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Climate Based Predictability of Oil 
Palm Tree Yield in Malaysia
Pascal Oettli   , Swadhin K. Behera    & Toshio Yamagata   

The influence of local conditions and remote climate modes on the interannual variability of oil palm 
fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/
Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical 
Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño 
occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a 
high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than 
that of a normal year since the water stress during the boreal spring has an important impact on the 
total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce 
more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play 
a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based 
on these findings, a linear model is constructed and its ability to reproduce the interannual signal is 
assessed. This model has shown some skills in predicting the total FFB yield.

The production of vegetable oils is globally expanding at a rate of 4.5% a year (period 2004–2013)1. This augmen-
tation is a response to the increasing demand in food industry and household cooking for edible oil, cosmetic 
industry, and biodiesel fuel. In particular, vegetable oils are generally considered as a credible alternative to fossil 
fuels2 that may contribute to sustainable power supply3–6. But the rapid expansion of oil crops in the world is also 
seen as an important threat for the local environment7–10; for example, soil and water pollution, deforestation, 
aquifer depletion, increase of land price, and even serious concurrence between oil crops and food crops.

Among major vegetative oils, the palm oil is the most widely produced, representing 37% of the total produc-
tion of vegetable oils in 20131 with an annual growth rate of 6.7% for the period 2004–20131. Its production is five 
times greater per unit of land than any other oil crop11; it is a highly profitable source of income through exports 
from tropical areas12,13. Over the period 2004–2013, on average, 88.1% of crude palm oil (CPO) were produced in 
Asia1, Indonesia and Malaysia contributing the most, accounting for 81.7% on average of the total global produc-
tion1. In Malaysia, the oil palm industry is an important contributor to the gross national income, accounting for 
USD 16.8 billion (2011) and employing more than 600,000 people14.

However, the CPO price is dependent strongly on economic, political and environmental factors15. Thus, the 
supply and demand of palm oil is highly related to the economy of importers. In the context of healthy economy 
in these countries, the CPO price is likely to rise. Also, the price of competing vegetable oils is affecting the CPO 
price. For example, less production of soybean will tend to increase price of soybean oils. To compensate for 
the gap in supply of vegetable oils, the demand on CPO will also increase, helping to escalate CPO price. Other 
factors are the import policies of importing countries (in the context of boycott of oil palm-based products) and 
the changes in taxation and import duty (in the context of protectionism). Finally, the weather patterns are also 
affecting the CPO price. Thus, dry spell is likely to reduce the production of CPO, as most of cropping systems 
are rainfed16.

The interannual variability of rainfall in Malaysia is controlled by the interannual variation of sea-surface 
temperature (SST) anomalies in the tropical Pacific, i.e. the El Niño/Southern Oscillation (ENSO)17–19. During 
boreal winter, regions of the Maritime Continent located north of the equator tend to have more anomalies in 
precipitation related to ENSO20, particularly northern Borneo in the case of Malaysia21. Its impact on the palm 
oil is also known well, and is considered as the main factor explaining the interannual variability of FFB yields 
and CPO production22–25. Thus, yields in the year following an El Niño event tend to be less than that on average, 
while after a La Niña event, it tends to be more than the average.

Another source of the interannual variability of rainfall is the Indian Ocean Dipole (IOD)26,27, with negative 
(positive) rainfall anomalies appearing during a positive (negative) dipole event in boreal fall, i.e. during the 
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peak season of IOD28. Recently discovered El Niño Modoki29 also favors a drier condition in both Borneo and 
Peninsular regions21. In addition, rainfall in Malaysia is influenced by the Northeast Monsoon or winter mon-
soon30,31 (while strongly related to ENSO18,20), the Madden-Julian Oscillation27 and the Borneo vortex27,32. Both 
El Niño and positive IOD tend to favor haze due to forest fires33,34, which, in turn, affects the production of CPO 
by degrading the radiation conditions35.

We first focus on the description of the interannual variability of the production of fresh fruit bunches on a 
country scale and for two main geographic entities of Malaysia, the peninsula (hereafter Peninsular Malaysia) in 
the West and the provinces in the Northern part of the Borneo island (hereafter Sabah/Sarawak) in the East. The 
influence of local variables, such as rainfall, temperature or solar radiation, on the productivity of palm trees is 
investigated. We then emphasize the role of the remote climate modes on the modulation of the local conditions. 
Finally, statistical models explaining the annual yields for the whole Malaysia and for the two regions in the coun-
try are developed and their forecast ability is evaluated.

Results and Discussion
In Malaysia, FFB is produced throughout the year36, but it is marked by a strong seasonality due to variations 
in reproductive growth37,38; the yield is more in boreal fall compared to boreal spring39,40. Because of the diver-
sity in the climate and geographic conditions, we have divided the country into two regions. The yields in both 
geographical areas are locked to seasons39,40, with a minimum in production around February and a peak in 
September-October. In recent years, the eastern states of Sabah (the Malaysia’s biggest palm-growing state) and 
Sarawak give slightly larger average annual yields than Peninsular Malaysia1,41.

The interannual variation42 of yearly FFB yields41 (aggregated from January to December) is shown in Fig. 1 
for Malaysia (upper panel), Peninsular Malaysia (middle panel) and Sabah/Sarawak (lower panel). A strong var-
iability in yearly yields is noticed for all regions, with marked interannual rises and drops during the 28 years of 
the study period. Based on those interannual variability, we define years of low (high) FFB production when the 
negative (positive) percentage is larger than −0.7 (0.7) standard-deviation (i.e. ±3.02% for Malaysia, ±3.35% for 
Peninsular Malaysia and ±3.29% for Sabah/Sarawak), respectively. This threshold is chosen because the size of 
the sample is not enough to work with a ±1 standard deviation. In this way, five years of low FFB yields (1991, 
1992, 1998, 2002, 2010) and seven years of high FFB yields (1989, 1993, 1997, 1999, 2001, 2008, 2011) are picked 
for Malaysia. Similarly, seven years of low yields (1987, 1991, 1992, 1998, 2002, 2007, 2010) and six years of 
high yields (1989, 1993, 1999, 2001, 2003, 2008) are picked for Peninsular Malaysia, and four years of low yields 
(1988,1994,1998,2010) and eight years of high yields (1990, 1991, 1993, 1995, 1996, 1997, 2008, 2011) are picked 
for Sabah/Sarawak. All other remaining years are considered as normal for respective regions.

Local atmospheric variables.  Best possible FFB yields are obtained under optimal climatic conditions43, 
with at least 2,000 mm of rainfall homogeneously distributed throughout the year corresponding to around 
167 mm month−1. Also, minimum temperatures should be between 22 and 24 °C and maximum temperatures 
between 29 and 33 °C, while relative humidity should be greater than 85%. Finally, solar radiation should be at 
least 16 or 17 MJ m−1 d−1. Composites of rainfall, minimum and maximum temperatures at 2-m height, surface 
net solar radiation, relative humidity at 2-m and potential evapotranspiration are constructed following identified 
years of lower and higher FFB production. Monthly spatial mean for each group of years are calculated between 
December, of the year of harvest, and January, three years before, i.e. for a span of 48 months. This period covers 
different stages of palm tree cycle38,44,45, particularly the different stress-sensitive periods36,45; sex determination 
(31 to 20 months before harvesting year), inflorescence abortions (12 to 8 months) and bunch failures (4 to 2 
months).

Composite time series for the whole Malaysia are shown in Fig. 2. At the country scale, the period covering 
from late boreal winter to early boreal spring is a key to discriminate years of lower production from years of 
higher one, potentially providing useful information to estimate the total yields at the end of the year. Considering 

Figure 1.  Oil palm fresh fruit bunch (FFB) yields interannual variability in Malaysia (top panel), Peninsular 
Malaysia (middle panel) and Sabah/Sarawak (bottom panel). The figure was generated by R software version 
3.4.1 (https://www.R-project.org/) with package “ggplot2” version 2.2.1.

https://www.R-project.org/
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the peak season of FFB harvesting to be September-October40, this coincides with the period of inflorescence 
abortion (Fig. 2a–f, grey area). Between January (Jan0) and March (Mar0), of low FFB production years, Malaysia 
is anomalously dry with rainfall about 60 mm month−1 below average (Fig. 2a, black dashed line) and a level 
of relative humidity less than normal (Fig. 2d, black dashed line). Associated with an anomalously enhanced 
potential evapotranspiration (Fig. 2f, black dashed line), this indicates drought condition at the country scale 
is a yield-reducing factor38,44–46. This water stress is also explainable by the anomalously warmer maximum and 
minimum temperatures (Fig. 2b,c, black dashed line) and the stronger surface net solar radiation (Fig. 2e, black 
dashed line), which tend to favor the evaporation. It might be counterintuitive that more than normal radiation 
is associated with less yields, knowing the positive effect of radiation on photosynthesis. However, we believe the 
monthly time scale is not the best one to capture the impact of solar radiation on fruit growth. On that scale, the 
effect of solar radiation is reduced by the importance of water stress. On the other hand, better FFB production is 
favored by wetter condition: more than normal precipitation (Fig. 2a, black solid line), higher relative humidity 
(Fig. 2d, black solid line) and less evapotranspiration (Fig. 2f, black solid line) in late boreal winter and late spring. 
We note that there is certainly a limit for the concept of “higher rain-higher yield”; it is known that too high 
continuous rains reduce the population of the weevils pollinators and subsequently the production of the palms. 
Because of more precipitation and associated cloudy conditions, less radiation can reach the surface (Fig. 2e, 
black solid line). Again, this appears to be counterintuitive, but the better FFB production is explained by the 
prominence of water condition over the impact of radiation at a monthly time scale. Also, anomalously cooler 
temperatures exist (Fig. 2b,c, black solid line) reducing the risk of fruits mortality. No clear differences appear in 
two others stress-sensitive periods (still considering September-October as the peak of fruits harvesting), i.e. sex 
determination (Fig. 2a–f, dark grey area) and bunch failure (Fig. 2a–f, light grey area) periods.

Figure 2.  Composite analysis of deviations from the mean for (a) rainfall, (b) maximum temperature at 2-m 
height, (c) minimum temperature at 2-m height, (d) relative humidity at 2-m height, (e) solar radiation and 
(f) potential evapotranspiration for Malaysia. Vertical bars denote the standard error of the mean. Shaded 
areas denote stress-sensitive periods considering the peak of fruits harvesting in September-October, i.e. sex 
determination (dark grey), inflorescence abortion (grey) and bunch failure (light grey). Significant differences 
between means at 95% level (according to two-sided Student’s t-test with 10,000 permutations) are showed 
by black dots. The figure was generated by R software version 3.4.1 (https://www.R-project.org/) with package 
“ggplot2” version 2.2.1.

https://www.R-project.org/
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Results are somehow similar in Peninsular Malaysia (Supplementary Fig.  S1) and Sabah/Sarawak 
(Supplementary Fig. S2), with similar influences arising from local atmospheric conditions during late boreal 
winter-early boreal spring: Sabah/Sarawak suffers from less rainfall during El Niño, while Peninsular Malaysia 
is relatively spared18,20,21. For rainfall anomalies as well as evapotranspiration, there is no statistically significant 
difference between years of lower (black dashed line) and higher (black solid line) FFB. In Sabah/Sarawak, the 
water stress is a more important limiting factor, considering the significant difference of anomalies in rainfall, 
relative humidity and potential evapotranspiration. At the spatial and temporal scales of the present interest, 
solar radiation doesn’t play a decisive role in determining the yearly FFB yields. However, at finer time scales (i.e. 
hourly or daily), the quantity of energy received by the trees is expected to condition the quality and quantity of 
fruits production11,35.

Large scale climate modes.  Composites of sea-surface temperature and vertically integrated moisture flux 
anomalies are constructed based on the identified years of lower and higher FFB production. Considering the key 
period previously identified and the life cycle of a typical El Niño event (start in boreal summer, peak in boreal 
winter and decay during the following spring47), four periods are considered here; boreal fall of previous year 
and subsequent boreal winter, spring, and summer seasons. In the boreal fall i.e. September-October-November 
(SON) for years of lower FFB yields, positive SST anomalies exist in the equatorial Pacific Ocean (Fig. 3a). 
Eastward flux anomalies take place between the Maritime Continent and the central Pacific Ocean. At this lead 
time, no significant signal is seen in the Indian Ocean though it is the peak season of the IOD27. For years of 
higher FFB yields, negative SST anomalies (below −1 °C) appear in the equatorial Pacific Ocean in SON (Fig. 3e), 
highlighting the positive impact of La Niña on palm oil trees productivity22,24. A convergence in the flux anom-
alies exists near New Guinea (Fig. 3e), as well as an anomalous cyclonic circulation in the southeastern Indian 
Ocean, generating eastward flux anomalies over the Maritime Continent. The later might be related to the exist-
ence of Ningaloo Niño signal off Western Australia48. As a consequence, Malaysia and surrounding area receive 
more humidity, originating from the equatorial Indian Ocean.

In the following winter season, i.e. December-January-February (DJF), positive SST anomalies become 
stronger in tropical Pacific, particularly in the central Pacific Ocean (Fig. 3b) where anomalies are above 1 °C 
(significant at 95% confidence level). This result is consistent with the results of previous studies22–25 that show 
negative impact of El Niño on yearly yields. In the vicinity of New Guinea, a divergence in the flux anomalies is 
visible, as well as an anomalous anticyclonic circulation south of the Philippines over negative SST anomalies. 

Figure 3.  Composites of deviations from the mean for sea-surface temperatures (contour) and humidity flux 
(vector) anomalies for Malaysia case. Composites are calculated for years of lower FFB (left column) and years of 
higher FFB (right column). Only humidity flux anomalies significant at the 95% level (according to Hotelling’s T2 
test) are plotted. Grey shading denotes SST anomalies significant at the 95% level (according to two-sided Student’s 
t-test). Composites are calculated for SON (a,e), DJF (b,f), MAM (c,g) and JJA (d,h). The figure was generated by R 
software version 3.4.1 (https://www.R-project.org/) with package “rasterVis” version 0.41.

https://www.R-project.org/
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The subsidence over the eastern part of the Maritime Continent is a response to the anomalous heating generated 
in the equatorial Pacific Ocean. Consequently, the subsidence generates westerly anomalies over the Western 
Pacific and dry easterly anomalies over the Maritime Continent (therefore over Malaysia) as well as over the 
equatorial Indian Ocean. This might explain drier conditions in Malaysia, as described by Tangang and Juneng 
(2004)18, leading to unfavorable environment for palm fruits growth. Significant SST anomalies are also noticed 
off Western Australia that resemble the Ningaloo Niña48,49, especially since DJF is the peak season of this coastal 
phenomenon40. The existence of cold SST anomalies in this region may partly explain the anomalous anticyclonic 
circulation in the southern Indian Ocean48, helping the development of the divergence previously described. In 
this study, we have not separated the effects of locally and non-locally amplified Ningaloo Niña48 to distinguish 
their influences from El Niño as that separation did not affect the results described later. In the opposite case of 
higher FFB yields, negatives SST anomalies (below −1 °C) persist in the equatorial Pacific Ocean together with 
the decaying Ningaloo Niño signal in the eastern Indian Ocean (Fig. 3f).

In boreal spring, i.e. March-April-May (MAM), only SST anomalies in the Pacific Ocean and westerly flux 
anomalies over the Indian Ocean persist (Fig. 3c). Positive anomalies in the Indian Ocean appear after El Niño50. 
The composite of higher FFB yields shows negative SST persisting in MAM in the equatorial Pacific Ocean 
(Fig. 3g), albeit to a lesser extent than during SON and DJF. Finally, in boreal summer i.e. June-July-August (JJA), 
only weak positive SST anomalies are seen in the seas surrounding Malaysia (Fig. 3d). During ENSO, more forest 
fires occur, generating haze, which is also a yield-reducing factor35,51 due to reduction in the solar radiation.

At a regional scale, El Niño and Ningaloo Niña signals, as well as westward moisture flux anomalies over 
Maritime Continent, are found during years of lower FFB yields in Peninsular Malaysia and in Sabah/Sarawak, 
with some variation. For Peninsular Malaysia case, the signal in the equatorial Pacific Ocean persists throughout 
the period of study (Fig. 4a–d), together with the Ningaloo Niña signal in boreal fall and winter (Fig. 4a,b). In 
Sabah/Sarawak case, a transition between warm SST anomalies, accompanied by Ningaloo Niña (Fig. 5a,b), and 
cold SST (Fig. 5c,d) anomalies takes place. As a response to the cold anomalies in the equatorial Pacific Ocean, a 
patch of positive SST anomalies appears east of the Philippines in JJA (Fig. 5d). Westward moisture flux anoma-
lies over Sabah/Sarawak are also noticeable. It is not clear why such a combination would be unfavorable for FFB 
yields. Perhaps, the moisture flux is not enough to favor higher yields during these events. During years of higher 
yields, La Niña influence dominates over Peninsular Malaysia (Fig. 4e–g) and Sabah/Sarawak (Fig. 5e–g), again 

Figure 4.  Composites of deviations from the mean for sea-surface temperatures (contour) and humidity flux 
(vector) anomalies for Peninsular Malaysia case. Composites are calculated for years of lower FFB (left column) 
and years of higher FFB (right column). Only humidity flux anomalies significant at the 95% level (according to 
Hotelling’s T2 test) are plotted. Grey shading denotes SST anomalies significant at the 95% level (according to two-
sided Student’s t-test). Composites are calculated for SON (a,e), DJF (b,f), MAM (c,g) and JJA (d,h). The figure was 
generated by R software version 3.4.1 (https://www.R-project.org/) with package “rasterVis” version 0.41.

https://www.R-project.org/
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with some variations. In the Peninsular Malaysia case, SST anomalies resemble more of a La Niña Modoki, while 
SST anomalies in Sabah/Sarawak case show the typical pattern of a canonical La Niña.

Annual yields, statistical models and tentative forecasts.  Annual yields in different geographic enti-
ties are influenced by both local atmospheric variables and large-scale climate modes. Since late 1940’s, different 
statistical models have been built to forecast the yields of fresh fruit bunches using climate data, for West Africa38, 
as well as Malaysia25,52,53. In particular, Foong (1982)52 showed an effect of temperature on monthly yields and 
the ability of the model for a 3-month lead forecast based on atmospheric temperatures. More recently, remote 
influence of climate modes, such as ENSO22,54, has been taken into account to model yields in Malaysia. Here, 
we evaluate a statistical model combining the effects of both local climate data and large-scale modes of climate 
variation. First, lagged correlations are calculated among annual FFB yields and local atmospheric parameters 
(Fig. 6a–c). Partial lagged correlations55 are also calculated between yearly yields and large-scale climate indices 
to elucidate a sole effect of each climate mode under the assumption of independence among climate modes 
(Fig. 6e–g). In this analysis, atmosphere and ocean parameters are leading yields for 30 months (maximum lag) 
to 0 (concurrent correlation). For whole Malaysia, strongest relationships among atmospheric parameters and 
palm yields are found in late boreal fall and boreal spring (Fig. 6a). This result is consistent with the composite 
analysis, where the differentiation between years of lower and higher FFB yields is the most pronounced during 
those seasons. Negative correlations between annual yields and temperatures show the negative impact of anom-
alously high temperatures on yields. And a positive correlation between yields and precipitation in spring agrees 
well with the known benefit of higher rainfall on fruits production. Here we note that water stress is mainly visible 
through the rainfall. Relative humidity and potential evaporation play a minor role on the interannual variability 
of FFB yields but it doesn’t mean their effects are negligible at other temporal and/or spatial scales, which we are 
not discussing here.

Rainfall impact is even more important in summer time, the year before the fruits harvest. As already shown 
by the composite analysis, ENSO is a key factor to explain the interannual variability of FFB yields in Malaysia 
(Fig. 6d). Negative correlation between yields and Niño3 index is consistent with lower harvest following an El 
Niño event. Similar results are found for the Peninsular Malaysia, with the February-April period as a key sea-
son. Interannual variability in yields of this region is mainly explained by variations in temperature and rainfall 
(Fig. 6b). Lower (higher) yields are due to higher (lower) than normal temperatures and lower (higher) than 
normal rainfall, which are consistent with the results obtained from the composite analysis. Monsoon (ICMI) 

Figure 5.  Composites of deviations from the mean for sea-surface temperatures (contour) and humidity flux 
(vector) anomalies for Sabah/Sarawak case. Composites are calculated for years of lower FFB (left column) and 
years of higher FFB (right column). Only humidity flux anomalies significant at the 95% level (according to 
Hotelling’s T2 test) are plotted. Grey shading denotes SST anomalies significant at the 95% level (according to two-
sided Student’s t-test). Composites are calculated for SON (a,e), DJF (b,f), MAM (c,g) and JJA (d,h). The figure was 
generated by R software version 3.4.1 (https://www.R-project.org/) with package “rasterVis” version 0.41.

https://www.R-project.org/
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and ENSO (Niño3) are the climate modes explaining mostly the annual yields in Peninsular Malaysia (Fig. 6e). 
Finally, temperatures (minimum and maximum) during boreal spring have a strong control on the quantity of 
annual yields (Fig. 6c) in Sabah/Sarawak. The role of rainfall in the boreal fall of the year before the yield is also 
not negligible. Nevertheless, ENSO control on annual yields (Fig. 6) in Sabah/Sarawak is not that important com-
pared to whole Malaysia and Peninsular Malaysia.

Statistical models based on linear regression are trained on the annual yields during the period 1987–2014. 
For each region, a model is constructed using actual values of local atmospheric variables (Model 1). Then, indi-
ces of large-scale climate phenomena (i.e. suppliers of the interannual variability) are added to the model (Model 
2) to test the effects of both local and large-scale information. Local indices include effect of large-scale climate, 
but in a non-linear way that would be difficult to interpret and discuss. So, global parameters are directly incorpo-
rated in the study for the ease of explanations of linear relationships and to improve the model. Table 1 summa-
rizes the local and large-scale variables included in statistical models in each region. For whole Malaysia, Model 
1 (Equation 1) is based on local precipitation taken in Jul−1 (i.e. in July the year before the yields are considered):

= . + . + ε
−

Yield 13 8 0 0259 PRCP (1)Jul 1

Annual yields estimated by Model 1 are slightly overestimated as the mean error (ME) is negative (Table 2), 
while the mean absolute error (MAE) is 0.5 Mg ha−1 and the percentage error of this model is around 3%. Model 
1 explains 1/3 of the total variance (r = 0.627, R2 = 39.4%).. Other measurements of accuracy are given in Table 2. 
Model 2 (Equation 2) is the association of Model 1, ENSO (Mar0) and Ningaloo Niño/Niña (Jul0):

Figure 6.  Left column: lagged correlation coefficients between yearly FFB yields and precipitation (grey 
line), solar radiation (orange line), maximum temperature at 2-m height (sky blue line), minimum 
temperature at 2-m height (bluish green line), relative humidity at 2-m height (reddish purple line), potential 
evapotranspiration (blue line). Right column: lagged correlation coefficient between yearly FFB yields and 
ENSO (orange line), and lagged partial correlation coefficients between yearly FFB yields and Modoki (grey 
line), Indian Ocean Dipole Mode (sky blue line), Ningaloo Niño (bluish green line), Asian Monsoon (reddish 
purple). Calculations are done for Malaysia (top row), Peninsular Malaysia (middle row) and Sabah/Sarawak 
(bottom row). Black dots denote correlation coefficients significant at the 95% level (according to a random-
phase test). The figure was generated by R software version 3.4.1 (https://www.R-project.org/) with package 
“ggplot2” version 2.2.1.

https://www.R-project.org/
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ñYield 15 7 0 0158 PRCP 0 6780 Ni o3 0 999 NNI (2)Jul Mar Jul1 0 0
ε= . + . − . − . +

−

According to ME (4.10e-14 Mg ha−1), MAE (0.3 Mg ha−1) and percentage error (1.8%), Model 2 generates less 
errors than that of Model 1 for simulating the observed FFB yields. This model also performs better in simulating 
the interannual variability of annual yields (r = 0.883, R2 = 78%). Complementary accuracy measurements of the 
association can be found in Table 2. Also, an analysis of variance56 is performed between Model 1 and Model 2, 
to estimate how Model 2 performs better than Model 1. The explained variances are given in Table 3. The F-ratio 
(F) shows an improvement of the model introducing large-scale indices, as the level of significance is close to 
100%. The simulated annual yields by Model 2 for the period 1987–2014 are presented in Fig. 7a. Also, 2015 and 
2016 are taken a test case to evaluate the accuracy of the selected model. The calculated values for these years are 
presented together with the forecast for the year 2017. This gives particularly accurate results on training and test 
periods. And we expect the forecast for the year 2017 to be successful. The stability of the model is also tested and 
result is shown in Fig. 7b. Starting with five years training and by adding one year at each iteration, it is found that 
the stability of Model 2 is very strong, as seen in the small difference between colored lines (simulated yields) and 
black lines (observed yields). This indicates that the variables used to construct Model 2 are very effective and 
stable in relationships during the period 1987–2014. Finally, the comparison between simulated and observed 
yields (Fig. 7c) does not show any difference in the calculated annual rate of variations.

In Peninsular Malaysia, maximum temperature at 2-m height (Apr0) is the basis of Model 1 (Equation 3)

Region Model Equation

Malaysia
1 13 8 0 0259 PRCPJul 1. + . −

2 ñ15 7 0 0158 PRCP 0 6780 Ni o3 0 999 NNIJul Mar Jul1 0 0. + . − . − .−

Peninsular Malaysia
1 . − .47 7949 0 9606 TX2MApr0

2 . − . + .41 0307 0 7398 TX2M 0 3025 ICMIApr Mar0 0

Sabah/Sarawak
1 − . + . + .− −29 8 0 0252 PRCP 1 5 TX2MJun Dec1 2

2 24 8 0 0232 PRCP 1 34 TX2M 0 541 Ni o3Jun Dec Mar1 2 0– ñ− . + . + . .− −

Table 1.  Statistical linear models defined in Malaysia, Peninsular Malaysia and Sabah/Sarawak. Model 1 only 
includes local variables, while Model 2 adds remote climate modes to Model 1.

Region Model ME RMSE MAE MPE MAPE MASE ACF1

Malaysia
1 −1.79e–13 0.699 0.544 −0.149 2.97 0.529 −0.234

2 4.10e–14 0.421 0.331 −0.050 1.76 0.322 −0.404

Peninsular Malaysia
1 7.57e–14 0.662 0.553 −0.1280 3.0 0.476 −0.0941

2 6.67e–14 0.545 0.426 −0.0858 2.3 0.367 −0.1100

Sabah/Sarawak
1 3.02e–13 1.010 0.805 −0.342 4.55 0.780 −0.0115

2 3.45e–13 0.916 0.701 −0.281 3.94 0.679 0.2250

Table 2.  Comparison of accuracy measurements between Model 1 (local variables) and Model 2 (adds remote 
climate modes to Model 1) in Malaysia, Peninsular Malaysia and Sabah/Sarawak. ME is the Mean Error (Mg 
ha−1), RMSE is the Root Mean Square Error (Mg ha−1), MAE is the Mean Absolute Error (Mg ha−1), MPE is 
the Mean Percentage Error (%), MAPE is the Mean Absolute Percentage Error (%), MASE is the Mean Absolute 
Scaled Error and ACF1 is the autocorrelation of errors at lag 1. Values are estimated from bootstrap (10,000 
permutations).

Region Model Res.Df RSS Df Sum of Sq F Pr( > F)

Malaysia
1 26 13.6773

2 24 4.9542 2 8.7231 21.129 5.102e–06

Peninsular Malaysia
1 26 12.258

2 25 8.324 1 3.9342 11.816 0.002065

Sabah/Sarawak
1 26 45.918

2 24 23.491 2 22.427 11.456 0.0003214

Table 3.  Analysis of variance between linear regressions models for Malaysia, Peninsular Malaysia and Sabah/
Sarawak. Model 1 only includes local variable, while Model 2 adds remote climate modes to Model 1. Res.Df is 
the residual degrees of freedom, RSS is the residual sum of squares, Df is the degree of freedom, Sum of Sq is the 
difference in RSS, F is the value of the F-ratio and Pr( > F) is the associated p-value.
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Yield 47 7949 0 9606 TX2M (3)Apr0
ε= . − . +

The level of errors produced by this model is comparable to that of Model 1 for the whole Malaysia, i.e. very 
small ME (with a slight underestimation), MAE around 0.5 Mg ha−1 and percentage error of 3% (see Table 2 for 
other accuracy measurements). Model 1 simulates about 50% of the total variance of observed annual yields 
(r = 0.691, R2 = 47.7%). The monsoon index (Mar0) is added to this model to obtain Model 2 (Equation 4):

Yield 41 0307 0 7398 TX2M 0 3025 ICMI (4)Apr Mar0 0
ε= . − . + . +

Once again, Fisher test shows a real improvement of the model (level of significance close to 99.9%) when local 
and large-scale information are combined together (Table 3). In comparison (Table 2), Model 2 actually gives 
better results than Model 1 in simulating yields, reducing ME (6.67e-14 Mg ha−1), MAE (0.4 Mg ha−1) and per-
centage error (2.3%). Simulation results are also realistic for the period 1987–2014 (Fig. 7d,f), reproducing 64.5% 
of the total variance (r = 0.803). But the model appears to be less stable when period of the regression coefficients 
is changed (Fig. 7e).

In Sabah/Sarawak, Model 1 (Equation 5) is constructed using local precipitation in Jun−1 and maximum tem-
peratures at 2-m height in Dec−2:

Yield 29 8 0 0252 PRCP 1 5 TX2M (5)Jun Dec1 2
ε= − . + . + . +

− −

The errors produced by Model 1 in this region are higher (MAE of 0.8 Mg ha−1 and percentage error of 4.5%) 
than that in other geographical entities, while remaining reasonably low. The variance explained by the model 
is quite high (r = 0.776, R2 = 60.2%). Model 2 (Equation 6) is then constructed including Niño3 index (Mar0):

ε= − . + . + . − . +
− −

ñYield 24 8 0 0232 PRCP 1 34 TX2M 0 541 Ni o3 (6)Jun Dec Mar1 2 0

Inclusion of ENSO index in Model 1 increases the ability to describe the interannual variability of FFB yields 
(Table 3) by Model 2. The accuracy of Model 2 is higher (Table 2) also; the errors generated are reduced to 0.7 Mg 
ha−1 (MAE) and the percentage error becomes less than 4%. However, among three regions, the statistical model 
based on local variables and large-scale indices is less accurate (r = 0.819, R2 = 67%). While the trend is captured 
(Fig. 7g), the stability of the model is very low when utilizing only a few years for training (Fig. 7h). It is only after 
including a long training period (about twenty years of data) the model tends to stabilize and the interannual 
variation rate is reproduced to some extent (Fig. 7i).

Figure 7.  Left column: observation (black line, 1987–2016) and simulated annual yields by Model 2 for the 
training period (red line, 1987–2014), the test years (blue dot, 2015 and 2016) and forecast (yellow dot, 2017) 
of annual FFB yields in (a) Malaysia, (d) Peninsular Malaysia and (g) Sabah/Sarawak. Black line is the observed 
yields; blue shadings are prediction intervals for test and yellow shadings are prediction intervals for forecast. 
Central column: stability of Model 2 for (b) Malaysia, (e) Peninsular Malaysia and (h) Sabah/Sarawak. Black line 
is the reference and each colored line is a simulation with regression coefficients estimated with five years (5), six 
years (6) and so on, up to twenty-nine years (29). Right column: interannual variation of yields (in percentage) 
for (c) Malaysia, (f) Peninsular Malaysia and (i) Sabah/Sarawak. Observation is the black continuous line and 
simulation by Model 2 is the black dotted line. The figure was generated by R software version 3.4.1 (https://
www.R-project.org/) with package “ggplot2” version 2.2.1.

https://www.R-project.org/
https://www.R-project.org/
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The models for the three areas are based on different variables accounting for the different climatic condi-
tions in different parts of Malaysia. Thus, the use of maximum temperature in Peninsular Malaysia illustrates the 
continental influence on this area while use of precipitation in the Sabah/Sarawak model illustrates the oceanic 
influence.

Conclusion
In this study, it is found that teleconnections arising from the equatorial Pacific Ocean and the eastern Indian 
Ocean play an important role on local water stress and temperatures in Malaysia, which in turn control the yearly 
production of fresh fruit bunches on country as well as regional scales. The results show association of palm yields 
with ENSO, ENSO Modoki and some other regional variations. Particularly, spring rainfall of yield year decreases 
together with an increase in atmospheric temperatures following an El Niño occurrence during the previous 
winter. Local water stress is then enhanced, favoring a reduction in total yields. Also, an interesting signal is seen 
in the region of the Ningaloo Niño/Niña– the newly discovered mode of climate variations off Western Australia. 
This needs to be further explored.

By combining the effect of local climate with the large-scale climate modes, such as ENSO, statistical palm 
yield prediction models are developed here with a reasonable success in terms of stability and reliability. While 
such an approach may be sensitive to climate regime shift and subsequent changes in the local/large-scale rela-
tionships, it is not a concern for the analysis of results on a fixed time-frame.

Further research should also be performed at finer regional scales over Malaysia (for example at a provincial 
scale), but such fine-scale data generally lack the accuracy and it may be difficult to distinguish a meaningful 
signal from the background noise. For this purpose, dynamical downscaling can be used to introduce more real-
istic spatial variability taking into account the effect of local features, such as the orography and the vegetation 
on the local weather and climate. By using biased corrected and downscaled seasonal climate forecasts, we can 
stretch the forecast limits of the statistical model. Further, the seasonal time scale is also interesting and needs 
further detailed and extensive research. It will be necessary to study seasonal variations in the influences arising 
from remote phenomena such as ENSO and Ningaloo Niño/Niña and how those affect the physiology of palm 
trees. Considering the potential advantage, this research is expected also to contribute to Indonesia, the leading 
producer of oil palm.

Methods
The annual yields of fresh fruit bunches are taken from the Malaysian Palm Oil Board website41, for the period 
of January 1987-December 2015. This period is chosen as reference period for all dataset used in this paper. To 
characterize the interannual variability of FFB yields, the year-to-year variation rate is used, following the method 
described earlier42. This rate is meant to capture only the natural variability, removing other factors, such as 
human action. In this study, we adopted the calculation based on a locally weighted smoothing (loess)57, with a 
degree of smoothing of 0.32 and a degree 1 for polynomials. Results are similar to those calculated using a 5-year 
running mean, as already highlighted by the earlier study42.

The Extended Reconstructed Sea Surface Temperature (ERSST) version 458–60 with a 2° × 2° horizontal resolu-
tion, and for the period 1984–2015, is used.

The Global Precipitation Climatology Centre (GPCC) data61 are used for monthly precipitation, with a 1° × 1° 
horizontal resolution, and covering the period 1984–2015. GPCC Precipitation data provided by the NOAA/
OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

The monthly Niño3 Index is provided by CPC/NOAA, College Park, Maryland, USA, from their Web site 
at http://www.cpc.ncep.noaa.gov/data/indices/. The monthly El Niño Modoki Index is provided by JAMSTEC, 
Yokohama, Japan, from its Web site http://www.jamstec.go.jp/frcgc/research/d1/iod/enmodoki_home_s.html.en.

The Ningaloo Niño/Niña Index was calculated following Kataoka et al. definition48. The monthly Indian Ocean 
Dipole Index is provided by NOAA from its Web site http://stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php.

A monsoon index for the region study is constructed following Tsai et al.62. The index is the difference between 
the area-averaged 850-hPa zonal wind anomalies in the domain 85°E-95°E, 7.5°N-12.5°N and the area-averaged 
850-hPa meridional wind anomalies in the domain 120°E-122.5°E, 0-8.75°N. This allows the seasonal change in 
the wind direction over the country to be captured.

Monthly mean, minimum and maximum air temperature at 2 meters, and surface net solar radiation are 
directly taken from the European Reanalysis Interim (ERA-Interim) dataset63, with a 0.75° × 0.75° horizontal res-
olution and for the period 1984–2015. Data are resampled to match the GPCC grid using a bilinear interpolation. 
The relative humidity at 2 meters (Equation 7) is not directly available and is derived from the saturation water 
vapor pressure of both the temperature and the dew point temperature at 2-meter height (Equation 8), following 
ECMWF recommendation64:

= ×RH e Td
e T

100 ( )
( ) (7)
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sat

esat() = saturation vapor pressure (Pa), Td = dew point temperature at 2 meters (K), T = air temperature at 
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T = temperature at 2 meters (K), a1 = 6.1121 (hPa), a3 = 17.502, a4 = 32.19 (K), T0 = 273.16 (K).

http://www.esrl.noaa.gov/psd/
http://www.cpc.ncep.noaa.gov/data/indices/
http://www.jamstec.go.jp/frcgc/research/d1/iod/enmodoki_home_s.html.en
http://stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php
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The daily potential evapotranspiration is calculated following the Penman-Monteith FAO56 Reference Crop 
evapotranspiration65 for short reference66 (Equation 9) using the ERA-Interim data (air temperature, relative 
humidity, dew point temperature, solar radiation, wind speed, total cloud cover). Wind speed at 2 meters are 
derived from wind speed at 10 meters following Equation 47 in Allen et al.65. Monthly means are calculated from 
the daily values.

γ

γ
=

. ∆ − + −

∆ + + .
+ET

R G u e e

u

0 408 ( ) ( )

(1 0 34 ) (9)
n T s a

0

900
273 2

2

ET0 = standardized reference crop evapotranspiration (mm d−1), Rn = calculated net radiation at the crop sur-
face (MJ m−2 d−1), G = soil heat flux density at the soil surface (MJ m−2 d−1), T = mean daily air temperature 
near the surface (°C), u2 = mean daily wind speed at 2-m height (m s−1), es = saturation vapor pressure near 
the surface (kPa), ea = mean actual vapor pressure near the surface (kPa), Δ = slope of the saturation vapor 
pressure-temperature curve (kPa °C−1), γ = psychrometric constant (kPa °C−1), 0.408 = numerator constant (m2 
mm MJ−1), 900 = numerator constant (K mm s3 Mg−1 d−1), 0.34 = denominator constant (s m−1).

The vertically integrated moisture flux (Equation 10, in kg m−1 s−1) is calculated utilizing the surface pressure 
(pŝ), the specific humidity (q) and the vector wind components (W, either zonal or meridional).

ˆ

∫ δWq g( ) / (10)
p

p
0

s

The mass-weighted sum is calculated between the surface and the 250 hPa pressure level, which correspond to 
21 levels in ERA-Interim and 20 pressure differences (𝛿p). The gravity of Earth (g) is fixed to 9.807 m s−2.

For rainfall, temperature, relative humidity, potential evapotranspiration and solar radiation, only grid points 
over palm oil plantation (as estimated in 2011) are kept. The selection is based on Fig. 1 in Koh et al.8. This gives 
a total of 106 grid points, covering both Peninsular Malaysia and Sabah/Sarawak. It has to be noted that cumu-
lative land area of palm oil plantations between 1987 and 2011 increased, meaning that in the first years of the 
study period, many grid points are not covered by oil palms, possibly introducing a bias in the model. However, 
considering the size of the regions, the signal (i.e. the relationship climate/total yields) is greater than the noise 
(i.e. absence of oil palms).

Anomalies to the 1982–2011 period mean are calculated and the linear trend is removed from all dataset using 
a least-square fit. Three-month-running means are adopted for all indices to minimize the intraseasonal varia-
tions. The confidence level in Fig. 6 is based on a random-phase test67. For this test, a large number of random 
time series (here 10,000 simulations) that have the same power spectrum as the original time series, but with 
random phases, are generated. The statistical significance is defined as the proportion of random correlations 
(coming from simulations) lower (if the observed correlation is negative) or higher (if the observed correlation is 
positive) than the observed correlation.

The partial correlation is used to remove the influence of the ENSO and estimate the direct interaction 
between annual FFB yields and climate modes. The calculation is based on matrix inversion68 as the partial cor-
relations are the negative standardized covariances.

Composites analysis is a useful tool to identify conditions observed during specific states of the climate. This 
statistical method involves the computation of the composite mean over selected time steps, for example the set of 
years with low FFB yields in Malaysia. Composite analysis can be represented by composited time series (Fig. 2) 
or composited maps (Figs 3–5). The statistical significance of composite analysis in Fig. 2 and Figs S1 and S2 (H1: 
composite mean for years with low FFB is different from composite mean for years with high FFB) is based on 
a two-sided Student’s t-test69,70 with 10,000 permutations. The statistical significance of composite analysis in 
Figs 3–5 (H1: composite mean for years with low FFB is different from composite mean for years with high FFB) 
is based on a two-sided Student’s t-test for SST anomalies and on an Hotelling’s T2 test71,72 for the vertically inte-
grated moisture flux anomalies, both with 5,000 permutations.

The accuracy of fitted model (i.e. goodness of fit) is estimated using different common measurements73,74. 
Provided values are the difference between the estimation and the observation or Mean Error (ME), the sample 
standard deviation of the differences between predicted values and observed values or Root Mean Square Error 
(RMSE), an index of proximity of prediction to eventual outcome or Mean Absolute Error (MAE), the computed 
average of percentage errors by which forecasts of a model differ from actual values of the quantity being forecast 
or Mean Percentage Error (MPE), the forecast bias or Mean Absolute Percentage Error (MAPE), the forecast 
accuracy or Mean Absolute Scaled Error (MASE) and the autocorrelation of errors at lag 1 (ACF1). The smaller 
the values, the better the fit. These values are estimated from bootstrap (10,000 permutations). However, as the 
time series used to develop and verify statistical models are quite short, the accuracy of the fitted models might 
be highly variable. In order to test the stability of the model, variables are first chosen for the period 1987–2014 
and are fixed. Second, the coefficients associated to the model are calculated for first five years (i.e. 1987–1991) 
and simulated yields for the remaining period (1992–2016), then coefficients are estimated for six first years (i.e. 
1987–1992) and yields estimated for the period 1993–2016, and so on, up to the 1987–2014 (train) / 2015–2017 
(test and forecast) periods. Observed and simulated yields are then plotted together. If the simulated yields don’t 
dramatically deviate from the observation, the model is considered as stable. The accuracy of forecasts is esti-
mated by calculating the prediction intervals75, i.e. the probability for the observed annual yield to lie within the 
interval. The selected probabilities are 80% and 95%.

All calculations and graphics are made using the R project for statistical computing version 3.4.176, with the 
help of packages “forecast” version 8.1 (http://github.com/robjhyndman/forecast), “Hotelling” version 1.0–4 
(https://CRAN.R-project.org/package=Hotelling), “Evapotranspiration” version 1.10 (https://CRAN.R-project.

http://github.com/robjhyndman/forecast
https://CRAN.R-project.org/package=Hotelling
https://CRAN.R-project.org/package=Evapotranspiration
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org/package=Evapotranspiration) and “ppcor” version 1.1 (https://CRAN.R-project.org/package=ppcor) for cal-
culations, and packages “rasterVis” version 0.41 (http://oscarperpinan.github.io/rastervis/) and “ggplot2” version 
2.2.1 (http://ggplot2.org) for graphics.
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