

is often not enough. We need finer granularity data quality assessment for Big Data. We 

argue that provenance based data quality should be analyzed from more dimensions. First, 

we can use sampling or other techniques to determine the quality of each data subset, 

especially for scenarios that data is partitioned first to achieve parallel batch processing. 

Second, we might need to check data quality for each time window. It is more suitable for 

data streaming applications where data quality could suddenly deteriorate due to hardware 

or weather reason.

VI. Big Data Provenance Reference Architecture

We propose a reference architecture for Big Data provenance platform based on the 

challenges and opportunities identified in this paper. As Figure 1 shows, the architecture has 

four main sub-systems: Big Data access, distributed Big Data platform, provenance, 

applications utilizing provenance. We will explain them separately in this section. Each of 

these sub systems interact with respective live data and compute engines to gather required 

provenance data. Following this reference architecture, system developers will select and 

decide on components in each sub-system based on the targeted provenance usage scenario 

and capability.

A. Big Data Access

This sub-system is on how to access the different types of Big Data for provenance and 

distributed systems. Based on the feature of each specific dataset and experiment 

requirements, system developers need to find the best mechanism/tool to access it. This 

requires a good coordination between the data and compute systems. Provenance tracking of 

the execution is also based on this coordination.

B. Distributed Big Data Platform

This sub-system provides construction and execution support for Big Data applications and 

storage support for Big Data provenance on top of distributed Big Data platforms. 

Application developers will choose one Big Data workflow system to build their 

applications, then run them with a specific Big Data Engine. Some systems like Spark can 

act as both workflow construction tool and DDP execution engine. A Big Data application 

can be built by wrapping legacy tools or direct programming using DDP programming 

models. Proper (distributed) databases or file systems also need to be selected and integrated 

for provenance storage.

C. Provenance

This sub-system determines which provenance information will be recorded and how to 

record it. We categorize the provenance into three dimensions: data, lineage, and 
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environment. Rebuilding the exact state of the experiment across these three dimensions is 

essential to reproduce any data-driven scientific experiment. Data Provenance captures the 

state of input, intermediate and output data at the time of the experiment. It will choose the 

best compression algorithms depending on the input data format. Lineage Provenance stores 

the computational activity of the experiment, which is captured by the storing the 

instructions that operated on these input datasets. System Provenance collects information 

about the exact state of the system configuration, which includes both hardware 

specifications and system-software specifications (OS, libraries, third party tools, etc.).

D. Applications Utilizing Provenance

As explained in Section V, Big Data provenance brings big opportunities, especially on how 

we could utilize it. As a special type of Big Data, Big Data provenance can be used for 

provenance query, experiment reproduction, provenance mining, experiment monitoring, 

data quality management, experiment fault tolerance and many others. Each capability can 

be a standalone application or internal component in a larger system.

VII. In-Progress Efforts in Kepler

As analyzed above, our current Kepler provenance system cannot well support the Big Data 

provenance challenges and opportunities yet, especially on provenance usage and 

environmental provenance recording. Following the reference architecture in Section VI, we 

are extending Kepler provenance framework. In this section, we summarize some technical 

efforts. All of them are still under development and this is our first time to discuss them in a 

publication.

A. Extensible Big Data Provenance Model

We are extending Kepler Provenance Data Model to include execution environment data. To 

make the new provenance data model flexible and extensible, its database table for 

environment information is key-value based. It means the same schema can be used to 

collect different types of environment information, such as local machine, cloud resources, 

cluster resources and GPU resources.

B. Adaptive Big Data Provenance Recording

By using Kepler sub-workflow to express the processes in DDP patterns, the same 

provenance recording system can work with multiple Big Data engines. It can be easily 

configured to switch provenance recording from one Big Data engine to another. There are 

cases where users are only interested in coarse-grained provenance, not what happens in 

each DDP function execution. It can be achieved by configuring provenance not to record 

the sub-workflows within the DDP actors.

C. Environment Information Collection for Workflow Reproducibility and Performance 
Prediction

Based on the analysis of existing provenance archives for previous Kepler workflow runs, 

we identify five types of metrics for workflow reproducibility and performance prediction. 

These metrics are: 1) Static environment information (CPU, memory, core number, GPU, 
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storage, etc.); 2) Runtime dynamic environment information (usage of the above static 

environment info, queue, workload, etc.); 3) Prediction time dynamic environment 

information (queue, workload, etc.); 4) Code/Tool/Actor profiles (programming model 

environment requirement, data size, parameter values, etc.); 5) Workflow profiles (actor 

number and type, structure, execution environment type, parameter values, etc.). The 

collected metrics can also be used for workflow characterization, workflow classification, 

and workflow performance variability.

D. Provenance Mining

We are investigating how to learn useful knowledge from Big Data provenance. We are 

focusing on provenance based workflow performance prediction and resource provisioning. 

We identify two types of workflow performance analysis approaches, namely, single 

workflow performance prediction and collective workflow performance prediction. The two 

approaches are illustrated in Figure 2. The first task predicts the execution performance of a 

new instance of a workflow based on its own execution history. The second one predicts the 

execution performance of a workflow based on not only its own history but also on other 

similar workflows’ execution histories. Collective workflow performance prediction uses all 

available provenance data collectively for the next workflow execution. It is more suitable 

for workflows that have no or little execution provenance, which is a cold-start problem.

For collective workflow performance prediction, we found that although workflows can have 

various structures and tasks, there is a lot of commonality at the task level. In Kepler, each 

task is described using an actor and the same actor is often reused in many workflows. Based 

each actor’s provenance data from executions of the same or different workflows. We can 

train a machine learning model for each actor and predict its performance in the next 

execution. By combining actor performance prediction based on workflow structure, we can 

get a good estimation for a new workflow’s execution.

We have employed Spark MLlib 9 to implement a decision tree model on top of Kepler 

provenance. Spark MLlib is built on top of Spark system which is for large-scale data 

processing. Using Spark provides an efficient and scalable way to process large-scale 

provenance data. Spark MLlib is a scalable machine learning library including common 

learning algorithms and utilities. Decision trees can be used for regression modeling, and 

thus are applicable to workflow performance prediction. After the training phase, the model 

can be used to predict new workflow execution based on its parameter values.

VIII. Conclusions and Future Work

In this paper, we presented our analysis of the effects of Big Data on tracking and utilization 

of data and process provenance in workflow-driven analytical and scientific applications. We 

presented some of the specific challenges we faced in this while building such applicatons, 

and some open research questions that arise from these challenges. We hope this analysis 

will serve as a starting point expansion of this discussion at the workshop and other Big Data 

venues. We built an initial reference architecture for a Big Data provenance platform that we 

9http://spark.apache.org/mllib/
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can use as a testbed in response to the needs of the four scenarios we outlined. We also 

presented our in-progress approach to model, record, query and mine Big Data provenance. 

We would like to conclude by noting that although there are overhead and cost related 

challenges related to provenance, not collecting it has huge implications on the reliability, 

veracity and reprodicibility of Big Data analysis efforts. Working on any of the outlined 

ambitious challenges has a potential to make impact in this important area.

As a part of future work, we will create experimental archives for the workflow community 

to utilize. We will also work with our colleagues in the IPPD project (see 

acknowledgements) on a data model, ontology and PROV [1] standard extensions. We will 

conduct experimental analysis of learning from the Big Data workflow provenance and other 

related system and tool level information to gain more insight on the execution requirements 

of workflows and provisioning of resources required for workflow execution. We will 

conduct a cost analysis of provenance recording and extend our approach for adaptive 

provenance recording decisions. We will also explore case-driven scenarios for compression 

of provenance data.
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Figure 1. 
Proposed Big Data provenance reference architecture
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Figure 2. 
Workflow performance analysis approaches.
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TABLE I

Related Work Comparison on Big Data Provenance

Provenance Recording Applicable Big Data 
Engines Provenance Usage Environment Provenance Recording

Kepler Parallel recording in a 
MySQL database Unmodified Hadoop Parallel query through 

MySQL Cluster N/A

RAMP Parallel recording in 
files Extended Hadoop Backward provenance tracing N/A

HadoopProv Parallel recording in 
files Modified Hadoop Parallel query through index 

files N/A

Pig Lipstick Parallel recording in 
files Unmodified Pig/Hadoop Graph operation based query N/A
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