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Abstract

Event-based prospective memory (PM) refers to relying on environmental cues to trigger retrieval 

of a deferred action plan from long-term memory. Considerable research has demonstrated PM 

declines with increased age. Despite efforts to better characterize the attentional processes that 

underlie these decrements, the majority of research has relied on measures of central tendency to 

inform theoretical accounts of PM that may not entirely capture the underlying dynamics involved 

in allocating attention to intention-relevant information. The purpose of the current study was to 

examine the utility of the diffusion model to better understand the cognitive processes underlying 

age-related differences in PM. Results showed that emphasizing the importance of the PM 

intention increased cue detection selectively for older adults. Standard cost analyses revealed that 

PM importance increased mean response times and accuracy, but not differentially for young and 

older adults. Consistent with this finding, diffusion model analyses demonstrated that PM 

importance increased response caution as evidenced by increased boundary separation. However, 

the selective benefit in cue detection for older adults may reflect peripheral target-checking 

processes as indicated by changes in non-decision time. These findings highlight the use of 

modeling techniques to better characterize the processes underlying the relations among aging, 

attention, and PM.
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Introduction

Event-based prospective memory (PM) refers to remembering and executing deferred 

intentions in response to external cues. PM failures have important health and societal 

implications, particularly with increased age. Researchers have therefore sought to better 

understand the attentional processes underlying PM intention retrieval and develop strategies 

to reduce often-observed age-related differences in laboratory-based tasks. In a typical PM 
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task, a PM intention (e.g., “remember to press the ‘7’ key when you see the ‘tor’ syllable”) 

is embedded within the context of some other ongoing task (e.g., lexical decision task). 

Although considerable research has demonstrated that monitoring for the occurrence of PM 

cues produces cost to ongoing task performance (i.e., slower and/or less accurate 

responding) relative to when the same task is performed with no intention (Smith, Hunt, 

McVay, & McConnell, 2007), the cognitive processes that give rise to such effects are not 

well-characterized. Consequently, it is difficult to localize processes that may underlie age-

related differences in cue detection. The current study therefore utilized a well-established 

cognitive process model (the diffusion model, described below) to better characterize the 

mechanisms governing successful PM in both young and older adults.

Prospective memory (PM) monitoring

Most contemporary theories of PM share the assertion that during tasks that require 

monitoring (termed nonfocal tasks), costs occur because both the ongoing and the PM task 

draw on the same limited attentional resources (Einstein & McDaniel, 2010; Smith et al., 

2007). Consequently, as more resources are devoted to search or check the environment for 

cues, fewer resources are available for ongoing task processing (termed capacity sharing). 

As such, it is generally assumed that age-related differences in nonfocal cue detection are 

due to general declines in executive functioning associated with increased age (Zacks & 

Hasher, 1988), whereby older adults are less able to strategically allocate limited-capacity 

attentional resources to the PM task while simultaneously performing a demanding ongoing 

task (Rendell et al., 2007).

More recently, however, it has been suggested that costs may instead arise because the PM 

task races and competes for response selection with the more routine ongoing task, and to 

ensure that an ongoing task response is not made in lieu of a PM response, participants delay 

ongoing task responding to allow more time for PM evidence to accumulate (termed delay 
theory; Loft & Remington, 2013). That is, the delay theory posits that PM information (e.g., 

whether the stimulus contains the syllable tor) accrues in parallel with ongoing task 

information (e.g., stimulus lexicality) but at a slower rate, and so delaying ongoing task 

responding allows more time for PM information to accumulate and increases the likelihood 

of the appropriate response (e.g., “7” key) being selected. Age-related differences in cue 

detection may therefore instead occur because older adults do not appropriately increase 

their threshold for responding to allow sufficient processing time for the less frequent PM 

response to occur. However, it is not possible to arbitrate between these theoretical 

alternatives using traditional measures of central tendency (i.e., mean reaction time (RT)/

accuracy), as different underlying mechanisms can produce similar costs. Consequently, 

researchers have recently turned to more formal modeling techniques to better characterize 

the mechanisms that underlie ongoing task cost.

Diffusion model

The diffusion model (Ratcliff, 1978) is a prominent cognitive process model that has been 

applied to accuracy and RT data from a variety of speeded decision tasks (for a review see 

Ratcliff & McKoon, 2008). This model assumes that the decision process (e.g., lexical 

decision) is based on the continuous accumulation of evidence from a starting point (z) 
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toward one of two boundaries, and a decision (e.g., word or nonword) is made once a 

particular boundary is reached (see Fig. 1). The main parameters of the diffusion model 

include drift rate (v), boundary separation (a), nondecision time (Ter), and starting point (z).1

Drift rate—The v parameter reflects processing efficiency (faster accumulation of 

evidence), and can be influenced by individual differences in the quality of information 

processing or stimulus characteristics that influence task difficulty. Higher values predict fast 

and accurate responses.

Boundary separation—The a parameter quantifies the distance between two boundaries 

and reflects the amount of information required to make a decision. Boundary separation is 

typically interpreted as response caution and is influenced by speed-accuracy instructions. 

Higher values predict slower RTs but more accurate responding.

Nondecision time—The Ter parameter reflects the duration of processes before and after 
the decision, such as stimulus encoding and motor response execution. Higher values predict 

slower RTs but produce no changes in accuracy.

Starting point—The z parameter is the starting point of evidence accumulation between 

the two boundaries. Starting point determines response bias (where unbiased responding 

corresponds to z = a/2) and is typically influenced by the relative frequency of presentation 

of different stimulus types (e.g., 75% words, 25% nonwords).

Diffusion modeling and PM

The application of diffusion modeling to PM tasks has provided interesting insights into the 

theoretical mechanisms that may underlie ongoing task costs. According to the capacity-

sharing view of PM costs, monitoring for targets causes limited-capacity resources to be 

diverted from the ongoing task and therefore should slow evidence accumulation (drift) 

rates. Alternatively, delay theory posits that PM demands should produce changes in 

boundary separation because participants strategically increase response thresholds to allow 

more time for PM response selection to occur (Heathcote, Loft, & Remington, 2015). Lastly, 

Horn and Bayen (2015) suggested that PM demands may produce increases in nondecision 

time due to strategic checking of stimuli for intention-relevant details (i.e., target-checking) 

either prior to or following the ongoing task-decision process. It is important to note that 

although target-checking is attentionally demanding (Guynn, 2003), in the context of 

diffusion modeling it is considered to be a serial process occurring before/after the ongoing 

task decision and therefore should not slow response selection by diverting attention away 

from the ongoing task.2

1The diffusion model also has three variability parameters (though typically not of psychological interest), including across-trial 
variability in drift rate (normal distribution with standard deviation η), starting point (uniform distribution with range sz), and 
nondecision time (uniform distribution with range st).
2The target-checking mechanism is actually derived from capacity sharing views of PM costs (see Guynn, 2003) and could 
theoretically occur in parallel with, or before/after, the ongoing task-decision process. However, in the context of diffusion modeling, 
target-checking has primarily been described as a serial process that should influence nondecision time (rather than drift rates) based 
on empirical findings (Horn & Bayen, 2015).
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Consistent with the delay theory, Heathcote et al. (2015) found that PM costs were 

associated with increases in boundary separation, rather than drift rates3 (see also Strickland, 

Heathcote, Remington, & Loft, 2017). Horn and Bayen (2015) similarly found that PM 

demands produced changes in threshold, but not drift rate, but additionally found that 

variables thought to influence the degree of monitoring enacted (i.e., importance of 

intention, cue frequency, and cue focality) selectively increased nondecision time. Together 

these results suggest that PM costs may reflect both response caution and target-checking, as 

indicated by changes in boundary separation and nondecision time, respectively, rather than 

decreased processing efficiency (i.e., drift rates).

PM, importance, and aging

The aforementioned findings have important implications for understanding age-related 

differences in cue detection. As described previously, it is generally assumed that PM 

decrements occur because older adults are less able, or less likely, to allocate limited-

capacity attentional resources away from the ongoing task to support prospective 

remembering. Consistent with this idea, when the importance of the PM task (PM 

importance, or PMI) is emphasized, older adults are able to sacrifice ongoing task 

performance to produce comparable levels of cue detection to young adults (Hering et al., 

2013; but see Smith & Hunt, 2014). Hering et al. suggested that the selective cue detection 

benefit for older adults in the PMI condition reflects that older adults may have “withdrawn 

part of the executive processing resources from the ongoing task to allocate them instead 

towards the fulfillment of the intended action” (p. 77), which would predict changes in the 

drift rate parameter had the authors implemented diffusion model analyses. However, Horn 

et al. (2013) found no evidence for processing efficiency differences between young and 

older adults during a standard nonfocal PM task (i.e., no importance manipulation), and 

Horn and Bayen (2015) found that PMI instructions selectively influenced nondecision time 

(with younger adults). Thus, it is possible that other processes (e.g., target-checking, 

response caution) may have contributed to the findings of Hering et al., and may underlie 

age-related cue detection differences more generally.

Current study

The current study examined the influence of importance on monitoring and cue detection in 

young and older adults. Participants performed an ongoing lexical decision task with a 

nonfocal intention (monitor for the “tor” syllable) and were either instructed that it was more 

important to detect all the PM cues (PMI condition), or that it was more important to do well 

on the ongoing task (ongoing task importance, or OTI, condition). Prior research with young 

adults has demonstrated that PMI instructions generally increase cue detection at the cost of 

ongoing task performance (Horn & Bayen, 2015; Loft et al., 2008). However, the influence 

of importance on PM in the context of aging is mixed, with one study showing a selective 

benefit in cue detection from PMI instructions for older adults (Hering et al., 2013), one 

showing a benefit for both age groups (Smith & Hunt, 2014), and one showing no effect for 

3Heathcote et al. (2015) fit the linear ballistic accumulator (LBA) model to PM costs. The LBA is a prominent evidence accumulation 
model conceptually similar to the diffusion model in regard to the main parameters of the model (i.e., drift rate, boundary separation, 
nondecision time, and starting point).
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either age group (Kliegel, Martin & Moor et al., 2003). Smith and Hunt suggested that 

importance instructions may be more beneficial for older adults with an ongoing task that 

places relatively minimal demands on executive attention (e.g., a lexical decision task). We 

therefore expected that the increase in cue detection from PMI instructions would be greater 

for older adults. Importantly, we also expected any increase in cue detection following PMI 

instructions to come at a cost to ongoing task performance. If PMI instructions cause 

participants to allocate attention away from the ongoing task (Hering et al., 2013), this 

should be evidenced by changes in drift rate. Alternatively, if PMI instructions induce more 

cautious responding (Heathcote et al., 2015; Strickland et al., 2017) and/or increased target-

checking (Horn & Bayen, 2015), the benefit in cue detection should be associated with 

changes in boundary separation and/or nondecision time, respectively.

Method

Participants

The participants included 70 younger adults (age 18–21 years) from Washington University 

who received course credit and 70 community dwelling older adults (age 60–90 years) who 

received monetary compensation for participation. Half the participants of each group were 

randomly assigned to the PMI or OTI condition. Participants that detected no PM cues and 

were unable to recall the PM instructions in a post-experimental questionnaire were 

excluded from all analyses (one young and ten older adults), as this reflects a failure of 

retrospective rather than prospective memory (Heathcote et al., 2015; Zimmerman & Meier, 

2006). Additionally, one young and one older adult in each condition were excluded from 

analyses for having parameter estimates in the control and/or PM block greater than 3 

standard deviations (SDs) from their respective groups mean. Demographic information is 

presented in Table 1.

Materials and procedure

For the lexical decision task, we selected 450 low-frequency English words (M = 5.42 

occurrences per million, SD = .38) from the ELP database (Balota et al., 2007), and replaced 

one vowel from each word (e.g., pardon, chart) with another vowel to produce 450 

pronounceable nonwords (e.g., parden, chirt). The computer program randomly selected for 

each participant one of the trial types (e.g., pardon, chirt) to be presented, meaning that the 

other trial type (e.g., parden, chart) would not be presented, with the stipulation that across 

the entire experiment 225 stimuli were words (e.g., pardon) and 225 items were nonwords 

(e.g., chirt). PM targets included eight low frequency words containing the “tor” syllable 

(e.g., vector). Each stimulus was randomly assigned to a trial position for each participant, 

and the eight PM cues were randomly assigned to trials 25, 50, 75, etc. through trial 200 in 

the PM block.

Participants completed a 30-trial practice phase, followed by a control (no intention) and PM 

(with intention) block (order was counterbalanced) each containing 210 LDT trials (50% 

words). Participants were to make lexical decisions as quickly and accurately as possible, 

after which a “waiting” message would appear to indicate that they should press the space 

bar to continue to the next trial. In the PM block, participants were additionally instructed to 
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press the “7” key during the waiting message any time they encountered a word or nonword 

that contained the syllable “tor” (though “tor” only occurred in words). Critically, in the PMI 

condition participants were instructed that it was more important for them to detect every 

single “tor” syllable than it was for them to do well on the ongoing task, whereas in the OTI 

condition participants were instructed that it was more important for them to do well on the 

ongoing task than it was for them to detect every single “tor” syllable. Following intention 

encoding, participants performed the Shipley Vocabulary Test (Shipley, 1940) that lasted 

approximately 2 min. Participants performing the PM block first were instructed that the PM 

intention was no longer relevant prior to beginning the control block.

Ongoing task analyses

Standard reactions times (RTs)—The first five trials of each block, PM cue trials, and 

the three trials following cue presentation were excluded from analyses. Similar to Horn et 

al. (2013), we removed RTs faster than 350 ms or slower than 5,000 ms for older adults (2% 

of the data), and RTs faster than 300 ms or slower than 3,500 ms for younger adults (1% of 

the data). Subsequently, we excluded RTs greater than 3 SDs of each participant’s mean 

separately for each block (2% of the data for both age groups). Mean RT was then calculated 

for correct trials only, separately for each stimulus type (word/nonword) and block (control/

PM). To control for age-related slowing, RTs were converted to within-participant z-scores 

based on the individual’s mean and SD (Faust, Balota, Spieler, & Ferraro, 1999). Analyses 

were averaged over stimulus type as lexical variables were not the focus of the study and 

conclusions do not differ whether or not stimulus type is included (Horn et al., 2013).

Diffusion model fitting—The diffusion model was fit to individual subjects’ data 

(described above, but including error trials) using maximum likelihood estimation 

implemented in fast-dm 30 (Voss, Voss, & Lerche, 2015). As we were primarily interested in 

how our manipulation differentially affected changes in mean parameter estimates from the 

control to the PM block, we fit 15 separate models of increasing complexity in which the 

main parameters (i.e., v, a, Ter, and z) were allowed to vary across blocks in isolation and 

then in combination up to and including all four of the major parameters. Additionally, drift 

rate was allowed to vary with stimulus type (i.e., words and nonwords) for all model variants 

(Ratcliff, Gomez, & McKoon, 2004). However, for mean level analyses drift rates were 

averaged over stimulus type as lexical variables were not the focus of the study and 

conclusions do not differ whether or not stimulus type is included (Horn et al., 2013). Lastly, 

we also estimated variability parameters (i.e., sv, sz, and st), but due to the relatively small 

number of trials we did not allow these parameters to vary as a function of block or stimulus 

type.

Participant level parameters from the best-fitting model were analyzed using ANOVA to test 

for group differences in model parameters as a function of age and importance instructions. 

To account for goodness of fit and parsimony, we selected the model with the smallest 

Akaike Information Criteria (AIC) index summed across participants (Myung & Pitt, 1997). 

As can be seen in Table 2, the best fitting model (Model 11) allowed boundary separation, 

nondecision time, and starting point, but not drift rate, to vary across blocks.4 Because the 

best fitting model did not allow drift rate to vary across blocks, there is only a single 
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estimate for this parameter rather than having separate values for the control and PM blocks. 

Graphical fits for the best fitting model can be found in the Supplemental Material.

Results

Cue detection

The proportion of PM cues successfully detected was submitted to a 2 (age: young, older) × 

2 (condition: PMI, OTI) between-subjects analysis of variance (ANOVA). Cue detection was 

greater for young adults, F(1,121) = 7.96, p = .006, η2
p = .062, and in the PMI condition, 

F(1,121) = 10.85, p = .001, η2
p = .082. There was also a nominal age × condition 

interaction, F(1,121) = 2.94, p = .089, η2
p = .024. Given the a priori predictions, follow-up 

analyses were conducted to examine the nature of the interaction effect. Planned 

comparisons revealed no cue detection differences between conditions for young adults, 

F(1,65) = 1.98, p = .163, η2
p = .03, but greater cue detection for older adults in the PMI than 

OTI condition, F(1,56) = 8.51, p = .005, η2
p = .132. As can be seen in Fig. 2, there were no 

age differences in the PMI condition, F(1,61) = 1.20, p = .278, η2
p = .019, but better 

performance for young than older adults in the OTI condition, F(1,60) = 6.85, p = .011, η2
p 

= .102.

Ongoing task performance

Ongoing task performance across each block is displayed in Table 3. Because possessing an 

intention produced significant increases in all ongoing task measures (including accuracy; 

all p < .05), the dependent variable for all analyses was the cost measure (PM block – 

control block). Each measure was submitted to a 2 (age: young, old) × 2 (condition: PMI, 

OTI) between-subjects ANOVA.

Accuracy—Although participants were more accurate during the PM block, this did not 

differ as a function of age or condition, and there was no age × condition interaction, F’s < 

2.33, p’s > .130.

Reaction time—Cost was greater for older adults, F(1,121) = 31.77, p < .001, η2
p = .208, 

and in the PMI condition, F(1,121) = 5.97, p = .016, η2
p = .047. The age × condition 

interaction was not significant, F < 1. Notably, after correcting for age-related slowing using 

z-transformed RTs (Faust et al., 1999), the effect of age was no longer significant, F < 1. 

However, cost was still greater in the PMI condition, F(1,121) = 11.23, p = .001, η2
p = .088, 

and this did not differ by age, F < 1.

Together these results suggest a speed/accuracy tradeoff whereby possessing an intention 

resulted in slower but more accurate responding. However, PMI instructions and age only 

4We also calculated Bayesian Information Criteria (BIC) indices for each model. Although the philosophical underpinnings of AIC 
and BIC indices differ, the practical implication for the present purposes is that the BIC model penalizes more for model complexity 
and thus will often only be sensitive to the strongest effects unless there is high power (Burnham & Anderson, 2004). The BIC favored 
a model in which only boundary separation varied across blocks, which is consistent with the finding from the AIC-favored model in 
which boundary separation was the largest contributor to PM cost. Importantly, analysis of boundary separation from the BIC model 
was identical to that reported from the AIC model. AIC and BIC values for each model variant, as well as graphical fits for the best 
fitting model, can be found in the Supplemental Material.
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influenced RTs, and this latter finding was eliminated after correcting for age-related 

slowing.

Diffusion model analyses

As described in the Method section and as can be seen in Table 1, the best-fitting model 

(Model 11) allowed boundary separation, nondecision time, and starting point, but not drift 

rate, to vary across blocks (i.e., control and PM). Thus, sub-sequent analyses are performed 

on the cost measure (PM block – control block) for all diffusion model parameters except 

for drift rate, which instead is performed on the overall drift rate. Each measure was 

submitted to a 2 (age: young, old) × 2 (condition: PMI, OTI) between-subjects ANOVA.

Drift rate—Overall drift rate was slower for older adults, F(1,121) = 5.64, p = .019, η2
p = .

045. However, there was no effect of condition, and no age × condition interaction, F’s < 1.

Boundary separation—Cost was greater for older adults, F(1,121) = 24.14, p < .001, η2
p 

= .166, and in the PMI condition, F(1,121) = 5.08, p = .026, η2
p = .04. The age × condition 

interaction was not significant, F < 1.

Nondecision time—Cost was similar between age groups, F < 1, but greater in the PMI 

condition, F(1,121) = 7.53, p = .007, η2
p = .059. There was also a nominal age × condition 

significance, F(1,121) = 2.88, p = .09, η2
p = .023, such that there was no cost difference 

between conditions for young adults, F(1,65) = 1.30, p = .258, η2
p = .02, but a greater cost 

for older adults in the PMI than the OTI condition, F(1,56) = 5.63, p = .021, η2
p = .091.

Starting point—Cost did not differ across age groups or conditions, and there was no 

interaction between the two, F’s < 2.04, p’s > .158.

In summary, possessing an intention produced slower but more accurate responding, and 

diffusion model analyses suggested that this cost was due to increases in both boundary 

separation and nondecision time during the PM block. PMI instructions produced an 

increased RT cost for both age groups, which was largely due to increased boundary 

separation. Additionally, PMI instructions increased nondecision time cost for older but not 

younger adults. This latter finding is consistent with the influence of PMI instructions on cue 

detection.

Functional cost analyses

To examine the functional role of monitoring on cue detection, we examined the relation 

between diffusion model cost measures and successful PM detection. As can be seen in in 

Table 4, only boundary separation and nondecision time cost were predictive of cue 

detection. However, these cost measures were not correlated with one another, suggesting 

functionally independent processes.

We performed a hierarchical regression analysis to examine whether these cost measures 

account for significant variability in cue detection beyond age. As can be seen in Table 5, in 

Step 1 age accounted for 6% of the variance in PM. Including the diffusion model cost 
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measures of boundary separation and nondecision time increased the explained variance 

(21%), F(2,121) = 11.47, p < .001, and both uniquely predicted performance.

General discussion

Prior research suggests that one reason that older adults typically do worse in laboratory-

based PM tasks is that they are less likely, or able, to divert limited-capacity attentional 

resources away from ongoing task processing to support prospective remembering. Hering et 

al. (2013) provided support for this notion, showing that emphasizing the importance of the 

PM intention produced a selective benefit for older adults at a cost to ongoing task 

performance. The results from the current study demonstrated a very similar pattern for 

older adults in terms of cue detection and RT cost. Diffusion model analyses, however, 

suggested that costs were not due to allocating attention away from the ongoing task, as 

would be indicated by a slowing of evidence accumulation (i.e., drift) rates. Rather, costs 

were a result of increased boundary separation and nondecision time. As described 

previously, these costs are thought to reflect increased response thresholds to allow more 

time for PM selection to occur as well as target-checking processes either prior to or 

following the decision process (Heathcote et al., 2015; Horn & Bayen, 2015). Interestingly, 

both boundary separation and nondecision time uniquely predicted cue detection, suggesting 

functionally independent processes that may facilitate prospective remembering.

Interestingly, overall there was a greater increase in boundary separation during the PM 

block for older than for young adults. This suggests that the metacognitive assessment of 

perceived task difficulty of the dual-task demands in the PM block may be greater for older 

than for young adults, thereby leading to a greater threshold for ongoing task responding 

(Horn & Bayen, 2015; see Starns & Ratcliff, 2010 for evidence that older adults do not 

optimally adjust thresholds to task demands). Alternatively, it may be that for older adults 

PM evidence accumulates more slowly, or more evidence is required to make a PM 

response, and therefore they adopt a more conservative decision threshold to ensure that the 

ongoing task decision is not made prior to PM response selection (Heathcote et al., 2015; 

Strickland et al., 2017). An interesting avenue for future research to examine this possibility 

would be to use a three-accumulator model to examine parameter estimates for PM 

responses (which is not possible with diffusion modeling and small PM trial counts).

Importantly, the selective benefit to cue detection in the PMI condition for older adults does 

not necessarily appear to be due to increases in boundary separation, as both young and 

older adults similarly increased response thresholds following PMI instructions, but only 

older adults increased cue detection. In contrast, while there was no nondecision time cost 

difference for young adults, there was greater cost for older adults in the PMI than the OTI 

condition. These findings suggest that the cue detection differences observed by older adults 

may be due to increased target-checking processes that were implemented by older adults in 

the PMI condition. Thus, rather than the traditional assumption that older adults are less able 

to divert attention resources from the ongoing task, it may be that typical age-related 

declines in cue detection reflect that older adults less effectively engage target checks to 

support prospective remembering. This interpretation is generally consistent with extant 

theories of PM costs (Guynn, 2003; Einstein & McDaniel, 2010; Smith et al., 2007) and age-
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related differences in cue detection (Rendell et al., 2007). However, we suggest that rather 

than older adults having difficulty in diverting attention away from the ongoing task, we 

suggest that executive attention deficits may preclude efficient engagement of an additional 
process (i.e., target check) either prior to or following the ongoing task decision.

More generally, the current study extends previous finding by demonstrating threshold 

increases when participants were instructed to make their PM response following, rather 

than instead of (Heathcote et al., 2015; Horn & Bayen, 2015), their lexical decision. It could 

be argued that increasing response thresholds may be less useful in this scenario, as 

participants could presumably remember the PM response during the intertrial (“waiting”) 

interval. These findings suggest that regardless of when the PM response can be executed, 

allowing greater time for processing of PM stimulus features by increasing thresholds may 

reduce PM errors. It should also be noted that although PM demands produced a 

considerably greater effect on nondecision time than boundary separation in terms of overall 

RT cost, target-checking has been described as a transient process that is not necessarily 

enacted on each trial (Ball, Brewer, Loft, & Bowden, 2015; Guynn, 2003) and therefore 

should theoretically produce smaller effects in overall mean estimates. While this 

interpretation is consistent with Horn and Bayen (2015), Heathcote et al. (2015) failed to 

find effects of PM demands on nondecision time using LBA. Future research should 

therefore aim to distinguish whether these differences in results are due to task influences or 

idiosyncrasies of the specific models used to describe the data.

In conclusion, the results from the current study suggest PMI instructions may facilitate 

target-checking for older adults. However, it is likely that other manipulations shown to 

reduce age-related cue detection differences (e.g., implementation intentions) may produce 

changes in monitoring that influence different parameters. Thus, future research 

implementing formal modeling techniques may provide a more complete picture of 

monitoring and cue detection differences across the lifespan that may be beneficial for 

targeting specific cognitive processes to facilitate performance.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Major parameters of the diffusion model
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Fig. 2. 
Proportion of cues detected as a function of condition and age. PMI prospective memory 

performance, OTI ongoing task importance
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Table 2

Diffusion model variants and corresponding Akaike Information Criteria

Model Varying by Block K ΣAIC

1 a 9 38788

2 Ter 9 40180

3 z 9 43737

4 v 10 42074

5 a, Ter 10 38338

6 a, z 10 38468

7 a, v 11 38651

8 Ter, z 10 39917

9 Ter, v 11 39441

10 z, v 11 41700

11 a, Ter, z 11 38034

12 a, Ter, v 12 38206

13 a, z, v 12 38470

14 Ter, z, v 12 39264

15 a, Ter, z, v 13 38085

Note. K = number of model parameters per subject

Variability parameters were estimated but not allowed to vary across blocks. Drift rate was modeled separately for words and nonwords for all 
model variants

AIC Akaike Information Criteria, a boundary separation, Ter nondecision time, z starting point, v drift rate

Psychon Bull Rev. Author manuscript; available in PMC 2018 June 07.
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Table 5

Hierarchical regression predicting cue detection

Predictor β R2

Step 1 0.06**

Age group −.24**

Step 2 0.21***

Age group −.36***

a 0.33***

Ter 0.25**

Note.

***
p < .001,

**
p < .01

a boundary separation cost, Ter nondecision time cost
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