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Abstract

Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire 

bacterial cell envelope in Gram-negative and Gram-positive bacteria. They play important roles 

through the contact-dependent secretion of effector molecules into eukaryotic hosts and 

conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA 

with the extracellular milieu. In the last few years, many details on the molecular mechanisms of 

T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli 
plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. 

The structure of the F-pilus was also reported and surprisingly revealed a filament composed of 

pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been 

identified and characterized, underscoring the structural and functional diversity of this secretion 

superfamily. Complex regulatory circuits also have been shown to control T4SS machine 

production in response to host cell physiological status or a quorum of bacterial recipient cells in 

the vicinity. Here, we summarize recent advances in our knowledge of ‘paradigmatic’ and 

emerging systems, and further explore how new basic insights are aiding in the design of strategies 

aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial 

resistances.

Abbreviated Summary

Type IV secretion systems (T4SSs) are highly sophisticated nanomachines in the cell envelope of 

many bacteria. They exhibit crucial roles during infection of humans by the secretion of effector 

proteins, conjugative transfer of DNA and exchange of DNA with the extracellular environment. 

In this MicroReview, we summarize recent progress on T4SS composition, assembly and 

structure, and highlight how basic understanding of their functions is aiding in the design of novel 

strategies for antimicrobial therapies.
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Introduction

The T4SSs represent a highly diverse superfamily of secretion systems found in many 

bacterial species. This diversity is represented at a functional level by an astounding 

collective capacity of T4SSs to i) recognize and translocate single-stranded (ss) DNA 

substrates (conjugation machines) to bacterial recipients, ii) deliver effector proteins 

(effector translocator systems) to eukaryotic target cells, iii) exchange DNA with the milieu, 

iv) contribute to biofilm development, and v) deliver a killing toxin to bacterial neighbors 

(Figs. 1A–D). Many pathogenic bacteria deploy T4SSs as virulence determinants aiding 

their colonization and propagation in the eukaryotic host (Fig. 1E). Most if not all T4SS-

carrying species alternatively utilize these machines to disseminate mobile genetic elements, 

often rife with antibiotic resistance genes and other fitness traits, for enhanced survival in 

clinical and other environmental settings. In this MicroReview, we summarize intriguing 

advances in studies of the evolution, structure, and function of T4SSs operating in various 

human pathogens. Our new insights form an important foundation for emerging translational 

studies aimed at suppressing the action of T4SSs in pathogenic bacteria or repurposing 

T4SSs for therapeutic ends.
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Evolution of the structurally and functionally diverse T4SS superfamily

The T4SSs can be viewed as composite structures of two or more functional protein 

modules. The large subfamily of conjugation systems in Gram-negative (Gram−) bacteria is 

composed of four such units: i) the relaxosome responsible for nicking DNA substrates at 

their origin of transfer (oriT) sequences, ii) the type IV coupling protein (T4CP) functioning 

as a substrate receptor, iii) the cell-envelope-spanning T4SS machine constituting the mating 

channel, and iv) an extracellular pilus important for establishment of intercellular contacts 

and robust biofilm development (Alvarez-Martinez and Christie, 2009; Christie, 2016). Over 

the last few years, phylogenetic studies have focused on delineating the ancestral 

relationships of several key components of these functional modules. For example, the 

relaxase enzymes in the relaxosome likely evolved from rolling circle replicases (Garcillan-

Barcia et al., 2009), whereas T4CPs and the VirB4 ATPase components of the T4SS channel 

evolved from ancestral SpoIIIE/FtsK-like ATPases (Guglielmini et al., 2013; 2014). Mating 

channels likely functioned originally as protein transport systems and evolved as conjugation 

systems through recognition by T4CPs of rolling circle replicases as substrates. By tracing 

the evolutionary paths of the signature T4CP and VirB4 ATPases, the conjugation systems 

are thought to have emerged first in the diderm (Gram−) species and then expanded to the 

monoderm Gram-positive (Gram+) species. These systems then diverged on a relatively 

recent evolutionary time scale to generate the extreme biological diversity of the T4SSs 

ranging from the widely distributed conjugation machines to dedicated effector translocator 

systems to various other systems adapted for entirely novel purposes (Bhatty et al., 2013; 

Guglielmini et al., 2013; 2014).

The T4SSs of Gram− bacteria have been classified into two broad phylogenetic subfamilies, 

designated as types IVA and IVB. The Agrobacterium tumefaciens VirB/VirD4 T4SS and E. 
coli conjugation apparatuses, encoded by the R388 and pKM101 plasmids, have served as 

paradigms of the type IVA systems (Chandran Darbari and Waksman, 2015; Christie, 2016). 

These T4SSs characteristically are composed of 12 subunits, each in multiple copies, termed 

VirB1 through VirB11 and VirD4 based on the A. tumefaciens subunit names as a unifying 

nomenclature for this secretion superfamily. Of these, VirB2-VirB11 and VirD4 are required 

for substrate transfer, whereas VirB1 is necessary and VirD4 is dispensable for assembly of 

the conjugative pilus. The subunits can be grouped according to general function or 

subcellular location as: i) the cytoplasmic ATPases (VirB4, VirB11, VirD4), ii) components 

of an inner membrane platform (VirB3, VirB6, VirB8), iii) constituents of an outer 

membrane core complex (OMCC; VirB7, VirB9, VirB10), and iv) pilus-assembly 

components (VirB1 transglycosylase, VirB2 pilin, VirB5 pilus-tip protein). As described in 

more detail below, recent structure - function studies are advancing our mechanistic 

knowledge of these ‘paradigmatic’ systems. Two other well-characterized systems, the T4SS 

encoded by E. coli F plasmids and the Cag (Cytotoxin-associated genes) T4SS encoded by 

H. pylori, are composed of orthologs by all the VirB/VirD4 proteins, and thus are classified 

as type IVA. However, these systems additionally require many F- and Cag-specific subunits 

for their assembly, and thus likely have novel structural and functional features (Backert et 
al., 2015; Christie, 2016). The type IVB transporters also require many (>25) proteins for 

their assembly, of which only a few are related to the VirB/VirD4 subunits and over 20 are 
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specific for the IVB machineries. The L. pneumophila Dot/Icm (Defective for organelle 

trafficking/Intracellular multiplication) system serves as a paradigm for this subfamily 

(Nagai and Kubori, 2011).

The T4SSs have evolved as highly-specialized nanomachines both in recognition of specific 

substrate repertoires and in delivery of substrates to specific prokaryotic or eukaryotic cell 

types. This specialization arose largely through appropriation by the ancestral conjugation 

systems of novel motifs, proteins or protein subassemblies (Christie, 2016). For example, 

there is accumulating evidence that many VirD4 substrate receptors have acquired sequence-

variable C-terminal extensions (CTEs) that are capable of binding secretion chaperones or 

adaptors, often required for secretion of associated substrates. These VirD4 CTE - adaptor 

interactions play important roles in defining the substrate repertoire of cognate T4SSs. 

Additionally, the VirB6 subunits typically consist of five or more inner membrane-spanning 

helices, but a large subfamily of these subunits (called extended VirB6’s) have acquired 

large hydrophilic domains shown to extend to the cell surface or into target cells to modulate 

the bacterial donor-target cell interaction. Similarly, the VirB7 and VirB10 subunits typically 

form part of the OMCC, yet variants of these subunits carry long variable repeat sequences 

implicated in specifying host cell recognition or immune evasion (Christie, 2016). Recent 

genomics studies also have identified redundant but sequence-variable copies of genes 

encoding VirB2 and VirB5 pilin subunits; these pilins also are thought to assemble as 

surface-variable structures enabling modulation of host cell binding or persistence in an 

infection setting (Alvarez-Martinez and Christie, 2009; Gillespie et al., 2009; 2010; 

Vayssier-Taussat et al., 2010). Finally, there also is increasing evidence that T4SSs have 

appropriated other bacterial host proteins, e.g., surface-exposed adhesins or outer membrane 

proteins (OMPs), to promote binding to other bacterial or eukaryotic cell targets as a 

prerequisite for interbacterial gene or interkingdom effector protein transfer (Bhatty et al., 
2015; Javaheri et al., 2016; Königer et al., 2016). This structural and functional diversity is 

especially evident among the T4SSs deployed by important human pathogens for effector 

translocation, as highlighted later in this MicroReview.

T4SS architecture and pilus formation

Over the last decade, there has been significant progress in deciphering the structures of 

T4SS subassemblies from conjugation machines functioning in E. coli and from T-DNA 

transfer in A. tumefaciens. These structures represent an architectural blueprint for the IVA 

transporters that, coupled with results of earlier formaldehyde crosslinking studies in the A. 
tumefaciens VirB/VirD4 system (Atmakuri et al., 2004; Cascales and Christie, 2004), 

generate a view of how secretion substrates are conveyed through the T4SS to the cell 

surface. Until now the structures of three T4SSs have been reported, two of isolated 

machines and one in the native context of the bacterial cell envelope. The best-characterized 

structures to date have been presented for the Trw T4SS encoded by plasmid R388, achieved 

by negative-stain and cryo-electron microscopy (cryo-EM) imaging of isolated machines. 

The largest structure is designated the VirB3-10 assembly because it is composed of 

homologs of the A. tumefaciens VirB3-VirB10 subunits (Low et al., 2014). This ~3 

MegaDalton complex consists of a large outer membrane subassembly called the core 

complex (Fig. 1F). Core complex structures also have been presented for the plasmid 
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pKM101-encoded T4SS at a high resolution and for the A. tumefaciens VirB/VirD4 T4SS at 

a lower resolution (Chandran et al., 2009; Fronzes et al., 2009; Rivera-Calzada et al., 2013; 

Gordon et al., 2017). The R388 VirB3-10 structure is additionally composed of an inner 

membrane complex (IMC) of extraordinary design and a slight flexible section (the stalk), 

connecting the core complex with the IMC (Trokter et al., 2014). The IMC is composed of 

12 copies each of VirB3, VirB4, VirB5, VirB6, and VirB8, coming together to form a 

double-barreled structure, each of the barrels protruding in the cytoplasm. These barrel-

shaped structures are each made of the VirB4 ATPase, observed here as trimers of VirB4 

dimers. Cryo-EM of the pKM101 core complex identified a ring structure of 185 Å in 

diameter, comprising the VirB7, VirB9 and VirB10 proteins (Fig. 1G, top), each existent in 

14 copies (Fronzes et al., 2009; Rivera-Calzada et al., 2013). In fact, this complex is 

composed of inner (I) and outer (O) layers. The O-layer is formed by VirB7 and the C-

terminal domains of VirB9 and VirB10. The 2.6 Å resolution O-layer structure revealed that 

VirB10 forms the interior lining of the complex while VirB9/VirB7 forms a protective crown 

around it. Fourteen VirB10 subunits project each a helical bundle to form a highly unusual 

outer-membrane channel (Chandran et al., 2009). The cryo-EM assembly of a truncated 

pKM101 core structure, lacking the N-terminus of VirB10 (Fig. 1G, bottom), was 

determined at 8.5 Å resolution and provided further details on the structure of the I-layer 

(Rivera-Calzada et al., 2013). The I-layer in the arrangement is composed of 14 VirB9 N-

terminal domains and covers the outer wall. Molecular modeling supported the view that 

these domains represent β-sandwich folds. Remarkable projections from a middle platform 

tighten the channel, connecting the chambers in the O-layer and I-layer (Fig. 1G, bottom 

right). This podium is apparently formed by VirB9, with proposed function in effector 

molecule delivery across the core complex. In addition, three NTPases (VirB4, VirB11 and 

VirD4) function as hexamers (Yeo et al., 2000; Gomis-Rüth et al., 2001; Savvides et al., 
2003; Hare et al., 2006; Wallden et al., 2012). They face the cytoplasm and are essential for 

substrate secretion. Two of these NTPases (VirB4 and VirB11) are also essential for 

extracellular pilus formation. T4SS-pili represent tube-like appendages (Eisenbrandt et al., 
1999; Wang et al., 2009), and stimulate contact and subsequent mating pair formation with 

the recipient (Dürrenberger et al., 1991; Samuels et al., 2000; Hospenthal et al., 2017). 

However, the composition of these mating bridges is not fully explored. It appears that 

conjugative pili function as conduits for DNA transfer and can appear at significant cell-to-

cell distances (Babic et al., 2008). Interestingly, uncoupling mutations in agrobacterial T4SS 

proteins blocked pilus biogenesis, but allowed proper DNA transfer (Jakubowski et al., 
2009; Banta et al., 2011). This implied that intact pili are not necessary for substrate transfer. 

However, production of VirB2 and VirB5 is important for proper T4SS function and host 

cell interaction (Berger and Christie, 1993; Backert et al., 2008). These data together denote 

the existence of two configurations for the IVA-type T4SSs, a pilus biogenesis-competent 

form and a secretion-competent form, that may be composed of a pilus structure extending 

through the chamber of the OMCC (Banta et al., 2011).

Several other T4SS-associated structures have been solved, including a recent cryo-EM 

structure of a relaxase that revealed the molecular basis of DNA unwinding during bacterial 

conjugation (Fig. 1H–J) (Ilangovan et al., 2017). A structure of a VirD4 coupling protein 

bound to a VirB-type T4SS machinery was also described, providing a view of how 
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secretion substrates might be conveyed through the T4SS (Fig. 1J) (Redzej et al., 2017). 

Structures of the H. pylori Cag (Frick-Cheng et al., 2016) and L. pneumophila Dot/Icm 

systems (Ghosal et al., 2017) have been reported, although not yet at the resolution of the 

R388 VirB3-10 structure. Even at this time, however, these structures allow for general 

comparisons between the ‘paradigmatic’ VirB/VirD4-like type IVA machines and 

phylogenetically diverse systems; for example, the IVA and IVB types have a similar 

architecture consisting of a 14-fold symmetrical core complex mounted through a stalk to a 

double-barreled IMC. Finally, in addition to the structures solved for plasmid-encoded 

T4SSs or subassemblies, in the last year atomic models were solved by cryo-EM for two F 

family pili. Strikingly, these pili are composed of TraA pilin subunits in 1:1 stoichiometric 

association with phospholipid (Costa et al., 2016). These structures provide a molecular 

basis for understanding the dynamics of F-pilus assembly and retraction (Costa et al., 2016). 

Taken together, these new T4SS structures represent significant breakthroughs in the field of 

bacterial secretion.

Nature and recruitment of T4SS substrates

Pioneering work on the nature and recruitment of T4SS substrates, with focus on 

conjugative plasmids from Gram− bacteria, has been performed by the groups of Llosa and 

Zechner (Fernandéz-Gonzaléz et al., 2011; Zechner et al., 2012; Lang et al., 2014; Gruber et 
al., 2016). All conjugative T4SSs encode relaxases, which initiate substrate processing by a 

nucleophilic attack of the active site tyrosyl-hydroxyl group of the enzyme on the scissile 

phosphate group within oriT, releasing the bridging oxygen and forming a long-lived 

ssDNA-protein conjugate. This high-energy bond serves several functions: i) it physically 

links the ssDNA substrate with the relaxase whose translocation signal (TS) mediates 

transfer through the T4SS, ii) it protects the phosphate of the ssDNA from nucleophilic 

attack when it enters the recipient, and iii) it provides the means to rejoin the plasmid ends 

in the recipient (Zechner et al., 2012). T4SS substrates are equipped with TSs that identify 

them as substrates for secretion (Zechner et al., 2012). Redzej and co-workers reported the 

first structure of a TS in relaxase TraI from plasmid R1 (Redzej et al., 2013). The latter TS 

domain can be divided into three subdomains with striking structural homology to helicase 

subdomains of the SF1B family. This work provided the first evidence that the TS can be 

part of larger structural scaffolds, overlapping with translocation-independent activities 

(Redzej et al., 2013).

Before entering the secretion channel, T4SS substrates form complexes with specific 

cytosolic binding partners, which can act as chaperones or adaptors to mediate substrate 

contacts with the cognate T4CP (Zechner et al., 2012). In the F system, for example, the 

TraM accessory factor functions in substrate selection by promoting a specific interaction 

between the F plasmid substrate and the F-encoded TraD T4CP (Wong et al., 2012). Other 

characterized T4SS accessory factors include the VirE1 chaperone, required for 

translocation of the VirE2 effector through the A. tumefaciens VirB/VirD4 T4SS, and the 

IcmS, IcmW, LvgA adaptors essential for translocation of different subsets of effectors 

through the Legionella Dot/Icm translocation apparatus (Alvarez-Martinez and Christie, 

2009; Kwak et al., 2017). Par-like proteins such as A. tumefaciens VirC1 and VirC2 

(Atmakuri et al., 2007) and R1 plasmid-encoded ParM and ParR (Gruber et al., 2016) also 
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appear to play a role in promoting the docking of the T-DNA and R1 DNA substrates with 

their cognate T4SSs.

In Gram+ bacteria, the DNA processing steps prior to conjugative transfer appear to be 

mechanistically very similar (Zechner et al., 2012). One exception to this generalization is 

that the Clostridium perfringens plasmid pCW3 codes for an atypical relaxase in the sense 

that it carries a catalytic tyrosine residue. Other catalytic residues conserved in tyrosine 

recombinases are not required for TcpM activity, suggesting that TcpM is not a site-specific 

recombinase (Wisniewski et al., 2016). Also, the first evidence was presented that a T4SS 

deployed by a Gram+ species functions to deliver effector proteins to eukaryotic host cells 

during the course of infection (Li et al., 2011; Zhao et al., 2011; Jiang et al., 2016; Yin et al., 
2016). This T4SS is encoded by the 89 kb pathogenicity island (called 89K PAI) associated 

with Streptococcus suis and is also found in other pathogenic streptococci, e.g., S. 
pneumoniae, S. agalactiae (Wang et al., 2017). It will now be of considerable interest to 

confirm effector translocation, identify the effector repertoire, and define the nature of the 

translocation signals required for translocation through this and other possible effector 

translocators in Gram+ species.

Conjugative transfer systems

Conjugative T4SSs are encoded on conjugative plasmids, integrative and conjugative 

elements also known as ICEs or conjugative transposons, or genomic PAIs (Fig. 1A). These 

systems are found in most species of Gram− and Gram+ bacteria, and conjugative plasmids 

also exist in a few species of archaea (Wagner et al., 2017). In bacteria, these mobile genetic 

elements contribute to the spread of fitness traits and, more problematically from a clinical 

perspective, multiple antibiotic resistances (Christie, 2016; Grohmann et al., 2016). As 

mentioned earlier, the prototypic systems among Gram− species include the A. tumefaciens 
VirB/VirD4 T4SS (Christie, 2016), and the E. coli conjugative plasmids F, R388, and 

pKM101 (Lawley et al., 2003; Llosa and de la Cruz, 2005; de la Cruz et al., 2010; Frost and 

Koraimann, 2010; Zechner et al., 2012, Arutyunov and Frost, 2013; Koraimann and Wagner, 

2014; Cabezon et al., 2015).

Currently, the best characterized T4SSs from Gram+ bacteria are those encoded by the 

Enterococcus faecalis sex-pheromone responsive plasmid pCF10 (Li et al., 2012; Clewell et 
al., 2014; Laverde Gomez et al.; 2014; Bhatty et al., 2015; Whitaker et al., 2015; Bhatty et 
al., 2017), C. perfringens plasmid pCW3 (Bantwal et al., 2012; Porter et al., 2012; 

Wisniewski et al., 2015; 2016; Wisniewski and Rood, 2017) and broad-host-range plasmid 

pIP501 originally isolated from S. agalactiae (Arends et al., 2013; Goessweiner-Mohr et al., 
2013a and b; 2014a and b; Fercher et al., 2016; Grohmann et al., 2016; Kohler et al., 2017; 

Laverde et al., 2017). The conjugation machines in Gram+ species differ from their Gram− 

species counterparts mainly by lacking the outer membrane core complex and the VirB11 

ATPase. They also do not produce conjugative pili and instead rely on surface adhesins to 

mediate donor-recipient cell contacts (Bhatty et al., 2013; 2015). The Gram+ systems also 

typically employ VirB1-like lytic transglycosylases with two or more catalytic domains, 

presumably to allow for machine assembly across the thick peptidoglycan layer (Arends et 
al., 2013; Laverde Gomez et al., 2014).
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With respect to structure - function advances of the Gram+ T4SSs, high-resolution structures 

of individual components from the pIP501 and pCW3 systems have been solved (Porter et 
al., 2012; Goessweiner-Mohr et al., 2013a; 2014b; Fercher et al., 2016), although no 

structures are presently available for larger T4SS machine assemblies. Considerable progress 

also has been made in defining signaling cascades and regulatory networks governing 

assembly of several Gram+ systems. In the E. faecalis T4SS, pheromone-dependent 

overproduction of PrgB, otherwise known as Aggregation Substance, induces formation of 

intercellular aggregates. Interestingly, however, upon overproduction, PrgB confers toxicity 

on E. faecalis donors by a mechanism dependent on extracellular DNA (e-DNA) (Bhatty et 
al., 2015). A gene linked to prgB codes for a putative RNA-binding protein termed PrgU, 

whose synthesis mitigates PrgB-overproduction toxicity by blocking transcription from the 

upstream prgQ promoter (Bhatty et al., 2017). Studies also have deciphered regulatory 

features and the molecular organization of the ICEBs1-encoded T4SS carried by Bacillus 
subtilis (Carraro and Burrus, 2014; DeWitt and Grossman, 2014; Johnson and Grossman, 

2015; Leonetti et al., 2015; Auchtung et al., 2016). Finally, as noted above, the intriguing 

recent studies of the 89K PAI from S. suis for the first time have supplied evidence that a 

T4SS encoded by a Gram+ species is capable of translocating effector proteins into human 

host cells during the course of infection (Li et al., 2011; Jiang et al., 2016; Yin et al., 2016).

DNA export and import systems

The subfamily of contact-independent import/export machines is presently restricted to the 

H. pylori ComB competence system and the Neisseria gonorrhoeae DNA release apparatus 

(Figs. 1B,C). In the ComB system, the T4SS mediates the first step in DNA uptake across 

the outer membrane (Hofreuter et al., 1998; 2000; Stingl et al., 2010, Krüger and Stingl, 

2011). This apparatus was identified as the major mediator of DNA transfer between H. 
pylori strains, both in a DNaseI-sensitive (transformation) and DNaseI-resistant (conjugative 

transfer) manner (Rohrer et al., 2012). The ComB system comprises a nearly complete set of 

T4SS components, lacking only the homologs of VirB1, VirB5, and VirB11 ATPase 

(Fernández-González and Backert, 2014). An early study showed that all VirB homologs 

except for the VirB7-like subunit are required for DNA uptake (Hofreuter et al., 2003). In 

addition to the ComB subunits, the cytoplasmic protein DprA (Smeets et al., 2000a), the 

secreted protein ComH (Smeets et al., 2000b), and the cytoplasmic channel subunit ComEC 

(Yeh et al., 2003) are essential for DNA import by H. pylori (Fernández-González and 

Backert, 2014). Recently, a two-step DNA uptake mechanism was proposed in which ComB 

translocates double-stranded (ds) DNA across the outer membrane and delivers the substrate 

to the ComEC channel for uptake across the inner membrane (Stingl et al., 2010; Fernández-

González and Backert, 2014). It also has been suggested that some comB genes might 

contribute to H. pylori infection of mammalian host cells (Fernández-González and Backert, 

2014).

Neisseria gonorrhoeae is an obligate human pathogen responsible for the sexually 

transmitted disease gonorrhea. It encodes a plasmid F-like T4SS within the gonococcal 

genetic island (GGI), which secretes ssDNA directly into the external environment 

(Pachulec et al., 2014). This DNA is effective in transforming gonococci in the population, 

and may contribute to the high extent of genetic diversity in this species (Kohler et al., 
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2013). Secretion of ssDNA is also required for the initial stages of biofilm formation, 

presumably helping during colonization (Zweig et al., 2013; Obergfell and Seifert, 2015) 

(Fig. 1B). Sequence comparisons revealed that GGI-like T4SSs are highly conserved units 

located both on chromosomes and plasmids. The yaa-atlA and parA-parB gene regions were 

shown to be essential for DNA secretion (Pachulec et al., 2014). In addition, it was 

postulated that release of DNA occurs through the action of ParA, ParB, TraI, Yea, and TraD 

proteins. Reminiscent of the VirC1/VirC2 and ParM/ParR systems described earlier, the N. 
gonorrhoeae ParA and ParB are partitioning factors implicated in chromosome and plasmid 

DNA segregation during replication, but evidently also coordinate early DNA substrate 

docking reactions with the cognate GGI-encoded T4SSs (Leonard et al., 2005; Obergfell and 

Seifert, 2015).

Host-pathogen interactions

Helicobacter pylori

Helicobacter pylori is a paradigm of persistent pathogens and major risk factor of peptic 

ulceration and gastric adenocarcinoma in humans (Salama et al., 2013). Highly virulent 

isolates elaborate a T4SS encoded by the cag PAI. Machine assembly requires orthologs of 

all 12 agrobacterial VirB/VirD4 proteins and about a dozen other subunits, making this 

system clearly distinct from the ‘paradigmatic’ IVA systems discussed above (Fischer et al., 
2001; Backert et al., 2015). The T4SS core complex was visualized by negative-staining 

EM, bearing some architectural similarity to the R388-encoded VirB3-10 subassembly 

(Frick-Cheng et al., 2016). However, the Cag structure is considerably larger with a cross-

section of 41 nm as opposed to 28 nm, and it is composed of five (Cag3, CagM, CagT, 

CagX, CagY) as opposed to three (VirB7, VirB9, VirB10) subunits, respectively. The Cag 

T4SS also was shown to be associated with an extracellular pilus (Backert et al., 2015). 

Another distinction from the canonical systems is that several subunits, including CagL, 

CagI, CagY and the CagA secretion substrate, are associated with the surface-exposed 

portion of the pilus. These factors permit binding of the basolateral host receptor integrin 

α5β1, which is necessary for T4SS function (Kwok et al., 2007; Barden et al., 2013). New 

studies revealed that T4SS-pilus formation occurred predominantly at basolateral 

membranes during infection of polarized gastric epithelial cells, and not at apical sites. For 

this purpose, H. pylori secretes the serine protease HtrA, which opens cell-to-cell junctions 

through cleavage of the junctional proteins occludin, claudin-8 and E-cadherin (Schmidt et 
al., 2016; Tegtmeyer et al., 2017a). The only known Cag T4SS effector protein is CagA, and 

several crystal structures of CagA’s N-terminus are now available (Hayashi et al., 2012; 

Kaplan-Türköz et al., 2012). After delivery into host cells, CagA undergoes tyrosine 

phosphorylation by cellular Src and Abl kinases (Mueller et al., 2012). CagA can then 

interact with about 25 signaling proteins, including Shp2, Grb2, Par1b, PI3-kinase or tumor 

suppressor ASPP2 (Higashi et al., 2002; Mimuro et al., 2002; Saadat et al., 2007; Selbach et 
al., 2009, Nešić et al., 2014; Zhang et al., 2015). Through these interactions, CagA interferes 

with fundamental host signaling cascades such as cell adhesion, polarity, proliferation, anti-

apoptosis and inflammation (Tegtmeyer et al., 2017b). Functional studies in Mongolian 

gerbils (Franco et al., 2008) and transgenic mice (Ohnishi et al., 2008) have shown that 

CagA production is necessary and sufficient to stimulate gastric cancerogenesis. However, 
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besides CagA, this T4SS can translocate chromosomal DNA (Varga et al., 2016), 

peptidoglycan (Viala et al., 2004) and D-glycero-β-D-manno-heptose 1,7-bisphosphate (Gall 

et al., 2017; Stein et al., 2017; Zimmermann et al., 2017) into epithelial cells, which 

respectively stimulate TLR-9, kinase AKAP and pro-inflammatory transcription factor NF-

κB signaling modules. H. pylori also exploits host CEACAM (carcinoembryonic antigen-

related cell adhesion molecules) receptors via the surface-exposed OMP HopQ, for bacterial 

adherence and translocation of CagA. The HopQ - CEACAM interaction is necessary for 

full T4SS function, gastric colonization and pathology (Javaheri et al., 2016; Königer et al., 
2016).

Legionella pneumophila

Several intracellular pathogens including Legionella, Coxiella, Bartonella and Brucella 
species produce specialized T4SSs to aid in survival and spread in the human host 

(Personnic et al., 2016; Sherwood and Roy, 2016). Legionella pneumophila is an 

environmental amoeba-adapted parasite that also colonizes human alveolar macrophages, 

hence triggering severe pneumonia, called Legionnaires’ disease (Vogel and Isberg, 1999). 

To evade killing by the host, the L. pneumophila convert phagosomes into a protective 

compartment termed the “Legionella-containing vacuole” (LCV). Formation of this 

replicative niche requires the Dot/Icm T4SS. EM studies have visualized the Dot/Icm T4SS 

core as a ring-shaped structure composed of five proteins, DotC, DotD, DotF, DotG and 

DotH (Kubori et al., 2014). More recently, the Dot/Icm core complex was visualized by 

cryo-electron tomography of L. pneumophila cells. This structure more closely resembles 

the H. pylori Cag T4SS in its size (41 nm cross-section) and overall architecture (Ghosal et 
al., 2017). However, in contrast to the R388-encoded VirB3-10 structure, which presents 

information about the IMC, at present there is no knowledge of how the inner membrane 

subassemblies of either the Dot/Icm or Cag T4SSs are architecturally configured. 

Interestingly, the Dot/Icm system assembles at Legionella cell poles, and polar translocation 

of effector proteins appears to be important for virulence (Jeong et al., 2017). Remarkably, 

this T4SS is postulated to translocate over 300 effectors during infection, many of which 

have been shown to target host cellular pathways controlling membrane transport processes 

(Sherwood and Roy, 2016). Legionella LCVs are designed to escape fusion with lysosomes 

but comprehensively interact with various endosomal and secretory vesicle trafficking 

cascades (Isberg et al., 2009; Personnic et al., 2016; Sherwood and Roy, 2016). The LCVs 

move along microtubules in the host cell and finally merge with the endoplasmic reticulum 

(ER) (Horwitz et al., 1983; Lu and Clarke, 2005; Robinson and Roy, 2006). In this scenario, 

translocated effector proteins deregulate crucial factors of host signaling including various 

phosphatidylinositol lipids (Weber et al., 2006; 2014; Ragaz et al., 2008; Brombacher et al., 
2009; Hsu et al., 2012; Toulabi et al., 2013), autophagy components (Choy et al., 2012), H+-

ATPase (Xu et al., 2010) as well as the small GTPases Rab1 (Machner and Isberg, 2006; 

Murata et al., 2006; Schoebel et al., 2010; Itzen and Goody, 2011), Arf1 (Nagai et al., 2002) 

or Ran (Rothmeier et al., 2013; Simon et al., 2014). The composition of LCVs formed in 

Dictyostelium discoideum was shown by proteomics to involve >560 host cell proteins 

(Brombacher, 2009; Urwyler, 2009; Hilbi et al., 2011). In addition, depletion of the D. 
discoideum OCRL ortholog Dd5P4, encoding an inositol polyphosphate 5-phosphatase, 

stimulated the intracellular replication of L. pneumophila (Weber et al., 2009, Finsel et al., 
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2013). Both catalytically active OCRL and Dd5P4 enzymes co-localize with LCVs and 

enhance the quantity of phosphatidylinositol 4-phosphate accessible for binding of other 

Icm/Dot proteins (Weber et al., 2009). Taken together, L. pneumophila utilizes a 

sophisticated T4SS, manipulating intracellular trafficking machineries for growth and a 

functional retrograde transport pathway restricts the replication of the pathogen.

Coxiella burnetii

Coxiella burnetii is the causative agent of the zoonosis Q-fever in humans. Coxiella 
replicates effectively within a lysosome-like compartment called the “Coxiella-containing 

vacuole” (CCV). Similar to L. pneumophila, C. burnetii encodes a Dot/Icm-like T4SS whose 

function is to modify the host endocytic transport systems and generate the CCV replicative 

niches (Segal et al., 2005; Voth and Heinzen, 2009). The C. burnetii T4SS orthologs DotH, 

IcmV and IcmT localize at the bacterial cell poles in infected Vero cell, as shown by 

immunofluorescence microscopy (IFM) and EM combined with immunogold labeling 

(Morgan et al., 2010). Although the CCVs exhibit lysosomal capabilities, they display 

specific features such as homotypic fusion and a cholesterol-enriched limiting membrane, in 

addition to robustly interacting with autophagosomes (Howe and Heinzen, 2006; Kohler and 

Roy, 2015). Compelling evidence for the functionality of the Coxiella Dot/Icm subunits 

came from swapping experiments in L. pneumophila (Chen et al., 2010; Carey et al., 2011). 

In addition, axenic growth and methods for genetic manipulation were achieved for Coxiella, 

enabling proof that the Dot/Icm T4SS is essential for growth in CCVs and ultimately 

identified >130 translocated effector proteins (Zamboni et al., 2003; Zusman et al., 2003; 

Pan et al., 2008; Beare et al., 2011; Carey et al., 2011; Moffatt et al., 2015). Computer 

modeling coupled with a validation approach also has facilitated the identification of T4SS 

secretion signals that may prove useful for discovering novel effector proteins in Legionella 
and Coxiella (Lifshitz et al., 2013). The endosomal nature of CCVs is reflected by the 

accumulation of late endosomal markers LAMP-1/-2, vasodilator-stimulated phosphoprotein 

(VASP), as well as the V-ATPase (Voth and Heinzen, 2007; Colonne et al., 2016). Genome-

wide gene silencing screens using siRNA identified additional host factors including the 

retromer complex (McDonough et al., 2013). Prominent effector proteins include Cig2, 

which promotes fusion of autophagosomes with the CCV to maintain this compartment in an 

autolysosomal maturation stage (Kohler et al., 2016). Another translocated effector, Cig57, 

co-opts clathrin-mediated trafficking to facilitate the biogenesis of the fusogenic CCVs 

(Latomanski et al., 2016). In addition, the ankyrin repeat (Ank) family member AnkG was 

found to interact with the host protein p32, regulating an anti-apoptotic pathway, required 

for Coxiella’s adaptation to mammalian hosts (Lührmann et al., 2010). Finally, C. burnetii 
inhibits caspase-mediated activation of the NLRP3 inflammasome in macrophages by the 

effector protein IcaA (Cunha et al., 2015). Thus, Coxiella appears to dampen the 

inflammasome machinery to avoid clearance by the host immune system.

Bartonella henselae

Bartonalla henselae is a zoonotic parasite colonizing cats and humans (Dehio, 2005; Regier 

et al., 2016). Clinical outcomes range from cat scratch disease to persistent bacteremia and 

vascular tumors. Bartonella exhibits a tropism towards endothelial cells and erythrocytes 

(Eicher and Dehio, 2012). Binding to the extracellular matrix by adhesins and the activity of 
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a VirB/VirD4-type T4SS by B. henselae induces a massive rearrangement of the host 

cytoskeleton, which leads to uptake of the bacteria into endothelial cells. Bacterial entry into 

erythrocytes is mediated by a second T4SS designated Trw, which is followed by 

intracellular Bartonella growth and persistence. The infection process is aided at different 

steps by the Bartonella effector proteins (Bep’s). All known Bep’s carry a C-terminal BID 

(Bep intracellular delivery) domain acting in part as a T4SS translocation signal (Schulein et 
al., 2005). Many Beps also have an enzymatic N-terminal FIC (filamentation induced by 

cAMP) module that facilitates the AMPylation of host cell proteins (Siamer and Dehio, 

2015). This AMPylation activity typically triggers the inactivation of yet unknown host cell 

proteins of 40–50 kDa (Palanivelu et al., 2011). In addition, three effectors (BepD, BepE and 

BepF) harbor tyrosine phosphorylation motifs, which are targeted by host cell kinases 

similar to CagA described above (Schulein et al., 2005). A proteomics-based screen 

identified 8 cellular interaction partners (Grb2, Grb7, Shp1, Shp2 and others) of the Bep’s, 

which subvert host cell signaling with roles in pro-inflammatory responses by activation of 

NF-κB, anti-apoptosis, cell proliferation and others (Selbach et al., 2009). Finally, more 

recent work established that the VirB/VirD4 T4SS functions as a delivery system for DNA 

both to other bacteria and human cells (Fernández-González et al., 2011; Schröder et al., 
2011). Understanding the functions associated with interkingdom transfer of protein 

effectors, and potentially DNA substrates, will shed new light on the molecular bases 

underlying Bartonella - host cell interactions.

Brucella abortus

Brucella abortus is the causative agent of the zoonosis brucellosis and primarily infects 

phagocytes (Celli, 2015). The intracellular replication cycle proceeds within the Brucella-

containing vacuole (BCV), which initially traffics along the endocytic pathway, acquiring 

the cellular markers early endosome antigen-1 (EEA-1), Rab5 and Rab7 (Pizarro-Cerdá et 
al., 1998; Chaves-Olarte et al., 2002; Celli et al., 2003; Starr et al., 2008; Lee et al., 2013). 

These BCVs fuse rapidly with lysosomes, which provides physicochemical cues for 

elaboration of the VirB T4SS (Pizarro-Cerdá et al., 1998; Boschiroli et al., 2002; Celli et al., 
2003; Starr et al., 2008, Smith et al., 2016). Initially of endosomal origin, BCVs are 

converted through various VirB-dependent steps into organelles derived from the ER that 

support bacterial proliferation, suggesting these events require the delivery of T4SS effector 

proteins. Presently, ~15 T4SS effector proteins have been identified (de Jong et al., 2008; 

Marchesini et al., 2011; Myeni et al., 2013; Ke et al., 2015), although only a few are 

reported to play a clear role in Brucella pathogenesis. Inflammation and IL-6 production 

triggered by B. abortus infection induces significant ER stress via the T4SS effector protein 

VceC (Keestra-Gounder et al., 2016). This process is receptor NOD1/2-, TRAF2- and RIP2-

dependent. The association of NOD1 and NOD2 with pro-inflammatory responses induced 

by the IRE1α/TRAF2 signaling pathway provides a novel link between innate immunity and 

ER-stress-induced inflammation. Further studies elucidating the functions of Brucella 
effector proteins will help clarify the molecular roles of the VirB T4SS during infection.

Anaplasma phagocytophilum and Ehrlichia chaffeensis

T4SS nanomachines also have been encountered in obligatory intracellular human pathogens 

such as A. phagocytophilum and E. chaffeensis, which respectively cause human 
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granulocytic anaplasmosis and monocytic ehrlichiosis (Ohashi et al., 2002). Both species are 

transmitted from tick vectors to mammalian hosts where they survive and proliferate in 

membrane-bound inclusions that lack lysosomal markers and components of NADPH 

oxidase. These intracellular pathogens depend mostly on host-synthesized nutrients, as they 

have only a limited number of genes for biosynthesis and metabolism. The first described 

T4SS effectors were AnkA and Ats-1 from A. phagocytophilum (Lin et al., 2007; Niu et al., 
2010), and since then several additional effectors [AM185, AM470, AM705 (AnkA), 

AM1141] were identified in Anaplasma marginale (Lockwood et al., 2011). To promote 

their intracellular survival, Anaplasma and Ehrlichia modulate host cell apoptosis by 

secreting proteins that interfere with this cell death pathway. Strikingly, early studies showed 

that A. phagocytophilum Ats-1 translocates across the bacterial cell envelope, host cell 

membrane, and ultimately into mitochondria where it interferes with apoptosis induction 

(Niu et al., 2010; Niu and Rikihisa, 2013; 2014). More recently, in E. chaffeensis, a T4SS 

effector similarly was shown to block mitochondrion-mediated host cell apoptosis (Rikihisa, 

2015). Ehrlichia chaffeensis infection was further shown to depend on the translocated 

ehrlichial translocated factor-1 (Etf-1), which induces Rab5-regulated autophagy to provide 

host cytosolic nutrients to the pathogen. The role of Etf-1 in host cell autophagy and 

infection was confirmed by mutagenesis (Sharma et al., 2017). Etf-1-mediated manipulation 

of Rab5 is a simple strategy to avoid destruction of the pathogen in lysosomes, obtain 

membrane components, and establish a homeostatic intra-host cell environment for 

proliferation (Rikihisa, 2017).

Conclusions and Outlook

The recent structures of purified T4SS machine subunits and subassemblies continue to 

generate important molecular details about the paradigmatic systems. Furthermore, cryo-

electron tomography yielding the first in situ image of a T4SS represents a promising new 

direction for structural definition of T4SSs in their native membrane environments (Ghosal 

et al., 2017). Equally importantly, new T4SSs are being described that further highlight the 

biological diversity of this secretion superfamily. This has been exemplified by discovery 

that Xanthomonas citri employs a T4SS to kill competing bacteria in the close vicinity in a 

contact-dependent manner, reminiscent of the type VI secretion killing systems (Souza et al., 
2015). An update of this system was presented at a T4SS conference held last December 

2016 in Schloss Hirschberg, Germany (www.t4ss-conference.de). This T4SS translocates 

effectors bearing C-terminal translocation signals, whose bacteriolytic activities degrade 

peptidoglycan in target cells, but in the donor cell can be neutralized by the synthesis of 

cognate immunity proteins (Souza et al., 2015; 2016). Intriguingly, more than one thousand 

Xanthomonas T4SS effectors showing only very limited homology to each other or other 

proteins were found in protein databases (Souza et al., 2016). This T4SS appears to be 

widely dispersed among Xanthomonas and related species, making this a possible paradigm 

for an emerging new family of T4SS-killing machines in bacteria.

In the course of ongoing high-throughput genome sequencing projects, hundreds of putative 

T4SSs have been identified in obligatory intracellular and other pathogens as well as 

endosymbionts, e.g., Anaplasma, Rickettsia, Orientia, and Wolbachia spp. (Gillespie et al., 
2009; Sonthayanon et al., 2010; Gillespie et al., 2016; Ramirez-Puebla et al., 2016). Most 
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strikingly, the virB/virD4-like genes are often distributed in clusters around the genomes, 

and the virB2 and virB6 gene families have undergone unprecedented expansions. How 

these T4SSs contribute to establishment of pathogen or symbiont - host relationships remain 

ripe areas for further study. Similarly, the accumulating evidence for effector protein transfer 

by the 89K PAI-encoded T4SS in S. suis raises intriguing questions about the extent to 

which Gram+ species deploy T4SSs for interkingdom effector translocation during infection.

As our knowledge of T4SS structures and mechanisms of action deepens, the field is poised 

to develop effective therapies aimed at suppressing T4SS functions in clinical settings. 

Indeed, several studies already have targeted the conserved VirB8 homologs as potential 

drug targets. By screening of a small-molecule library using Brucella VirB8 as a target, 

compounds were found that inhibited VirB8 dimerization (Paschos et al., 2011). These also 

were active against VirB8 from plasmid pKM101, resulting in disruption of VirB8 

dimerization and inhibition of conjugation (Casu et al., 2016). A different approach was 

employed for the inhibition of TraM, the VirB8-homolog associated with the pIP501-

encoded T4SS as well as other Gram+ conjugation machines. Anti-TraM antibodies directed 

against the VirB8-homolog from plasmid pIP501 considerably reduced the survival of 

clinical E. faecalis and S. aureus strains harboring a putative T4SS in vitro and in an in vivo 
mouse infection model (Laverde et al., 2017). A recent study also established the value of 

testing the efficacy of small molecule inhibitors shown to block the production of 

phylogenetically unrelated pilus assembly or secretion systems for effects on T4SS 

biogenesis or function. For example, compounds containing a ring-fused 2-pyridone 

peptidomimetic fragment that previously had been shown to block the E. coli chaperone-

usher pilus pathway also impaired H. pylori Cag pilus production, A. tumefaciens T-DNA 

transfer, and DNA transfer through the pKM101 and R1-16-encoded conjugation machines 

(Shaffer et al., 2016).

Finally, recent work by the Llosa and Dehio groups has shown that T4SSs also are viable 

vectors for delivery of potentially therapeutic DNA into human cells. Escherichia coli and B. 
henselae donors successfully transfer DNA to human cells where the translocated DNA is 

stably integrated into the human genome (Schroder et al., 2011; Llosa et al., 2012; Alperi et 
al., 2013; Gonzalez-Prieto et al., 2017). TrwC-relaxase mediated site-specific DNA 

integration into the human genome also has been demonstrated, albeit with very low 

efficiency compared to random integration. TrwC might stabilize the plasmid DNA in the 

nucleus of the human cell by promoting recircularization of the transferred strand, thus 

considerably increasing the chances for integration of the DNA by the host machinery 

(Gonzalez-Prieto et al., 2017). The implementation of state-of-the art metagenomics 

analyses, cell imaging, and ultrastructural approaches - along with the development of 

translational applications - promises a bright future for the T4SS field.
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Figure 1. Schematic representation of type IV secretion architecture and functions in bacteria
A. Conjugative T4SSs translocate DNA from the donor bacterium into various recipients, 

including other bacteria or eukaryotic cells.

B. DNA release systems facilitate an exchange of DNA with the extracellular space as well 

as biofilm formation.

C. DNA uptake from the environment proceeds by the ComB T4SS.

D. The Xanthomonas citri T4SS can deliver a protein toxin to kill neighboring Gram− 

bacterial competitors.

E. Various pathogenic bacteria and symbionts have evolved T4SSs to deliver effector 

proteins or DNA–protein complexes into their host (either eukaryotic target cells or 

protozoan hosts). The T4SSs can either inject their effectors directly into the host cell or 

secrete them into the medium, thereby exerting remarkably different effects on host cell 

functions during infection.

F. EM reconstructions showing the structure of the plasmid R388 T4SS complex and the 

core complex. Front view (left) and cut-away front view (right) of the T4SS complex 

(EMD-2567) comprising the core/outer membrane complex (core/OMC, green), the stalk 

(grey) and the inner membrane complex (IMC, blue). U-tier, M-tier and L-tier stand for 
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upper, middle and lower tier, respectively. The inner (IM) and outer (OM) membranes are 

indicated.

G. pKM101 core complex (EMD-2232) (top) and truncated core complex lacking the N-

terminal part of VirB10 (EMD-2233) (bottom): side view (left) and cut-away side view 

(right). The bottom right panel shows the superposition of the difference map (between the 

full-length and the truncated core complex cryo-EM maps) in green, and the cryo-EM 

structure of the truncated core complex in orange (as in bottom left). The VirB10 N-terminus 

forms the inner wall of the I-layer and the base.

H. Cryo-EM structure of the TraI relaxase-ssDNA complex revealed the molecular basis of 

DNA unwinding during bacterial conjugation.

I. To achieve genetic exchange during bacterial conjugation, two relaxase monomers 

collaborate, adopting distinct structural conformations to provide the two necessary 

enzymatic activities for processing the DNA.

J. Individual steps are indicated: (1) TraI opens to bind ssDNA and closes to surround DNA 

entirely during unwinding. (2) DNA binding to transesterase in closed TraI inhibits nicking. 

(3) DNA splitting by vestigial helicase. This figure was extensively updated from Backert 

and Meyer (2006), Trokter et al. (2014) and Ilangovan et al. (2017) with permission from 

CELL Press.
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