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Abstract

Random forest (RF) missing data algorithms are an attractive approach for imputing missing data. 

They have the desirable properties of being able to handle mixed types of missing data, they are 

adaptive to interactions and nonlinearity, and they have the potential to scale to big data settings. 

Currently there are many different RF imputation algorithms, but relatively little guidance about 

their efficacy. Using a large, diverse collection of data sets, imputation performance of various RF 

algorithms was assessed under different missing data mechanisms. Algorithms included proximity 

imputation, on the fly imputation, and imputation utilizing multivariate unsupervised and 

supervised splitting—the latter class representing a generalization of a new promising imputation 

algorithm called missForest. Our findings reveal RF imputation to be generally robust with 

performance improving with increasing correlation. Performance was good under moderate to 

high missingness, and even (in certain cases) when data was missing not at random.
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1 Introduction

Missing data is a real world problem often encountered in scientific settings. Data that is 

missing is problematic as many statistical analyses require complete data. This forces 

researchers who want to use a statistical analysis that requires complete data to choose 

between imputing data or discarding missing values. But to simply discard missing data is 

not a reasonable practice, as valuable information may be lost and inferential power 

compromised [1]. Thus, imputing missing data in such settings is a more reasonable and 

practical way to proceed.

While many statistical methods have been developed for imputing missing data, many of 

these perform poorly in high dimensional and large scale data settings; for example, in 

genomic, proteomic, neuroimaging, and other high-throughput problems. In particular, it is 

generally recommended that all variables be included in multiple imputation to make it 

proper in general and in order to not create bias in the estimate of the correlations [2]. But 

this can lead to overparameterization when there are a large number of variables and the 

sample size is moderate. Computational issues may also arise. An example is the occurrence 

of non-convexity due to missing data when maximizing the log-likelihood. This creates 

problems for traditional optimization methods such as the EM algorithm [3]. Missing data 

methods are also often designed only for continuous data (for example, gene expression data 
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[4]), and for methods applicable to mixed data (i.e., data having both nominal and 

categorical variables), implementation can often break down in challenging data settings [5]. 

Another concern is the inability to deal with complex interactions and nonlinearity of 

variables. Standard multiple imputation approaches do not automatically incorporate 

interaction effects, which leads to biased parameter estimates when interactions are present 

[6]. Although some techniques, such as fully conditional specification of covariates can be 

used to try to resolve this problem [7], these techniques can be difficult and inefficient to 

implement in settings where interactions are expected to be complicated.

For these reasons there has been much interest in using machine learning methods for 

missing data imputation. A promising approach can be based on Breiman’s random forests 

[8] (abbreviated hereafter as RF). RF have the desired characteristic that they: (1) handle 

mixed types of missing data; (2) address interactions and nonlinearity; (3) scale to high-

dimensions while avoiding overfitting; and (4) yield measures of variable importance useful 

for variable selection. Currently there are several different RF missing data algorithms. This 

includes the original RF proximity algorithm proposed by Breiman [9] implemented in the 

randomForestR-package [10]. A different class of algorithms are the “on-the-fly-

imputation” algorithms implemented in the randomSurvivalForestR-package [11], 

which allow data to be imputed while simultaneously growing a survival tree. These 

algorithms have been unified within the randomForestSRCR-package (abbreviated as RF-

SRC) to include not only survival, but classification and regression among other settings 

[12]. A third approach is missForest, a method recently introduced in [13]. Missforest takes 

a different approach by recasting the missing data problem as a prediction problem. Data is 

imputed by regressing each variable in turn against all other variables and then predicting 

missing data for the dependent variable using the fitted forest. MissForest has been shown 

[14] to outperform well known methods such as k-nearest neighbors [15] and parametric 

MICE [16] (multivariate imputation using chained equation).

Given that RF meets all the characteristics for handling missing data, it seems desirable to 

use RF for imputing data. However, practitioners have very little guidance about which of 

these algorithms to use, as there have been no systematic studies looking at the comparative 

behavior of RF missing data algorithms. Comparisons of RF imputation to other procedures 

have been considered by [13, 14], and there have been studies looking at effectiveness of RF 

imputation when combined with other methods (for instance [17] showed that parameter 

estimates were less biased when using MICE with random forest based imputation), but no 

systematic study of performance between RF algorithms has been attempted. To address this 

gap in the literature, we therefore sought to study various RF algorithms and systematically 

document their performance using a large empirical study involving 60 data sets. 

Performance was assessed by imputation accuracy and computational speed. Different 

missing data mechanisms (missing at random and not missing at random) were used to 

assess robustness. In addition to the RF missing data algorithms described above, we also 

considered several new algorithms, including a multivariate version of missForest, referred 

to as mForest. Despite the superior performance of missForest (a finding confirmed in our 

experiments), the algorithm is computationally expensive to implement in high-dimensions 

as a separate forest must be calculated for each variable and the algorithm run until 
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convergence is achieved. The mForest algorithm helps to alleviate this problem by grouping 

variables and using multivariate forests with each group used in turn as the set of dependent 

variables. This replaces p regressions, where p is the number of variables, with ≈ 1/α 
regressions, where 0 < α < 1 is a user specified group fraction size. Computational savings 

were found to be substantial for mForest without overly compromising accuracy even for 

relatively large α. Other RF algorithms studied included a new multivariate unsupervised 

algorithm and algorithms utilizing random splitting.

All forests constructed in the manuscript followed the RF methodology of [8]. Trees were 

grown using independently sampled bootstrap data. For univariate regression, continuous 

variables were split using squared-error splitting; categorical variables by the Gini index 

[18]. More general splitting rules, such as unsupervised and multivariate splitting, were also 

employed, and are described later in the manuscript. Random feature selection was used, 

with mtryvariables selected at random prior to splitting a tree node, and trees grown as 

deeply as possible subject to the constraint of a lower bound of nodesizeunique data values 

within a terminal node. RF missing data algorithms were implemented using the 

randomForestSRCR-package [12], which has been extended to include a new 

impute.rfsrcfunction optimized specifically for data imputation. The package 

implements openMP parallel processing, which allows for parallel processing on user 

desktops as well as large scale computing clusters; thus greatly reducing computational 

times.

2 RF approaches to imputation

Three general strategies have been used for RF missing data imputation:

A. Preimpute the data; grow the forest; update the original missing values using 

proximity of the data. Iterate for improved results.

B. Simultaneously impute data while growing the forest; iterate for improved 

results.

C. Preimpute the data; grow a forest using in turn each variable that has missing 

values; predict the missing values using the grown forest. Iterate for improved 

results.

Proximity imputation [9] uses strategy A, on-the-fly-imputation [11] (OTFI) uses strategy B, 

and missforest [13] uses strategy C. The way these algorithms impute data is very different. 

Even the manner in which they model outcome data (i.e. “Y” variables) is different. Strategy 

C does not use outcome data at all and is solely a technique for imputing features (X 
variables), while strategies A and B utilize outcome information in their model building. 

Below we detail each of these strategies and describe various algorithms which utilize one of 

these three approaches. These new algorithms take advantage of new splitting rules, 

including random splitting, unsupervised splitting, and multivariate splitting [12].

2.1 Strawman imputation

We first begin by describing a “strawman imputation” which will be used throughout as our 

baseline reference value. While this algorithm is rough, it is also very rapid, and for this 
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reason it was also used to initialize some of our RF procedures. Strawman imputation is 

defined as follows. Missing values for continuous variables are imputed using the median of 

non-missing values, and for missing categorical variables, the most frequently occurring 

non-missing value is used (ties are broken at random).

2.2 Proximity imputation: RFprx and RFprxR

Here we describe proximity imputation (strategy A). In this procedure the data is first 

roughly imputed using strawman imputation. A RF is fit using this imputed data. Using the 

resulting forest, the n × n symmetric proximity matrix (n equals the sample size) is 

determined where the (i, j) entry records the inbag frequency that case i and j share the same 

terminal node. The proximity matrix is used to impute the original missing values. For 

continuous variables, the proximity weighted average of non-missing data is used; for 

categorical variables, the largest average proximity over non-missing data is used. The 

updated data are used to grow a new RF, and the procedure is iterated.

We use RFprx to refer to proximity imputation as described above. However, when 

implementing RFprx we use a slightly modified version that makes use of random splitting in 

order to increase computational speed. In random splitting, nsplit, a non-zero positive 

integer, is specified by the user. A maximum of nspit-split points are chosen randomly for 

each of the randomly selected mtrysplitting variables. This is in contrast to non-random 

(deterministic) splitting typically used by RF, where all possible split points for each of the 

potential mtrysplitting variables are considered. The splitting rule is applied to the nsplit 
randomly selected split points and the tree node is split on the variable with random split 

point yielding the best value, as measured by the splitting criterion. Random splitting 

evaluates the splitting rule over a much smaller number of split points and is therefore 

considerably faster than deterministic splitting.

The limiting case of random splitting is pure random splitting. The tree node is split by 

selecting a variable and the split-point completely at random—no splitting rule is applied; 

i.e. splitting is completely non-adaptive to the data. Pure random splitting is generally the 

fastest type of random splitting. We also apply RFprx using pure random splitting; this 

algorithm is denoted by RFprxR.

As an extension to the above methods, we implement iterated versions of RFprx and RFprxR. 

To distinguish between the different algorithms, we write  and  when they are 

iterated k ≥ 1 times. Thus,  and  indicates that the algorithms were iterated 5 

times, while  and  indicates that the algorithms were not iterated. However, as 

this latter notation is somewhat cumbersome, for notational simplicity we will simply use 

RFprx to denote  and RFprxR for .

2.3 On-the-fly-imputation (OTFI): RFotf and RFotfR

A disadvantage of the proximity approach is that OOB (out-of-bag) estimates for prediction 

error are biased [9]. Further, because prediction error is biased, so are other measures based 

on it, such as variable importance. The method is also awkward to implement on test data 
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with missing values. The OTFI method [11] (strategy B) was devised to address these issues. 

Specific details of OTFI can be found in [11, 12], but for convenience we summarize the key 

aspects of OTFI below:

1. Only non-missing data is used to calculate the split-statistic for splitting a tree 

node.

2. When assigning left and right daughter node membership if the variable used to 

split the node has missing data, missing data for that variable is “imputed” by 

drawing a random value from the inbag non-missing data.

3. Following a node split, imputed data are reset to missing and the process is 

repeated until terminal nodes are reached. Note that after terminal node 

assignment, imputed data are reset back to missing, just as was done for all 

nodes.

4. Missing data in terminal nodes are then imputed using OOB non-missing 

terminal node data from all the trees. For integer valued variables, a maximal 

class rule is used; a mean rule is used for continuous variables.

It should be emphasized that the purpose of the “imputed data” in Step 2 is only to make it 

possible to assign cases to daughter nodes—imputed data is not used to calculate the split-

statistic, and imputed data is only temporary and reset to missing after node assignment. 

Thus, at the completion of growing the forest, the resulting forest contains missing values in 

its terminal nodes and no imputation has been done up to this point. Step 4 is added as a 

means for imputing the data, but this step could be skipped if the goal is to use the forest in 

analysis situations. In particular, step 4 is not required if the goal is to use the forest for 

prediction. This applies even when test data used for prediction has missing values. In such a 

scenario, test data assignment works in the same way as in step 2. That is, for missing test 

values, values are imputed as in step 2 using the original grow distribution from the training 

forest, and the test case assigned to its daughter node. Following this, the missing test data is 

reset back to missing as in step 3, and the process repeated.

This method of assigning cases with missing data, which is well suited for forests, is in 

contrast to surrogate splitting utilized by CART [18]. To assign a case having a missing 

value for the variable used to split a node, CART uses the best surrogate split among those 

variables not missing for the case. This ensures every case can be classified optimally, 

whether the case has missing values or not. However, while surrogate splitting works well 

for CART, the method is not well suited for forests. Computational burden is one issue. 

Finding a surrogate split is computationally expensive even for one tree, let alone for a large 

number of trees. Another concern is that surrogate splitting works tangentially to random 

feature selection used by forests. In RF, candidate variables for splitting a node are selected 

randomly, and as such the candidate variables may be uncorrelated with one another. This 

can make it difficult to find a good surrogate split when missing values are encountered, if 

surrogate splitting is restricted to candidate variables. Another concern is that surrogate 

splitting alters the interpretation of a variable, which affects measures such as variable 

importance measures [11].
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To denote the OTFI missing data algorithm, we will use the abbreviation RFotf. As in 

proximity imputation, to increase computational speed, RFotf is implemented using 

nsplitrandom splitting. We also consider OTFI under pure random splitting and denote 

this algorithm by RFotfR. Both algorithms are iterated in our studies. RFotf, RFotfR will be 

used to denote a single iteration, while  denotes five iterations. Note that when 

OTFI algorithms are iterated, the terminal node imputation executed in step 4 uses inbag 

data and not OOB data after the first cycle. This is because after the first cycle of the 

algorithm, no coherent OOB sample exists.

Remark 1: As noted by one of our referees, missingness incorporated in attributes (MIA) is 

another tree splitting method which bypasses the need to impute data [19, 20]. Again, this 

only applies if the user is interested in a forest analysis. MIA accomplishes this by treating 

missing values as a category which is incorporated into the splitting rule. Let X be an 

ordered or numeric feature being used to split a node. The MIA splitting rule searches over 

all possible split values s of X of the following form:

Split A: {X ≤ s or X = missing} versus {X >s}.

Split B: {X ≤ s} versus {X >s or X = missing}.

Split C: {X = missing} versus {X = not missing}.

Thus, like OTF splitting, one can see that MIA results in a forest ensemble constructed 

without having to impute data.

2.4 Unsupervised imputation: RFunsv

RFunsv refers to OTFI using multivariate unsupervised splitting. However unlike the OTFI 

algorithm, the RFunsv algorithm is unsupervised and assumes there is no response (outcome) 

variable. Instead a multivariate unsupervised splitting rule [12] is implemented. As in the 

original RF algorithm, at each tree node t, a set of mtryvariables are selected as potential 

splitting variables. However, for each of these, as there is no outcome variable, a random set 

of ytryvariables is selected and defined to be the multivariate response (pseudooutcomes). 

A multivariate composite splitting rule of dimension ytry(see below) is applied to each of 

the mtrymultivariate regression problems and the node t split on the variable leading to the 

best split. Missing values in the response are excluded when computing the composite 

multivariate splitting rule: the split-rule is averaged over non-missing responses only [12]. 

We also consider an iterated RFunsv algorithm (e.g.  implies five iterations, RFunsv 

implies no iterations).

Here is the description of the multivariate composite splitting rule. We begin by considering 

univariate regression. For notational simplicity, let us suppose the node t we are splitting is 

the root node based on the full sample size n. Let X be the feature used to split t, where for 

simplicity we assume X is ordered or numeric. Let s be a proposed split for X that splits t 
into left and right daughter nodes tL:= tL(s) and tR:= tR(s), where tL = {Xi ≤ s} and tR = {Xi 

> s}. Let nL = #tL and nR = #tR denote the sample sizes for the two daughter nodes. If Yi 

denotes the outcome, the squared-error split-statistic for the proposed split is
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where ȲtL and ȲtR are the sample means for tL and tR respectively. The best split for X is the 

split-point s minimizing D(s, t). To extend the squared-error splitting rule to the multivariate 

case q > 1, we apply univariate splitting to each response coordinate separately. Let Yi = 

(Yi,1, …, Yi,q)T denote the q ≥ 1 dimensional outcome. For multivariate regression analysis, 

an averaged standardized variance splitting rule is used. The goal is to minimize

where ȲtLj and ȲtRj are the sample means of the j-th response coordinate in the left and right 

daughter nodes. Notice that such a splitting rule can only be effective if each of the 

coordinates of the outcome are measured on the same scale, otherwise we could have a 

coordinate j, with say very large values, and its contribution would dominate Dq(s, t). We 

therefore calibrate Dq(s, t) by assuming that each coordinate has been standardized 

according to

The standardization is applied prior to splitting a node. To make this standardization clear, 

we denote the standardized responses by . With some elementary manipulations, it can be 

verified that minimizing Dq(s, t) is equivalent to maximizing

(1)

For multivariate classification, an averaged standardized Gini splitting rule is used. First 

consider the univariate case (i.e., the multiclass problem) where the outcome Yi is a class 

label from the set {1, …, K} where K ≥ 2. The best split s for X is obtained by maximizing
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where Zi(k) = 1{Yi=k}. Now consider the multivariate classification scenario r > 1, where 

each outcome coordinate Yi,j for 1 ≤ j ≤ r is a class label from {1, …, Kj} for Kj ≥ 2. We 

apply Gini splitting to each coordinate yielding the extended Gini splitting rule

(2)

where Zi(k),j = 1{Yi,j=k}. Note that the normalization 1/Kj employed for a coordinate j is 

required to standardize the contribution of the Gini split from that coordinate.

Observe that (1) and (2) are equivalent optimization problems, with optimization over 

for regression and Zi(k),j for classification. As shown in [21] this leads to similar theoretical 

splitting properties in regression and classification settings. Given this equivalence, we can 

combine the two splitting rules to form a composite splitting rule. The mixed outcome 

splitting rule Θ(s, t) is a composite standardized split rule of mean-squared error (1) and Gini 

index splitting (2); i.e.,

where p = q + r. The best split for X is the value of s maximizing Θ(s, t).

Remark 2: As discussed in [22], multivariate regression splitting rules patterned after the 

Mahalanobis distance can be used to incorporate correlation between response coordinates. 

Let ȲL and ȲR be the multivariate means for Y in the left and right daughter nodes, 

respectively. The following Mahalanobis distance splitting rule was discussed in [22]

where V̂
L and V̂

R are the estimated covariance matrices for the left and right daughter nodes. 

While this is a reasonable approach in low dimensional problems, recall that we are applying 

Dq(s, t) to ytryof the feature variables which could be large if the feature space dimension p 
is large. Also, because of missing data in the features, it may be difficult to derive estimators 

for V̂
L and V̂

R, which is further complicated if their dimensions are high. This problem 

becomes worse as the tree is grown because the number of observations decreases rapidly 

making estimation unstable. For these reasons, we use the splitting rule Dq(s, t) rather than 

Mq(s, t) when implementing imputation.
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2.5 mForest imputation: mRFα and mRF

The missForest algorithm recasts the missing data problem as a prediction problem. Data is 

imputed by regressing each variable in turn against all other variables and then predicting 

missing data for the dependent variable using the fitted forest. With p variables, this means 

that p forests must be fit for each iteration, which can be slow in certain problems. 

Therefore, we introduce a computationally faster version of missForest, which we call 

mForest. The new algorithm is described as follows. Do a quick strawman imputation of the 

data. The p variables in the data set are randomly assigned into mutually exclusive groups of 

approximate size αp where 0 < α < 1. Each group in turn acts as the multivariate response to 

be regressed on the remaining variables (of approximate size (1−α)p). Over the multivariate 

responses, set imputed values back to missing. Grow a forest using composite multivariate 

splitting. As in RFunsv, missing values in the response are excluded when using multivariate 

splitting: the split-rule is averaged over non-missing responses only. Upon completion of the 

forest, the missing response values are imputed using prediction. Cycle over all of the ≈ 1/α 
multivariate regressions in turn; thus completing one iteration. Check if the imputation 

accuracy of the current imputed data relative to the previously imputed data has increased 

beyond an ε-tolerance value (see Section 3.3 for measuring imputation accuracy). Stop if it 

has, otherwise repeat until convergence.

To distinguish between mForest under different α values we use the notation mRFα to 

indicate mForest fit under the specified α. Note that the limiting case α = 1/p corresponds to 

missForest. Although technically the two algorithms missForest and mRFα for α = 1/p are 

slightly different, we did not find significant differences between them during informal 

experimentation. Therefore for computational speed, missForest was taken to be mRFα for 

α = 1/p and denoted simply as mRF.

3 Methods

3.1 Experimental design and data

Table 1 lists the nine experiments that were carried out. In each experiment, a pre-specified 

target percentage of missing values was induced using one of three different missing 

mechanisms [23]:

1. Missing completely at random (MCAR). This means the probability that an 

observation is missing does not depend on the observed value or the missing 

ones.

2. Missing at random (MAR). This means that the probability of missingness may 

depend upon observed values, but not missing ones.

3. Not missing at random (NMAR). This means the probability of missingness 

depends on both observed and missing values.

Sixty data sets were used, including both real and synthetic data. Figure 1 illustrates the 

diversity of the data. Displayed are data sets in terms of correlation (ρ), sample size (n), 

number of variables (p), and the amount of information contained in the data (I = log10(n/
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p)). The correlation, ρ, was defined as the L2-norm of the correlation matrix. If R = (ρi,j) 

denotes the p × p correlation matrix for a data set, ρ was defined to equal

(3)

This is similar to the usual definition of the L2-norm for a matrix, but where we have 

modifed the definition to remove the diagonal elements of R which equal 1, as well as the 

contribution from the symmetric lower diagonal values.

Note that in the plot for p there are 10 data sets with p in the thousands—these are a 

collection of well known gene expression data sets. The right-most plot displays the log-

information of a data set, I = log10(n/p). The range of values on the log-scale vary from −2 

to 2; thus the information contained in a data set can differ by as much as ≈ 104.

3.2 Inducing MCAR, MAR and NMAR missingness

The following procedures were used to induce missigness in the data. Let the target 

missigness fraction be 0 < γNA < 1. For MCAR, data was set to missing randomly without 

imposing column or row constraints to the data matrix. Specifically, the data matrix was 

made into a long vector and nγNA of the entries selected at random and set to missing.

For MAR, missing values were assigned by column. Let Xj = (X1,j, …, Xn,j) be the n-

dimensional vector containing the original values of the jth variable, 1 ≤ j ≤ p. Each 

coordinate of Xj was made missing according to the tail behavior of a randomly selected 

covariate Xk, where k ≠ j. The probability of selecting coordinate Xi,j was

where F(x) = (1 + exp(−3x))−1 and Bj were i.i.d. symmetric 0–1 Bernoulli random variables. 

With this method, about half of the variables will have higher missigness in those 

coordinates corresponding to the right tail of a randomly selected variable (the other half 

will have higher missigness depending on the left tail of a randomly selected variable). A 

total of nγNA coordinates were selected from Xj and set to missing. This induces MAR, as 

missing values for Xj depend only on observed values of another variable Xk.

For NMAR, each coordinate ofXj was made missing according to its own tail behavior. A 

total of nγNA values were selected according to
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Notice that missingness in Xi,j depends on both observed and missing values. In particular, 

missing values occur with higher probability in the right and left tails of the empirical 

distribution. Therefore, this induces NMAR.

3.3 Measuring imputation accuracy

Accuracy of imputation was assessed using the following metric. As described above, values 

of Xj were made missing under various missing data assumptions. Let (11,j, …, 1n,j) be a 

vector of zeroes and ones indicating which values of Xj were artificially made missing. 

Define 1i,j = 1 if Xi,j is artificially missing; otherwise 1i,j = 0. Let  be the 

number of artificially induced missing values for Xj.

Let  and  be the set of nominal (continuous) and categorical (factor) variables with more 

than one artificially induced missing value. That is,

Standardized root-mean-squared error (RMSE) was used to assess performance for nominal 

variables, and misclassification error for factors. Let  be the n-dimensional vector of 

imputed values for Xj using procedure ℐ. Imputation error for ℐ was measured using

where . To be clear regarding the standardized RMSE, observe that 

the denominator in the first term is the variance of Xj over the artificially induced missing 

values, while the numerator is the MSE difference of Xj and  over the induced missing 

values.

As a benchmark for assessing imputation accuracy we used strawman imputation described 

earlier, which we denote by . Imputation error for a procedure ℐ was compared to  using 

relative imputation error defined as

A value of less than 100 indicates a procedure ℐ performing better than the strawman.
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3.4 Experimental settings for procedures

Randomized splitting was invoked with an nsplitvalue of 10. For random feature 

selection, mtrywas set to . For random outcome selection for RFunsv, we set ytryto 

equal . Algorithms RFotf, RFunsv and RFprx were iterated 5 times in addition to being run 

for a single iteration. For mForest, the percentage of variables used as responses was α = .

05, .25. This implies that mRF0.05 used up to 20 regressions per cycle, while mRF0.25 used 

4. Forests for all procedures were grown using a nodesizevalue of 1. Number of trees was 

set at ntree= 500. Each experimental setting (Table 1) was run 100 times independently 

and results averaged.

For comparison, k-nearest neighbors imputation (hereafter denoted as KNN) was applied 

using the impute.knnfunction from the R-package impute[24]. For each data point with 

missing values, the algorithm determines the k-nearest neighbors using a Euclidean metric, 

confined to the columns for which that data point is not missing. The missing elements for 

the data point are then imputed by averaging the non-missing elements of its neighbors. The 

number of neighbors k was set at the default value k = 10. In experimentation we found the 

method robust to the value of k and therefore opted to use the default setting. Much more 

important were the parameters rowmaxand colmaxwhich control the maximum percent 

missing data allowed in each row and column of the data matrix before a rough overall mean 

is used to impute the row/column. The default values of 0.5 and 0.8, respectively, were too 

low and led to poor performance in the heavy missing data experiments. Therefore, these 

values were set to their maximum of 1.0, which greatly improved performance. Our 

rationale for selecting KNN as a comparison procedure is due to its speed because of the 

large scale nature of experiments (total of 100×60×9 = 54, 000 runs for each method). 

Another reason was because of its close relationship to forests. This is because RF is also a 

type of nearest neighbor procedure—although it is an adaptive nearest neighbor. We 

comment later on how adaptivity may give RF an advantage over KNN.

4 Results

Section 4.1 presents the results of the performance of a procedure as measured by relative 

imputation accuracy, ℰR(ℐ). In Section 4.2 we discuss computational speed.

4.1 Imputation Accuracy

In reporting the values for imputation accuracy, we have stratified data sets into low, medium 

and high-correlation groups, where correlation, ρ, was defined as in (3). Low, medium and 

high-correlation groups were defined as groups whose ρ value fell into the [0, 50], [50, 75] 

and [75, 100] percentile for correlations. Results were stratified by ρ because we found it 

played a very heavy role in imputation performance and was much more informative than 

other quantities measuring information about a data set. Consider for example the log-

information for a data set, I = log10(n/p), which reports the information of a data set by 

adjusting its sample size by the number of features. While this is a reasonable measure, 

Figure 2 shows that I is not nearly as effective as ρ in predicting imputation accuracy. The 

figure displays the ANOVA effect sizes for ρ and I from a linear regression in which log 

relative imputation error was used as the response. In addition to ρ and I, dependent 
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variables in the regression also included the type of RF procedure. The effect size was 

defined as the estimated coefficients for the standardized values of ρ and I. The two 

dependent variables ρ and I were standardized to have a mean of zero and variance of one 

which makes it possible to directly compare their estimated coefficients. The figure shows 

that both values are important for understanding imputation accuracy and that both exhibit 

the same pattern. Within a specific type of missing data mechanism, say MCAR, importance 

of each variable decreases with missingness of data (MCAR 0.25, MCAR 0.5, MCAR 0.75). 

However, while the pattern of the two measures is similar, the effect size of ρ is generally 

much larger than I. The only exceptions being the MAR 0.75 and NMAR 0.75 experiments, 

but these two experiments are the least interesting. As will be discussed below, nearly all 

methods performed poorly here.

4.1.1 Correlation—Figure 3 and Table 2, which have been stratified by correlation group, 

show the importance of correlation for RF imputation procedures. In general, imputation 

accuracy generally improves with correlation. Over the high correlation data, mForest 

algorithms were by far the best. In some cases, they achieved a relative imputation error of 

50, which means their imputation error was half of the strawman’s value. Generally there are 

no noticeable differences between mRF (missForest) and mRF0.05. Performance of mRF0.25, 

which uses only 4 regressions per cycle (as opposed to p for mRF), is also very good. Other 

algorithms that performed well in high correlation settings were  (proximity 

imputation with random splitting, iterated 5 times) and  (unsupervised multivariate 

splitting, iterated 5 times). Of these,  tended to perform slightly better in the medium 

and low correlation settings. We also note that while mForest also performed well over 

medium correlation settings, performance was not superior to other RF procedures in low 

correlation settings, and sometimes was worse than procedures like . Regarding the 

comparison procedure KNN, while its performance also improved with increasing 

correlation, performance in the medium and low correlation settings was generally much 

worse than RF methods.

4.1.2 Missing data mechanism—The missing data mechanism also plays an important 

role in accuracy of RF procedures. Accuracy decreased systematically when going from 

MCAR to MAR and NMAR. Except for heavy missingness (75%), all RF procedures under 

MCAR and MAR were more accurate than strawman imputation. Performance in NMAR 

was generally poor unless correlation was high.

4.1.3 Heavy missingness—Accuracy degraded with increasing missingness. This was 

especially true when missingness was high (75%). For NMAR data with heavy missingness, 

procedures were not much better than strawman (and sometimes worse), regardless of 

correlation. However, even with missingness of up to 50%, if correlation was high, RF 

procedures could still reduce the strawman’s error by one-half.

4.1.4 Iterating RF algorithms—Iterating generally improved accuracy for RF 

algorithms, except in the case of NMAR data, where in low and medium correlation settings, 
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performance sometimes degraded. We believe this is a real effect but have no explanation for 

this behavior except that it reflects the difficulty in dealing with NMAR.

4.2 Computational speed

Figure 5 (see Appendix) displays the log of total elapsed time of a procedure averaged over 

all experimental conditions and runs, with results ordered by the log-computational 

complexity of a data set, c = log10(np). The fastest algorithm is KNN which is generally 3 

times faster on the log-scale, or 1000 times faster, than the slowest algorithm, mRF 

(missForest). To improve clarity of these differences, Figure 6 (see Appendix) displays the 

relative computational time of procedure relative to KNN (obtained by subtracting the KNN 

log-time from each procedure’s log-time). This new figure shows that while mRF is 1000 

times slower than KNN, the multivariate mForest algorithms, mRF0.05 and mRF0.25, 

improve speeds by about a factor of 10. After this, the next slowest procedures are the 

iterated algorithms. Following this are the non-iterated algorithms. Some of these latter 

algorithms, such as RFotf, are 100 times faster than missForest; or only 10 times slower than 

KNN. These kinds of differences can have a real effect when dealing with big data. We have 

experienced settings where OTF algorithms can take hours to run. This means that the same 

data would take missForest 100’s of hours to run, which makes it questionable to be used in 

such settings.

5 Simulations

5.1 Sample size

We used simulations to study the performance of RF as the sample size n was varied. We 

wanted to investigate two questions: (1) Does the relative imputation error improve with 

sample size? (2) Do these values converge to the same or different values for the different 

RF imputation algorithms?

For our simulations, there were 10 variables X1, …, X10 where the true model was

where ε was simulated independently from a N(0, 0.5) distribution (here N(μ, v) denotes a 

normal distribution with mean μ and variance v). Variables X1 and X2 were correlated with a 

correlation coefficient of 0.96, and X5 and X6 were correlated with value 0.96. The 

remaining variables were not correlated. Variables X1,X2,X5,X6 were N(3, 3), variables 

X3,X10 were N(1, 1), variable X8 was N(3, 4), and variables X4,X7,X9 were exponentially 

distributed with mean 0.5.

The sample size (n) was chosen to be 100, 200, 500, 1000, and 2000. Data was made 

missing using the MCAR, MAR, and NMAR missing data procedures described earlier. 

Percentage of missing data was set at 25%. All imputation parameters were set to the same 

values as used in our previous experiments as described in Section 3.4. Each experiment was 

repeated 500 times and the relative imputation error, ℰR(ℐ), recorded in each instance. 

Figure 4 displays the mean relative imputation error for a RF procedure and its standard 
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deviation for each sample size setting. As can be seen, values improve with increasing n. It 

is also noticeable that performance depends upon the RF imputation method. In these 

simulations, the missForest algorithm mRF0.1 appears to be best (note that p = 10 so mRF0.1 

corresponds to the limiting case missForest). Also, it should be noted that performance of 

RF procedures decrease systematically as the missing data mechanism becomes more 

complex. This mirrors our previous findings.

5.2 Pattern mixture models

In pattern-mixture models [25, 26], the outcome is changed when an independent variable is 

missing. This is considered a challenging missing data scenario, therefore we sought to 

investigate performance of procedures in this setting. We used simulations to compare 

imputation performance of RF methods when the missing data mechanism was MCAR, 

MAR, and NMAR for the X features, and where the outcome Y was simulated with and 

without a pattern-mixture model (PMM). Independent variables X1, …, X10 were simulated 

as in Section 5.1. The PMM was defined as

where ε was simulated independently from a N(0, 0.5) distribution. Pattern-mixture 

missingness was induced by M1 which was set to M1 = 1 if X1 was missing and M1 = 0 if 

X1 was not missing. This results in the value of Y being affected by the missingness of X1. 

Missingness for X1, …, X10 was induced by MCAR, MAR, and NMAR as in Section 5.1. 

The sample size was chosen to be n = 2000. Simulations were repeated 500 times.

The results are displayed in Table 3. Relative imputation error for each procedure is given 

for each of the three X missing data mechanisms with and without a PMM for Y. Because 

methods such as mForest do not use Y in their imputation procedure, only the results from 

simulations without PMM are displayed for such procedures. As shown in Table 3, mRF0.1 

generally had the best imputation accuracy (as before, note that mRF0.1 corresponds to the 

limiting case missForest because p = 10). For PMM simulations, OTF and proximity 

methods, which use Y in their model building, generally saw a degradation in imputation 

performance, especially when missingness forX was NMAR. This shows the potential 

danger of imputation procedures which include Y, especially when missingness in X has a 

complex relationship to Y. A more detailed study of this issue will be undertaken by the 

authors in a follow up paper.

6 Conclusions

Being able to effectively impute missing data is of great importance to scientists working 

with real world data today. A machine learning method such as RF, known for its excellent 

prediction performance and ability to handle all forms of data, represents a poentially 

attractive solution to this challenging problem. However, because no systematic comparative 

study of RF had been attempted in missing data settings, we undertook a large scale 

experimental study of different RF imputation procedures to determine which methods 

performed best, and under what types of settings.
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We found that correlation played a very strong role in performance of RF procedures. 

Imputation performance generally improved with increasing correlation of features. This 

held even with heavy levels of missing data and for all but the most complex missing data 

scenarios. When there is high correlation we recommend using a method like missForest 

which performed the best in such settings. Although it might seem obvious that increasing 

feature correlation should improve imputation, we found that in low to medium correlation, 

RF algorithms did noticeably better than the popular KNN imputation method. This is 

interesting because KNN is related to RF. Both methods are a type of nearest neighbor 

method, although RF is more adaptive than KNN, and in fact can be more accurately 

described as an adaptive nearest neighbor method. This adaptivity of RF may play a special 

role in harnessing correlation in the data that may not necessarily be present in other 

methods, even methods that have similarity to RF. Thus, we feel it is worth emphasizing that 

correlation is extremely important to RF imputation methods.

In big data settings, computational speed will play a key role. Thus, practically speaking, 

users might not be able to implement the best method because computational times will 

simply be too long. This is the downside of a method like missForest, which was the slowest 

of all the procedures considered. As one solution, we proposed mForest (mRFα) which is a 

computationally more efficient implementation of missForest. Our results showed mForest 

could achieve up to a 10-fold reduction in compute time relative to missForest. We believe 

these computational times can be improved further by incorporating mForest directly into 

the native C-library of randomForestSRC(RF-SRC). Currently mForest is run as an 

external R-loop that makes repeated calls to the impute.rfsrc function in RF-SRC. 

Incorporating mForest into the native library, combined with the openMP parallel processing 

of RF-SRC, could make it much more attractive. However, even with all of this, we still 

recommend some of the more basic OTFI algorithms like unsupervised RF imputation 

procedures for big data. These algorithms perform solidly in terms of imputation and can be 

up to a 100 times faster than missForest.
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APPENDIX

Figures 5 and 6 display computational speed for different RF algorithms as a function of 

complexity.
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Figure 1. 
Summary values for the 60 data sets used in the large scale RF missing data experiment. The 

last panel displays the log-information, I = log10(n/p), for each data set.
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Figure 2. 
ANOVA effect size for the log-information, I = log10(n/p), and correlation, ρ (defined as in 

(3)), from a linear regression using log relative imputation error, log10(ℰR(ℐ)), as the 

response. In addition to I and ρ, dependent variables in the regression included type of RF 

procedure used. ANOVA effect sizes are the estimated coefficients of the standardized 

variable (standardized to have mean zero and variance 1). This demonstrates the importance 

of correlation in assessing imputation performance.
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Figure 3. 
Relative imputation error, ℰR(ℐ), stratified and averaged by level of correlation of a data set. 

Procedures are: RFotf,  (on the fly imputation with 1 and 5 iterations); RFotfR, 

(similar to RFotf and  but using pure random splitting); RFunsv,  (multivariate 

unsupervised splitting with 1 and 5 iterations); RFprx,  (proximity imputation with 1 

and 5 iterations); RFprxR,  (same as RFprx and  but using pure random 

splitting); mRF0.25, mRF0.05, mRF (mForest imputation, with 25%, 5% and 1 variable(s) 

used as the response); KNN (k-nearest neighbor imputation).
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Figure 4. 
Mean relative imputation error ± standard deviation from simulations under different sample 

size values n = 100, 200, 500, 1000, 2000.
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Figure 5. 
Log of computing time for a procedure versus log-computational complexity of a data set, c 
= log10(np).
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Figure 6. 
Relative log-computing time (relative to KNN) versus log-computational complexity of a 

data set, c = log10(np).
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Table 1

Experimental design used for large scale study of RF missing data algorithms.

Missing Mechanism Percent Missing

EXPT-A MCAR 25

EXPT-B MCAR 50

EXPT-C MCAR 75

EXPT-D MAR 25

EXPT-E MAR 50

EXPT-F MAR 75

EXPT-G NMAR 25

EXPT-H NMAR 50

EXPT-I NMAR 75
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