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Summary

Epidemiologic studies and disease prevention trials often seek to relate an exposure variable to a 

failure time that suffers from interval-censoring. When the failure rate is low and the time intervals 

are wide, a large cohort is often required so as to yield reliable precision on the exposure-failure-

time relationship. However, large cohort studies with simple random sampling could be prohibitive 

for investigators with a limited budget, especially when the exposure variables are expensive to 

obtain. Alternative cost-effective sampling designs and inference procedures are therefore 

desirable. We propose an outcome-dependent sampling (ODS) design with interval-censored 

failure time data, where we enrich the observed sample by selectively including certain more 

informative failure subjects. We develop a novel sieve semiparametric maximum empirical 

likelihood approach for fitting the proportional hazards model to data from the proposed interval-

censoring ODS design. This approach employs the empirical likelihood and sieve methods to deal 

with the infinite-dimensional nuisance parameters, which greatly reduces the dimensionality of the 

estimation problem and eases the computation difficulty. The consistency and asymptotic 

normality of the resulting regression parameter estimator are established. The results from our 

extensive simulation study show that the proposed design and method works well for practical 

situations and is more efficient than the alternative designs and competing approaches. An 

example from the Atherosclerosis Risk in Communities (ARIC) study is provided for illustration.
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1. Introduction

In many epidemiologic studies and disease prevention trials, the outcome of interest is a 

failure time that suffers from interval-censoring, i.e., the failure time cannot be exactly 

observed but only an interval that it belongs to is known or observed (e.g. Sun, 2006; Chen 

et al., 2012). One example of interval-censored failure time data arises from HIV preventive 
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vaccine trials where investigators are interested in assessing the association between 

antibody responses to a vaccine and the incidence of HIV infection (e.g. Gilbert et al., 2005). 

In this case, since the study subjects are tested for HIV infection only at discrete clinic visits 

instead of being continuously monitored, the time to HIV infection is known only to fall 

between two consecutive visits rather than being exactly observed and thus only interval-

censored data on the infection time are available. When the failure rate is low and the 

observation time intervals are wide, such as in the HIV vaccine trials mentioned above, a 

large cohort is often required so as to yield reliable precision on the exposure-failure-time 

relationship. Compounding to this issue, measurements of the exposure variable of interest 

are often expensive or difficult to obtain, such as the antibody levels measured by complex 

assays in the HIV vaccine trials above. As a consequence, large cohort studies with simple 

random sampling could be prohibitively expensive to conduct for investigators with a limited 

budget. Alternative cost-effective sampling designs and inference procedures with interval-

censored failure time data are therefore desirable, and this motivates the research in this 

paper.

Outcome-dependent sampling (ODS) is a cost-effective sampling scheme that enhances the 

efficiency and reduces the cost of a study by allowing the probability of acquiring the 

exposure measurement to depend on the observed value of the outcome. The case-control 

study with a binary outcome is a simple and well-known example of ODS design and it has 

been extensively studied and used over the past decades (e.g. Cornfield, 1951; Whittemore, 

1997). In recent years, the more general ODS design with a continuous outcome has been an 

important research area (e.g. Zhou et al., 2002; Chatterjee et al., 2003; Weaver and Zhou, 

2005). The fundamental idea of such a design is to oversample observations from the 

segments of the population, usually the two tails of the response variable’s distribution, that 

are believed to be more informative regarding the exposure-response relationship. Recent 

references on ODS design with a continous outcome include Zhou et al. (2007), Song et al. 

(2009) and Zhou et al. (2011), among others. The case-cohort design is a well-known 

biased-sampling scheme for censored failure time data. Under this design, measurements of 

the exposure are obtained for a random sample of the study cohort, called subcohort, and for 

all subjects who experience the failure regardless of whether or not they are in the subcohort 

(e.g. Prentice, 1986; Self and Prentice, 1988; Chen and Lo, 1999; Lu and Tsiatis, 2006; 

Kong and Cai, 2009; Zeng and Lin, 2014). When the failure is non-rare, the generalized 

case-cohort design has been proposed where besides a subcohort, the exposure 

measurements are assembled only on a subset of the failure subjects instead of all failure 

subjects (e.g. Cai and Zeng, 2007; Kang and Cai, 2009). Reaping the benefits of both ODS 

and case-cohort designs, Ding et al. (2014) and Yu et al. (2015) considered a general failure-

time dependent sampling design where a simple random sample of the cohort is enriched by 

selectively including certain more informative failure subjects. An overview of failure-time 

dependent sampling designs can be found in Ding et al. (2017).

We note that the existing cost-effective sampling designs for failure time data were primarily 

developed for traditional censored data where the failure time is either exactly observed or 

right-censored. We found only a few papers that discussed biased-sampling designs for 

interval-censored failure time data. Gilbert et al. (2005) considered a biased-sampling design 

for a phase 3 HIV-1 preventive vaccine trial where the outcome of interest is the time to HIV 
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infection that suffers from interval-censoring. In particular, they defined the infection time as 

the midpoint of the dates between the last negative and first positive tests and then employed 

the case-cohort design for traditional censored data. Li et al. (2008) considered the same 

HIV vaccine trial as in Gilbert et al. (2005) and they simplified the structure of interval-

censored data by assuming that the test dates are fixed and the same for all study subjects 

and then extended the case-cohort design to fit in the resulting data. Li and Nan (2011) 

studied the case-cohort design with current status data, a special case of interval-censored 

data, which arise when each study subject is examined only once for the occurrence of the 

failure and thus the failure time is either left- or right-censored at the only examination. 

Recently, Zhou et al. (2017) developed the case-cohort design and an inference procedure 

for failure time data subject to general interval-censoring. The case-cohort design samples 

all the failure subjects and applies mainly to rare events. In this paper, we propose an 

outcome-dependent sampling (ODS) design with general interval-censored failure time data, 

that applies primarily to non-rare or not-so-rare events where it may not be feasible to 

sample all the failure subjects. Under the proposed interval-censoring ODS design, we 

enrich a simple random sample by selectively including certain more informative failure 

subjects. Specifically, we supplement a simple random sample of the study cohort with 

certain subjects who are known to experience the failure (i.e. the observed interval 

containing the failure time has a finite right endpoint) and who are believed to be more 

informative in terms of the exposure-failure-time relationship (i.e. the observed interval 

belongs to the two tails of the failure time’s distribution). The idea of oversampling from the 

tails stems from the intuition that if the outcome Y is positively associated with the exposure 

X, then high (low) Y would be associated with high (low) X; enriching the observed sample 

with subjects who have high or low Y could potentially enhance the efficiency in evaluating 

the association between Y and X. This intuition can easily be justified in simple linear 

regression.

We develop a semiparametric likelihood-based procedure for fitting the proportional hazards 

model to data from the proposed interval-censoring ODS design. Due to the complicated 

data structure and the fact that the failure time is never exactly observed, the analysis of 

interval-censored data is in general much more challenging than that of right-censored data 

both theoretically and computationally. For example, for regression analysis of interval-

censored data, one usually needs to deal with or estimate the finite-dimensional regression 

parameter and the infinite-dimensional nuisance parameter simultaneously as no tools like 

the partial likelihood commonly used for right-censored data is available anymore. In 

particular, regression analysis of interval-censored data, obtained by simple random 

sampling, under the proportional hazards model remains a popular research topic over the 

past three decades. Among others, Finkelstein (1986) considered the parametric maximum 

likelihood estimation with a discrete baseline hazard assumption; Huang (1996) and Zeng et 

al. (2016) studied the fully semiparametric maximum likelihood estimation for current status 

data and mixed-case interval-censored data, respectively; Satten (1996) proposed a marginal 

likelihood approach which avoids estimating the baseline hazard but is still computationally 

intensive; Pan (2000) suggested a multiple imputation approach which is semiparametric but 

did not provide theoretical justification; Lin et al. (2015) and Wang et al. (2016) developed 

efficient algorithms for computing the maximum likelihood estimates via two-stage Poisson 
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data augmentations from Bayesian and Frequentist perspectives, respectively; Zhang et al. 

(2010) and Zhou et al. (2016) proposed sieve semiparametric maximum likelihood methods 

and proved the asympotic normality and efficiency of the regression parameter estimators. 

As discussed by Zhang et al. (2010) and Zhou et al. (2016), the sieve method enjoys both 

theoretical and computational advantages compared to the alternative methods. Under the 

proposed interval-censoring ODS design, the likelihood function with the observed data 

involves two sets of infinite-dimensional nuisance parameters, i.e. the cumulative baseline 

hazard function and the distributions of examination times and covariates. Following Zhou et 

al. (2016), we employ a Bernstein-polynomial-based sieve method to deal with the 

cumulative baseline hazard function. For handling the distributions of examination times and 

covariates, we adopt the empirical likelihood method considered by Vardi (1985) and Qin 

(1993) for biasedsampling problems. Both the sieve and empirical likelihood methods yield 

great dimension reduction on the estimation problem and thus significantly ease the 

computational difficulty.

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed 

interval-censoring ODS design and describe the likelihood function. In Section 3, we 

develop a sieve semiparametric maximum empirical likelihood estimation appr oach, where 

we employ the empirical likelihood and sieve methods to deal with the infinite-dimensional 

nuisance parameters. We also establish the asymptotic properties of the resulting estimator. 

In Section 4, we evaluate the performance of the proposed design and estimator through an 

extensive simulation study. In Section 5, an illustrative example from the ARIC study is 

provided. Final remarks are given in Section 6.

2. Interval-Censoring ODS design and Likelihood Function

Let T denote the failure time of interest and Z a p-dimensional covariate vector that may 

affect T. Suppose that the failure time is subject to interval-censoring and the observation 

can be represented by

where U and V are two random examination times, and (Δ1, Δ2, 1 − Δ1 − Δ2) indicate left-, 

interval- and right-censored observations, respectively.

Now we describe our ODS design with interval-censored failure time data. Let τ denote the 

length of study and a1 and a2 two known constants satisfying 0 < a1 < a2 < τ. The 

fundamental idea of ODS design is to oversample observations that are believed to be more 

informative regarding the exposure-response relationship. Following this idea, we 

oversample subjects who experience the failure (i.e. Δ1 +Δ2 = 1) and who have the failure 

time falling within either the tail (0, a1) or (a2, τ). Specifically, we partition the failures A = 

{Y : Δ1 + Δ2 = 1} into three mutually exclusive and exhaustive strata: Ak, k = 1, 2, 3, 

defined as
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(1)

where ∩ and ∪ denote the intersection and union of sets, respectively, and Bc the 

complement of a set B. Figure 1 provides an illustration of the partitions Ak, k = 1, 2, 3. One 

can see that subjects with Y ∈ A1 have the failure time falling in the lower tail (0, a1) while 

subjects with Y ∈ A2 have the failure time belong to the upper tail (a2, τ). Our ODS sample 

consists of a simple random sample (SRS) of size n0 and two supplemental samples of sizes 

n1 and n2 from A1 and A2, respectively. Let n = n0 + n1 + n2 denote the size of the ODS 

sample, and Iv, I0 and Ik the index set of the ODS sample, the SRS sample, and the 

supplemental sample from Ak, respectively. Then the data structure can be represented by

(2)

where Yi = {Ui, Vi, Δ1i = I(Ti ≤ Ui), Δ2i = I(Ui < Ti ≤ Vi)} for i ∈ Iv = I0 ∪ I1 ∪ I2. We 

remark that the proposed design and method will work for the following two scenarios: (i) a 

two-phase design where the first-phase data on Y are observed for a well-documented parent 

cohort and the second-phase data on Z are collected for those sampled into I0, I1 and I2 from 

the cohort; (ii) a design where the information on the parent cohort is unknown, e.g., the 

subjects in each of I0, I1 and I2 are recruited from a clinic and the recruitment will stop after 

a target number of subjects is met. In Scenario (ii), the sampling proportions are unknown 

and one would not have any information on the underlying population other than those in I0, 

I1 and I2. We assume that independent Bernoulli sampling is used, and the SRS sample is 

selected first and then the supplemental samples are chosen.

Suppose that the failure time T follows the proportional hazards model with the conditional 

cumulative hazard function on Z given by

(3)

where Λ(t) is the unspecified cumulative baseline hazard function and β is the p-dimensional 

regression parameter of primary interest. We assume that T is conditionally independent of 

the examination times (U, V) given Z and the joint distribution of (U, V, Z) does not involve 

the parameters (β, Λ). The likelihood function can then be written as
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(4)

where S(t|z) = exp{−Λ(t)eβ′z} is the survival function of T given Z = z, Q(·) and q(·) denote 

the joint distribution function and density function of (U, V, Z), respectively, which do not 

depend on (β, Λ), and P(Y ∈ Ak) represents the probability that an interval-censored 

observation Y = {U, V, Δ1, Δ2} belongs to Ak, k = 1, 2, given by

The nonparametric components (Λ, Q) cannot be separated from the above likelihood 

function. Thus, to estimate the regression parameter β, one has to deal with the infinite-

dimensional nuisance parameters (Λ, Q). To handle this challenging task, we develop a sieve 

semiparametric maximum empirical likelihood approach without specifying (Λ, Q).

3. Sieve Semiparametric Maximum Empirical Likelihood Approach

First note that based on the observed data from the interval-censoring ODS design

the log-likelihood function can be written as

(5)

where L(β, Λ, Q) is given by (4),
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and πk = ∫ Gk(u, v, z; β, Λ)dQ(u, v, z) with Gk, k = 1, 2, defined as

In the above, S(t|z) = exp{−Λ(t)eβ′z} is the survival function of T given Z = z.

Maximizing l(β, Λ, Q) with respect to β without specifying (Λ, Q) is not straightforward as 

one has to handle the infinite-dimensional nuisance parameters (Λ, Q). For this, we propose 

a novel two-step procedure by first employing the empirical likelihood method to deal with 

Q and then using the sieve method to address Λ. This approach greatly reduces the 

dimensionality of the estimation problem and relieves the computational burden. In the 

following, we describe the proposed two-step procedure in details and also establish the 

asymptotic properties of the resulting estimator.

3.1 Empirical Likelihood Method

We first employ the empirical likelihood method to profile out Q for fixed (β, Λ) in the log-

likelihood function (5) (e.g. Vardi, 1985; Qin, 1993; Zhou et al., 2002; Ding et al., 2014). To 

find a distribution function Q that maximizes l(β, Λ, Q), it is easy to see that we can restrict 

our search to the class of discrete distribution functions which have positive jumps only at 

the observed data points {(Ui, Vi, Zi) i ∈ Iv}. Let pi = q(Ui, Vi, Zi) = dQ(Ui, Vi, Zi), i ∈ Iv. 

Then for fixed (β, Λ), the log-likelihood function (5) can be written as

(6)

We want to search for {p̂i} that maximize (6) under the constraints {Σi∈I<sub>v</sub> pi = 1, 

pi ≥ 0, i ∈ Iv}. To solve this constrained optimization problem, we use the Lagrange 

multiplier method by considering the following Lagrange function

where ρ is the Lagrange multiplier. Taking the derivative of H with respect to pi, we obtain

Solving this equation, we have
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Plugging {p̂i} back into l(β, Λ, {pi}) in (6), we have the resulting profile likelihood function

(7)

where θ = (ξ, Λ) and ξ = (β′, π1, π2)′. After applying the empirical likelihood method, we 

have greatly reduced the dimensionality associated with Q and only need to deal with (7).

3.2 Sieve Method

We now consider the estimation of unknown parameters θ = (ξ, Λ) based on the profile 

likelihood function l(θ) in (7). Let θ = {θ = (ξ, Λ) ∈ ℬ ⊗ ℳ} denote the parameter space of 

θ. Here ℬ = {ξ = (β′, π1, π2)′ ∈ Rp+2 : ||β|| ≤ M, πk ∈ [c, d], k = 1, 2} with p being the 

dimension of β, M a positive constant and c < d two constants in (0, 1), and ℳ is the 

collection of all continuous nondecreasing and nonnegative functions over the interval [σ, τ], 

where σ and τ are known constants usually taken as the lower and upper bounds of all 

examination times in practice.

Maximizing the profile likelihood function (7) with respect to ξ is still not straightforward as 

one still has to deal with the infinite-dimensional nuisance parameter Λ. Note that only the 

values of Λ at the examination times {Ui, Vi : i = 1, …, n} matter in (7), one may follow the 

conventional approach by taking the nonparametric maximum likelihood estimator of Λ as a 

right-continuous nondecreasing step function with jumps only at the examination times and 

then maximizing (7) with respect to ξ and the jump sizes (Huang, 1996). However, it is 

apparent that such fully semiparametric estimation method could involve a large number of 

parameters if there are no ties among {Ui, Vi : i = 1, …, n}. To ease the computation 

difficulty, by following Zhang et al. (2010) and Zhou et al. (2016), we propose to employ the 

sieve estimation method. Specifically, we define the sieve space as

where ℬ is defined above and

with Bk(t, m, σ, τ) being Bernstein basis polynomials of degree m = o(nν) for some ν ∈ (0, 

1),
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and Mn = O(na) for some a > 0 controlling the size of the sieve space. The constraints on the 

Bernstein coefficients ϕk’s in ℳn are imposed to guarantee that the estimate of the 

cumulative baseline hazard function Λ(t) is nonnegative and nondecreasing. In fact, one can 

show that any Λ(t) can be approximated by a Bernstein polynomial Λn(t) with the 

coefficients ϕk = Λ(σ + (k/m)(τ − σ)) arbitrarily well as n → ∞, i.e., the sieve space Θn 

approximates the parameter space Θ arbitrarily well as n → ∞ (Lorentz, 1986; Shen, 1997; 

Wang and Ghosh, 2012). We define the sieve semiparametric maximum empirical likelihood 

estimator  of θ to be the value of θ that 

maximizes the sieve log-likelihood function ln(θ) over Θn, where

(8)

In the above, Sn(t|z) = exp{−Λn(t)eβ′z} is the survival function of T given Z = z and

Compared to the fully semiparametric estimation method, the sieve method significantly 

reduces the dimensionality of the optimization problem and relieves the computation burden 

as the number of Bernstein bases needed to reasonably approximate the unknown function Λ 
grows much slower as the sample size increases. Bernstein polynomial basis has several 

advantages compared to other bases such as piecewise linear function and spline. First, it can 

model the monotonicity and nonnegativity of the cumulative baseline hazard function with 

simple restrictions that can easily be removed through reparameterization. Second, Bernstein 

polynomial is easier to work with as it does not require the specification of interior knots.
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3.3 Asymptotic Properties

The asymptotic properties of the proposed estimator θ̂n will be established in Theorems 1 

and 2. Denote G(u, v) the joint distribution function of the two random examination times 

(U, V) and define a distance on the parameter space Θ = ℬ ⊗ ℳ as

for any θ1 = (ξ1, Λ1) ∈ Θ and θ2 = (ξ2, Λ2) ∈ Θ, where ||v|| denote the Euclidean norm for a 

vector v and . Let θ0 = (ξ0, Λ0) 

= (β0, π10, π20, Λ0) denote the true value of θ and assume that n0/n → ρ0 > 0 and nk/n → 
ρk ≥ 0, k = 1, 2, as n → ∞. The following theorems give the consistency and asymptotic 

normality of the proposed estimator θ̂n when n → ∞. The regularity conditions needed for 

these theorems are given in the Web Appendix.

Theorem 1—Assume that Conditions (C1) – (C4) given in the Web Appendix hold. Then 
we have that d(θ̂n, θ0) → 0 almost surely and d(θ̂n, θ0) = Op(n−min{(1−ν)/2, νr/2}), where ν ∈ 
(0, 1) such that m = o(nν) and r is defined in Condition (C3).

Theorem 2—Assume that Conditions (C1) – (C4) given in the Web Appendix hold. If ν > 

1/2r, we have , where Σ = Γ−1ΨΓ−1 with  and 

.

The proofs of Theorems 1 and 2 will be sketched in the Web Appendix. Jk(ξ) and hk(ξ, Λ; 

O) in Theorem 2 are the information and efficient score of ξ corresponding to the k-th 

stratum, k = 0, 1,2 (k = 0 corresponds to the whole population), and they will be further 

discussed in the Web Appendix. Following Huang et al. (2012), we can obtain a consistent 

variance estimator of ξ̂n by treating the log-likelihood function ln(θ) in (8) as if it is a 

function of the (p + m + 3)-dimensional parameter θ = (ξ(p+2)×1, ϕ(m+1)×1) and then 

replacing the large-sample quantities in Σ given above with the corresponding small-sample 

quantities.

We now make a few remarks on the implementation of the proposed estimation procedure. 

First, it should be noted that there are some restrictions on the parameters due to 

boundedness and monotonicity. On the other hand, they can easily be removed through 

reparameterization. For example, we could reparameterize the parameters πk as 

, k = 1, 2, and {ϕ0, …, ϕm} as the cumulative sums of 

{ }. This reparameterization is a simple one-to-one transformation and 

does not complicate the computation. Regarding the restriction , since Mn 

= O(na) is imposed mainly for technical purposes and can be chosen reasonably large for 

fixed sample size in practice, we do not need to consider this restriction in computation. 

Thus, to obtain the proposed estimator θ̂n, many existing unconstrained optimization 

methods can be used and for the numerical studies in Sections 4 and 5, we employ the 
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Nelder-Mead simplex algorithm built in fminsearch in Matlab. Also for the implementation 

of the proposed estimation procedure, one needs to determine the degree of Bernstein 

polynomials m which controls the smoothness of the sieve approximation. For this, we 

suggest to consider several different values of m and choose the one that minimizes

(9)

4. A Simulation Study

We carry out an extensive simulation study to evaluate the finite-sample performance of the 

proposed interval-censoring ODS design and estimator, including the comparison of our 

ODS design with the SRS and generalized case-cohort designs and the comparison of our 

estimator with other naive or adapted estimators. Specifically, we generated the covariate Z 
~ N(0, 1) and the failure time T from the proportional hazards model given Z:

with the cumulative baseline hazard Λ(t) = 0.1t and regression parameter β = 0 or log2.

To generate the interval-censored observation Y = {U, V, Δ1 = I(T ≤ U), Δ2 = I(U < T ≤ V)}, 

we mimicked medical or epidemiologic follow-up studies. Suppose that a subject was 

scheduled to be examined at a sequence of time points in [0, τ] generated as cumulative 

sums of uniform random variables on [0, δ] until τ, where τ is the length of study and 0 < δ 
< τ. At each of these time points, it was assumed that the subject could miss the scheduled 

examination with probability ζ, independent of the examination results at other time points. 

If T was smaller than the first examination time (i.e. left-censored), we defined U as the first 

examination time, V the second examination time and (Δ1, Δ2) = (1, 0); if T was larger than 

the last examination time (i.e. right-censored), we defined U as the second to the last 

examination time, V the last examination time and (Δ1, Δ2) = (0, 0); otherwise, U and V 
were defined as the two consecutive examination times bracketing T and (Δ1, Δ2) = (0, 1). In 

the simulation study, we adjusted the values of τ, δ and ζ according to the desired proportion 

of failures (0.1, 0.2 or 0.3). Here the proportion of failures, denoted by Pr(failure), refers to 

the proportion of subjects who experience the failure.

The ODS sample consists of a SRS sample of size n0 and two supplemental samples of sizes 

n1 and n2 from the lower tail A1 and upper tail A2, respectively. For the cutpoints (a1, a2) 

that define A1 and A2, we considered the (10, 90)- or (20, 80)-th percentiles. In Table 1, five 

estimators of β were compared under (n0, n1, n2) = (470, 40, 40): (i) the sieve maximum 

likelihood estimator based only on the SRS portion of the ODS sample, denoted by 

β̂SRS<sub>n0</sub>; (ii) the sieve maximum likelihood estimator based on a SRS sample of 

the same size as the ODS sample, denoted by β̂SRS<sub>n</sub>; (iii) the sieve weighted 

estimator based on the generalized case-cohort sample that consists of a subcohort of size n0 

and a SRS of size n1 +n2 selected from the remaining cases (i.e. failure subjects), denoted by 

β̂GCC; (iv) the inverse probability weighted estimator (Breslow and Wellner, 2007) based on 
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the ODS sample, denoted by βÎPW; (v) the proposed estimator, denoted by β̂P. The degree of 

Bernstein polynomial used in the sieve estimation was taken as m = 3. The simulation results 

include “Bias” calculated as the average of point estimates minus the true value, “SSD” the 

sample standard deviation, “ESE” the average of estimated standard errors, “CP” the 

empirical coverage proportion of 95% confidence interval and “RE” the sample relative 

efficiency with respect to β̂SRS<sub>n</sub> calculated as [SSD(β̂SRS<sub>n</sub>)/SSD(β̂)]2. 

The results were based on 1000 replicates.

From Table 1, one can see that for all situations considered: (i) the proposed estimator under 

the interval-censoring ODS design is virtually unbiased; (ii) the standard error estimates are 

close to the empirical standard deviations; (iii) the empirical coverage proportions are close 

to 95%, which indicates that the normal approximation to the distribution of the proposed 

estimator is reasonable; (iv) the proposed ODS design (βP̂) is more efficient than the 

alternative SRS designs (βŜRS<sub>n0</sub> and β̂SRS<sub>n</sub>); for example, when the 

failure rate is 0.1, the cutpoints are (10, 90)-th percentiles and β = log 2, it achieves 132% 

efficiency gain compared to β̂SRS<sub>n</sub>; (v) the proposed estimator is more efficient 

than the estimator based on the generalized case-cohort sample; for example, when the 

failure rate is 0.1, the cutpoints are (10, 90)-th percentiles and β = log 2, the relative 

efficiency of β̂P compared to βĜCC is (0.137/0.103)2 = 1.77; (vi) the proposed estimator β̂P 

is more efficient than the inverse probability weighted estimator β̂IPW that is routinely used 

to accommodate sampling bias; for example, when the failure rate is 0.1, the cutpoints are 

(10, 90)-th percentiles and β = log 2, the relative efficiency of βP̂ compared to β̂IPW is 

(0.148/0.103)2 = 2.06. In practice, sampling without replacement is often used to select 

random samples. Therefore, we conducted some additional simulations to examine the 

performance of our proposed estimator in the situation when sampling without replacement 

is used. We considered the same setup and parameter values as those for Table 1 and the 

results are presented in Web Table 1. The results show that the proposed estimator under the 

sampling without replacement situation performs similarly to that under independent 

Bernoulli sampling.

To evaluate the performances of the proposed ODS design and estimator under different 

sizes of n0, n1 and n2, we conducted additional simulations with (n0, n1, n2) = (530, 10, 10), 

(500, 25, 25) and (1000, 50, 50) and presented the results in Table 2. The simulation setups 

in Table 2 are the same as those in Table 1 except for the sizes of n0, n1 and n2. Also the 

cutpoints, (10, 90)-th percentiles, are used in Table 2. One can see from Table 2 that (i) for a 

fixed overall ODS sample size n = n0 + n1 + n2, as we allocate more samples to the tails, the 

efficiency of the proposed estimator βP̂ improves; for example, when the failure rate is 0.1, 

the cutpoints are (10, 90)-th percentiles and β = log 2, as we change (n0, n1, n2) from (530, 

10, 10) to (500, 25, 25) or to (470, 40, 40), the efficiency improves by (0.124/0.116)2 = 1.14 

or (0.124/0.107)2 = 1.34; (ii) as we increase the overall ODS sample size, the efficiency of 

β̂P improves as expected; for example, when the failure rate is 0.1, the cutpoints are (10, 90)-

th percentiles and β = log 2, as we increase (n0, n1, n2) from (500, 25, 25) to (1000, 50, 50), 

the efficiency improves by (0.116/0.081)2 = 2.05.
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5. Analysis for Diabetes from the ARIC Study

In this section, we illustrate the proposed interval-censoring ODS design and inference 

procedure by analyzing a dataset on incident diabetes from the Atherosclerosis Risk in 

Communities (ARIC) study (The ARIC Investigators, 1989). The ARIC study is a 

longitudinal epidemiologic observational study conducted in four US field centers (Forsyth 

County, NC (Center-F), Jackson, MS (Center-J), Minneapolis Suburbs, MN (Center-M) and 

Washington County, MD (Center-W)). The study began in 1987 and each field center 

recruited a cohort sample of approximately 4000 men and women aged 45–64 from their 

community. Forsyth County, Minneapolis Suburbs, and Washington County include white 

participants, and Forsyth County and Jackson Center include African American participants. 

Each participant received an extensive examination at recruitment, including medical, social, 

and demographic data, and was scheduled to be re-examined on average of every three years 

with the first examination (baseline) occurring in 1987–89, the second in 1990–92, the third 

in 1993–95 and the fourth in 1996–98. Since the incidence of diabetes can be determined 

only between two consecutive examinations, the observed data were subject to interval-

censoring.

We illustrate the proposed interval-censoring ODS design and inference procedure by 

assessing the effect of high-density lipoprotein (HDL) cholesterol level on the risk of 

diabetes after adjusting for confounding variables and other risk factors in white men 

younger than 55 years. In particular, we constructed the ODS sample as follows. The cohort 

of interest consists of 2110 white men younger than 55 years and 244 were observed to have 

developed diabetes during the study. We took a simple random sample of size n0 = 520 from 

the cohort and selected two supplemental samples of sizes n1 = n2 = 15 from the strata A1 

and A2 defined in (1), where a1 = 1092 (days) and a2 = 2127 (days) are approximate (25, 

75)-th percentiles of the cohort, respectively. Thus, the ODS sample had total n = 550 

subjects. We considered the following proportional hazards model

where the vector of covariates Z included HDL cholesterol level, total cholesterol level, 

body mass index (BMI), age, smoking status, and indicators for field centers (Center-M was 

chosen as reference). We compared three estimators: (i) the proposed estimator; (ii) the 

inverse probability weighted (IPW) estimator; (iii) the sieve maximum likelihood estimator 

based on only the SRS portion of the ODS sample. Regarding the choice of the degree of 

Bernstein polynomial used in the sieve estimation, we considered the integers m = 3 to 8 and 

the AIC criterion (9) suggested to choose m = 3 for all three estimators. From the results in 

Table 3, one can see that (i) the proposed and IPW methods indicate that higher HDL 

cholesterol level is significantly associated with lower risk of diabetes in white men younger 

than 55 years; (ii) the proposed method yielded smaller standard error and more significant 

result compared to the other methods; in particular, the regression coefficient estimate for 

HDL cholesterol level based on the proposed method is −0.0272, the standard error estimate 
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is 0.0126, and the P-value is 0.0311; (iii) all three methods suggest that lower BMI level is 

significantly associated with lower risk of diabetes in white men younger than 55 years.

6. Discussion

We proposed an innovative and cost-effective sampling design with interval-censored failure 

time outcome, i.e., the interval-censoring ODS design, which enables investigators to make 

more efficient use of their study budget by selectively collecting more informative failure 

subjects. For analyzing data from the proposed interval-censoring ODS design, we 

developed an efficient and robust sieve semiparametric maximum empirical likelihood 

method. As shown in the simulation study, the proposed design and method is more efficient 

than the SRS and generalized case-cohort designs as well as the IPW method.

We provide some remarks on the practical use of the proposed ODS design. To implement 

this design, one needs to determine the cutpoints (a1, a2) and the allocations of the SRS and 

supplemental samples. For the cutpoints, we suggest to take the lower and upper k-th 

percentiles of all examination times and recommend k between 10 and 35. For the 

allocations of the SRS and supplemental samples, it seems from the simulation results that 

the more supplemental subjects are sampled from the tails, the more efficient the proposed 

method could be. However, one also needs to keep the SRS sample large enough so as to 

maintain the adequate representativeness of the ODS sample on the whole population. Due 

to these considerations and our simulation experiences, we recommend the ratio of SRS size 

and total supplemental sample size to be at least 5 : 1. Another aspect of the ODS design is 

the selection of the SRS and supplemental samples. The asymptotic properties of our 

proposed estimator are derived based on independent Bernoulli sampling. In practice, 

sampling without replacement is often used. The asymptotic properties can be derived under 

sampling without replacement, but the derivation would be much more tedious. Based on the 

literature for case-cohort designs (e.g. Breslow and Wellner, 2007), we expect the difference 

in asymptotic variance to be very small if there is any. We conducted additional simulations 

to examine the effect of using sampling without replacement on our proposed estimator. The 

results show that our proposed estimator performs well even though sampling without 

replacement is used for selecting the ODS samples in the practical situations we considered.

We also make some comments on the proposed inference procedure. First, regarding the 

number of Bernstein basis polynomials m, in theory, it depends on the sample size n with m 
= o(nν). However, we found that m does not need to be very large for the results to be 

satisfying. In practice, based on our numerical experiences, we recommend to consider the 

values of m to be from 3 to 8 and choose the one that minimizes the AIC. On the other hand, 

we focused on the proportional hazards model in this paper for its good interpretation and 

wide application. In fact, the proposed method could easily be extended to other 

semiparametric models, such as the proportional odds model and transformation model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Zhou et al. Page 14

Biometrics. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors thank the Editor, the Associate Editor and the referee for their valuable comments which have led to 
great improvement of the paper. This work was partially supported by grants from the National Institutes of Health 
(R01 ES 021900 and P01 CA 142538). The Atherosclerosis Risk in Communities Study is carried out as a 
collaborative study supported by National Heart, Lung, and Blood Institute contracts. The authors thank the staff 
and participants of the ARIC study for their important contributions.

References

Breslow NE, Wellner JA. Weighted likelihood for semiparametric models and two-phase stratified 
samples, with application to Cox regression. Scandinavian Journal of Statistics. 2007; 34:86–102.

Cai J, Zeng D. Power calculation for case–cohort studies with nonrare events. Biometrics. 2007; 
63:1288–1295. [PubMed: 17608788] 

Chatterjee N, Chen YH, Breslow NE. A pseudoscore estimator for regression problems with two-phase 
sampling. Journal of the American Statistical Association. 2003; 98:158–168.

Chen, D-G., Sun, J., Peace, KE. Interval-Censored Time-to-Event Data: Methods and Applications. 
CRC Press; 2012. 

Chen K, Lo SH. Case-cohort and case-control analysis with Cox’s model. Biometrika. 1999; 86:755–
764.

Cornfield J. A method of estimating comparative rates from clinical data: Applications to cancer of the 
lung, breast, and cervix. Journal of the National Cancer Institute. 1951; 11:1269–1275. [PubMed: 
14861651] 

Ding J, Lu TS, Cai J, Zhou H. Recent progresses in outcome-dependent sampling with failure time 
data. Lifetime Data Analysis. 2017; 23:57–82. [PubMed: 26759313] 

Ding J, Zhou H, Liu Y, Cai J, Longnecker MP. Estimating effect of environmental contaminants on 
women’s subfecundity for the MoBa study data with an outcome-dependent sampling scheme. 
Biostatistics. 2014; 15:636–650. [PubMed: 24812419] 

Finkelstein DM. A proportional hazards model for interval-censored failure time data. Biometrics. 
1986; 42:845–854. [PubMed: 3814726] 

Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, Gurwith M, Heyward WL, Jobes 
DV, Popovic V, Self SG, et al. Correlation between immunologic responses to a recombinant 
glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine 
trial. Journal of Infectious Diseases. 2005; 191:666–677. [PubMed: 15688279] 

Huang J. Efficient estimation for the proportional hazards model with interval censoring. Annals of 
Statistics. 1996; 24:540–568.

Huang, J., Zhang, Y., Hua, L. Consistent variance estimation in semiparametric models with 
application to interval-censored data. In: Chen, DG.Sun, J., Peace, KE., editors. Interval-Censored 
Time-to-Event Data: Methods and Applications. 2012. p. 233-268.

Kang S, Cai J. Marginal hazards model for case-cohort studies with multiple disease outcomes. 
Biometrika. 2009; 96:887–901. [PubMed: 23946547] 

Kong L, Cai J. Case-cohort analysis with accelerated failure time model. Biometrics. 2009; 65:135–
142. [PubMed: 18537948] 

Li Z, Gilbert P, Nan B. Weighted likelihood method for grouped survival data in case–cohort studies 
with application to HIV vaccine trials. Biometrics. 2008; 64:1247–1255. [PubMed: 19032178] 

Li Z, Nan B. Relative risk regression for current status data in case-cohort studies. Canadian Journal of 
Statistics. 2011; 39:557–577.

Lin X, Cai B, Wang L, Zhang Z. A Bayesian proportional hazards model for general interval-censored 
data. Lifetime Data Analysis. 2015; 21:470–490. [PubMed: 25098226] 

Lorentz, GG. Bernstein Polynomials. New York: Chelsea Publishing Co; 1986. 

Lu W, Tsiatis AA. Semiparametric transformation models for the case-cohort study. Biometrika. 2006; 
93:207–214.

Pan W. A multiple imputation approach to Cox regression with interval-censored data. Biometrics. 
2000; 56:199–203. [PubMed: 10783796] 

Zhou et al. Page 15

Biometrics. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. 
Biometrika. 1986; 73:1–11.

Qin J. Empirical likelihood in biased sample problems. Annals of Statistics. 1993; 21:1182–1196.

Satten GA. Rank-based inference in the proportional hazards model for intervalcensored data. 
Biometrika. 1996; 83:355–370.

Self SG, Prentice RL. Asymptotic distribution theory and efficiency results for case-cohort studies. 
Annals of Statistics. 1988; 16:64–81.

Shen X. On methods of sieves and penalization. Annals of Statistics. 1997; 25:2555–2591.

Song R, Zhou H, Kosorok MR. A note on semiparametric efficient inference for two-stage outcome-
dependent sampling with a continuous outcome. Biometrika. 2009; 96:221–228. [PubMed: 
20107493] 

Sun, J. The Statistical Analysis of Interval-Censored Failure Time Data. New York: Springer; 2006. 

The ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) study: design and 
objectives. American Journal of Epidemiology. 1989; 129:687–702. [PubMed: 2646917] 

Vardi Y. Empirical distributions in selection bias models. Annals of Statistics. 1985; 13:178–203.

Wang J, Ghosh SK. Shape restricted nonparametric regression with bernstein polynomials. 
Computational Statistics and Data Analysis. 2012; 56:2729–2741.

Wang L, McMahan CS, Hudgens MG, Qureshi ZP. A flexible, computationally efficient method for 
fitting the proportional hazards model to interval-censored data. Biometrics. 2016; 72:222–231. 
[PubMed: 26393917] 

Weaver MA, Zhou H. An estimated likelihood method for continuous outcome regression models with 
outcome-dependent sampling. Journal of the American Statistical Association. 2005; 100:459–
469.

Whittemore AS. Multistage sampling designs and estimating equations. Journal of the Royal Statistical 
Society, Series B. 1997; 59:589–602.

Yu J, Liu Y, Sandler DP, Zhou H. Statistical inference for the additive hazards model under outcome-
dependent sampling. Canadian Journal of Statistics. 2015; 43:436–453. [PubMed: 26379363] 

Zeng D, Lin DY. Efficient estimation of semiparametric transformation models for two-phase cohort 
studies. Journal of the American Statistical Association. 2014; 109:371–383. [PubMed: 24659837] 

Zeng D, Mao L, Lin D. Maximum likelihood estimation for semiparametric transformation models 
with interval-censored data. Biometrika. 2016; 103:253–271. [PubMed: 27279656] 

Zhang Y, Hua L, Huang J. A spline-based semiparametric maximum likelihood estimation method for 
the Cox model with interval-censored data. Scandinavian Journal of Statistics. 2010; 37:338–354.

Zhou H, Chen J, Rissanen TH, Korrick SA, Hu H, Salonen JT, Longnecker MP. Outcome-dependent 
sampling: an efficient sampling and inference procedure for studies with a continuous outcome. 
Epidemiology. 2007; 18:461–468. [PubMed: 17568219] 

Zhou H, Song R, Wu Y, Qin J. Statistical inference for a two-stage outcome-dependent sampling 
design with a continuous outcome. Biometrics. 2011; 67:194–202. [PubMed: 20560938] 

Zhou H, Weaver M, Qin J, Longnecker M, Wang M. A semiparametric empirical likelihood method for 
data from an outcome-dependent sampling scheme with a continuous outcome. Biometrics. 2002; 
58:413–421. [PubMed: 12071415] 

Zhou Q, Hu T, Sun J. A sieve semiparametric maximum likelihood approach for regression analysis of 
bivariate interval-censored failure time data. Journal of the American Statistical Association. 2016; 
doi: 10.1080/01621459.2016.1158113

Zhou Q, Zhou H, Cai J. Case-cohort studies with interval-censored failure time data. Biometrika. 2017; 
104:17–29. [PubMed: 28943643] 

Zhou et al. Page 16

Biometrics. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
An illustration of the partitions {Ak, k = 1, 2, 3} of failures under the interval-censoring 

ODS design
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