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Myosin-1C uses a novel phosphoinositide-
dependent pathway for nuclear localization
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Abstract

Accurate control of macromolecule transport between nucleus and
cytoplasm underlines several essential biological processes, includ-
ing gene expression. According to the canonical model, nuclear
import of soluble proteins is based on nuclear localization signals
and transport factors. We challenge this view by showing
that nuclear localization of the actin-dependent motor protein
Myosin-1C (Myo1C) resembles the diffusion–retention mechanism
utilized by inner nuclear membrane proteins. We show that Myo1C
constantly shuttles in and out of the nucleus and that its nuclear
localization does not require soluble factors, but is dependent on
phosphoinositide binding. Nuclear import of Myo1C is preceded by
its interaction with the endoplasmic reticulum, and phosphoinosi-
tide binding is specifically required for nuclear import, but not
nuclear retention, of Myo1C. Our results therefore demonstrate,
for the first time, that membrane association and binding to
nuclear partners is sufficient to drive nuclear localization of also
soluble proteins, opening new perspectives to evolution of cellular
protein sorting mechanisms.
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Introduction

The high degree of compartmentalization, and especially the segre-

gation of genomic DNA from the cytoplasm by means of the

nuclear envelope, poses a logistical challenge for the cell. Since dif-

ferent compartments have to preserve their special identity,

reflected in their protein repertoire, proper protein targeting and

delivery are indispensable for well-being of the cell. This is espe-

cially critical in the case of nucleo-cytoplasmic transport, since

expression of multiple genes is often triggered by a certain protein

factor, which needs to be imported from the cytoplasm in a selec-

tive and timely manner. NFAT signaling [1] and MKL1-dependent

activation of SRF-dependent genes [2,3] represent typical examples

of gene expression reliance on nuclear import of transcriptional

regulators.

Mechanistically, nuclear import of soluble cargo occurs through

nuclear pore complexes (NPC), composed of up to 30 different

nucleoporins (Nups) that create a semipermeable channel through

the nuclear envelope (NE) [4]. Water, small molecules, and proteins

can pass freely through the NPC by passive diffusion, while larger

proteins require an energy-dependent import mechanism, with the

cutoff traditionally thought to be around 40 kDa [5]. However,

microscopy experiments have revealed that the yeast NPC is a

rather poor barrier to most proteins and can leak proteins as large

as 150 kDa [6]. In line with this, quantitative analysis of frog oocyte

nuclear proteome has revealed that assembly of complexes and

passive retention contribute more to the maintenance of nuclear and

cytoplasmic protein distribution than active nuclear transport [7].

Hence, the mechanism of nuclear transport cannot be directly

inferred from the size of the protein. In a canonical sequence of

active nuclear transport, soluble import receptors (karyopherins)

recognize specific nuclear localization sequence (NLS) in the cargo

protein. This complex then passes through the central channel of

the NPC that is lined with phenylalanine–glycine (FG)-rich Nups.

Inside the nucleus, cargo protein is liberated from the complex with

karyopherins by binding to the small GTPase Ran in its GTP-bound

form and can perform its nuclear functions. In the cytoplasm, Ran is

mostly GDP-bound, which favors karyopherin–cargo complex

formation, and thus, the Ran-gradient determines the directionality

of transport [5].

Also less conventional mechanisms of nuclear import exist. For

instance, recent progress in the field has revealed that nuclear

import of inner nuclear membrane (INM) proteins, such as Lap2b,
LBR, and SUN2, differs drastically from soluble cargos [8,9]. In

particular, their nuclear translocation is independent of transport

receptors. Translocation through the NPC is the rate-limiting step

and most probably occurs through peripheral channels of the NPC

scaffold and not through the central channel. According to the

currently favored diffusion–retention model, INM proteins become

embedded in the membrane of endoplasmic reticulum (ER) upon

their synthesis and then reach the INM by means of unrestricted dif-

fusion in the 2D membrane space. At the destination site in the

nucleus, these proteins interact with chromatin, which decreases

their diffusion rate and leads to accumulation at the INM.
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In this study, we focus on actin-based molecular motor protein

Myosin-1C (Myo1C), which is present in both cytoplasm and the

nucleus of the cell [10,11]. Myo1C has a very typical domain organi-

zation for class 1 myosins: N-terminal motor (“head”) domain occu-

pies the largest portion of the molecule and generates force upon

actin binding, while the relatively short and positively charged

C-terminal “tail” domain directly interacts with cell membranes

through a pleckstrin homology (PH)-like lipid-binding motif. The

head and tail domains are connected by a “neck” domain, which

consists of three calmodulin-binding IQ motifs and plays a crucial

role in force transduction between the head and the tail domains

[12]. In mammalian cells, MYO1C gene encodes three isoforms

(termed A, B, and C), which only differ in short (up to 35 aa)

N-terminal peptides and originate through alternative splicing and

the use of alternative promoters [13]. Being able to interact with

both lipids and actin, Myo1C physically connects and generates

mechanical force between actin cytoskeleton and cell membranes,

which has a plethora of applications in cytoplasmic processes as

diverse as exocytosis [14], regulation of membrane tension in stere-

ocilia of the inner ear [15], and integrin-mediated cellular migration

and spreading [16]. In addition, Myo1C has been linked to actin-

dependent maintenance of ER sheets [17]. In the nucleus, Myo1C

isoform B, also known as nuclear myosin 1 (NM1), has been impli-

cated in chromatin remodeling as a part of B-WICH complex

[18,19], in transcription [20] and in long-range directional move-

ments of chromosomal loci [21].

Originally, the unique N-terminal sequences in Myo1C isoforms

A and B were postulated to confer the nuclear localization of these

proteins [10,13]. Subsequently, Myo1C has been suggested to have

an NLS-like sequence in the neck domain [22], shared by all of three

Myo1C isoforms, suggesting that all of them can localize to the

nucleus. Instead of nuclear import, the N-terminal sequences in

Myo1C isoforms may regulate their specific intranuclear distribu-

tions to, for example, the nucleolus in the case of isoform B [13].

The NLS-like sequence consists of six positively charged amino acid

residues (lysines and arginines) overlapping with the second IQ

motif and meets two formal requirements for an NLS sequence:

Mutations in it abrogate nuclear import and, when fused to a cytoso-

lic protein, the NLS-like sequence promotes its nuclear accumula-

tion. Importins 5, 7, and b1 were shown to interact with the NLS-

like sequence. Moreover, it was suggested that reversible calcium-

dependent calmodulin binding to the second IQ motif could be a

regulatory factor in Myo1C nuclear import [22]. Indeed, experimen-

tal elevation of intracellular calcium concentration induces nuclear

accumulation of Myo1C isoforms [23]. Overall, according to this

model, nuclear import of Myo1C uses an NLS-dependent active

transport pathway typical for soluble cargos.

In the present study, we further address the determinants of

Myo1C nuclear import. Surprisingly, our data suggest that the diffu-

sion–retention model devised for the import of INM proteins would

more accurately describe Myo1C nuclear import than the previously

proposed import receptor-based transport mechanism. This opens a

new perspective for our understanding of protein sorting mecha-

nisms, showing that membrane association and binding to nuclear

partners is sufficient to drive nuclear localization of also soluble

proteins.

Results

Myo1C shuttles between cytoplasm and nucleus

Although Myo1C has been suggested to utilize a typical NLS/

importin-dependent mechanism, its dynamics in live cells have

remained unclear, which prompted us to address this experimen-

tally. In most of our assays, we used Myo1C isoform B (NM1), but

for the sake of simplicity, we refer to it as Myo1C. In order to

investigate the dynamic properties of Myo1C, we used photobleach-

ing-based techniques that have earlier been successfully applied in

studies on nucleo-cytoplasmic shuttling of actin as well as other

proteins [3,24,25]. To understand the nuclear import dynamics of

Myo1C, we took advantage of a fluorescence recovery after photo-

bleaching (FRAP) assay based on high-power laser-assisted bleach-

ing of the whole nucleus of human osteosarcoma (U2OS) cells stably

expressing GFP-tagged Myo1C, and monitored the time course of flu-

orescence recovery as the proteins are imported from the unbleached

cytoplasm. Figure 1A shows an averaged FRAP curve for GFP-

Myo1C in comparison with those for GFP and GFP-actin. Due to its

small size (27 kDa), GFP travels in and out of the nucleus by means

of passive diffusion, while actin uses an active import mechanism

dependent on cofilin and importin 9 [24]. Like for GFP and GFP-

actin, the nuclear fluorescence of GFP-Myo1C recovered after photo-

bleaching, indicating that myosin indeed undergoes constant import

into the nucleus. Comparison of nuclear import rates of GFP-Myo1C

and GFP-actin (Fig 1B), derived from respective FRAP curves

[24,25], shows that nuclear import of Myo1C is substantially slower

than that of actin. Since active transport is insensitive to molecular

size, this difference can hardly be attributed to molecular weights of

GFP-Myo1C and GFP-actin (~150 kDa vs. ~70 kDa). More likely, it

suggests that Myo1C uses a different import pathway than actin, and

the kinetics of this pathway is much slower, due to, for example,

lower abundance of import factors. Alternatively, only a limited frac-

tion of Myo1C could be available for import. The GFP-Myo1C used

in this study was not degraded in cells (Fig 1E).

▸Figure 1. Myo1C constantly shuttles between the nucleus and cytoplasm.

A Fluorescence recovery after photobleaching experiments with GFP-Myo1C, GFP-actin, and GFP; data represent nuclear fluorescence levels normalized to the value
before bleaching and are the mean � SD (GFP n = 10; GFP-actin n = 8; GFP-Myo1C n = 11).

B Nuclear import rate derived from the FRAP curves; data represent mean rates from individual experiments � SD (n as in A).
C FLIP experiments with GFP-Myo1C and GFP-Myo1C tail WT; data represent normalized nuclear fluorescence levels and are the mean � SD (n = 8).
D Nuclear export rate quantified from FLIP curves; data represent mean rates from individual experiments � SD (n = 8).
E Western blot showing that GFP-Myo1C is expressed as a full-size protein with no signs of degradation.
F Schematic of Myo1C constructs used in the present study. Pleckstrin homology domain of Myo1C (PH), chicken pyruvate kinase (PK), and pleckstrin homology domain

of phospholipase C, isoform d (PH-PKCd), are indicated in the chart. HA-tag was in the N-terminus of the constructs. Note that “tail” construct contains also the neck
region of Myo1C.
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Nuclear export of GFP-tagged Myo1C was studied by means of

fluorescence loss in photobleaching (FLIP). Here, the cytoplasm is

repeatedly bleached with a high-power laser and loss of nuclear flu-

orescence due to protein export is observed [24,25]. Figure 1C

shows typical FLIP curves for GFP-Myo1C and its truncated

construct representing the GFP-labeled tail portion (GFP-Myo1C tail;

see Fig 1F for the constructs used in this study. Note also that tail

constructs contain both neck and tail regions of Myo1C, but are

called only “tail” for simplicity). Nuclear fluorescence of GFP-

Myo1C decreases upon cytoplasmic bleaching, indicating that

Myo1C is constantly exported from the nucleus. However, a signifi-

cant fraction of the GFP-Myo1C is export-incompetent and cannot

be bleached out of the nucleus. This suggests that a substantial pool

of nuclear Myo1C molecules (up to 50%) is tightly bound to chro-

matin or other nuclear structures, which likely renders them inac-

cessible for export factors. Surprisingly, GFP-Myo1C tail did not

show any export from the nucleus in contrast to the full-length

construct (Fig 1C and D). This strongly suggests that the putative

export signal is localized in the “head” portion (motor domain) of

the protein. The absence of nuclear export in the case of GFP-Myo1C

tail helps to explain the predominantly nuclear localization of this

construct (see below, Fig 2A).

Overall, Myo1C shows a dynamic behavior in the cell, actively

traveling between nucleus and cytoplasm, and a substantial portion

of Myo1C is stably bound to nuclear constituents.

Phosphoinositide binding is crucial for nuclear localization
of Myo1C

To gain further insight into the import mechanism of Myo1C, we set

out to target various functional properties in this protein (Fig 1F).

Among those, we chose actin binding, which we disrupted by

replacing the so-called myopathy loop in Myo1C motor domain with

AGA tripeptide [26] (Myo1C DABL). We also mutated the positively

charged amino acid residues of the previously identified NLS-like

sequence [22] into small neutral alanines and serines to disrupt

possible interactions with import factors. Furthermore, we intro-

duced mutations into calmodulin-binding IQ2 motif, adjacent to the

NLS-like sequence, to study the hypothesized competition of

calmodulin with import factors for the binding site [22]. Finally, we

introduced a point mutation (K892A) into the putative pleckstrin

homology (PH) domain of Myo1C. This substitution abolishes PI

binding as measured by co-sedimentation of recombinant Myo1C

with PIP2-containing phospholipid vesicles [27]. Hemagglutinin

(HA)-tagged versions of these constructs were used for transient

transfection of U2OS cells, and protein localization was studied by

means of wide-field fluorescence microscopy (Fig 2A). To character-

ize the construct localization in a quantitative way, observed local-

ization patterns were categorized as “cytoplasmic”, “nuclear”, and

“diffuse” and the fraction of cells exhibiting corresponding pheno-

type was counted (Fig 2B). We also quantified the ratios of nuclear

to cytoplasmic fluorescence (N/C ratios) in U2OS cells transfected

with above-mentioned Myo1C constructs (Fig EV1A) and ensured

their equal expression levels (Fig EV1B). The wild-type protein

(Myo1C WT) exhibits predominantly diffuse localization (Fig 2A

and B), with no clear accumulation of the protein in either nucleus

or cytoplasm, which corresponds to N/C ratio of 1 (Fig EV1A). The

same pattern was observed for DABL and IQ2mut constructs, which

suggests that neither actin nor calmodulin binding is crucial for

nucleo-cytoplasmic transport of Myo1C. On the contrary, the Myo1C

construct with mutated NLS-like motif showed substantially

decreased, albeit not fully abolished nuclear localization, which was

expected in light of previous data [22]. In agreement with photo-

bleaching data (Fig 1C), a fusion of Myo1C tail domain with

chicken pyruvate kinase (a cytosolic protein with no nuclear local-

ization or export sequences [28]) showed an exclusively nuclear

localization (Fig 2A and B). Fusion to PK was used to ensure that

the size of the construct remains well above diffusion limit of the

NPC. Mutations in the putative NLS sequence did not affect nuclear

localization of Myo1C tail (Fig EV1E). Although these data suggest

that the nuclear export signal is located in the head region of

Myo1C, it does not seem to depend on actin binding. The most

surprising behavior was demonstrated by the construct with

impaired PI binding (Myo1C K892A), which showed, against all

expectations, a very clear cytoplasmic localization (Figs 2A and B,

and EV1A). This indicates that interaction with PI could play an

essential role in Myo1C nuclear targeting.

To confirm the peculiar localization pattern of Myo1C K892A, we

used subcellular fractionation as a complementary biochemical

approach. Indeed, HA-tagged Myo1C WT was tightly bound to chro-

matin, whereas Myo1C K892A was clearly less abundant in this

fraction (Fig 2C and D), corroborating the imaging data (Fig 2A and

B). As a method of choice, chromatin isolation was preferred over

purification of whole intact nuclei, since the presence of Myo1C

associated with the nuclear envelope through PI could have

distorted the true picture of myosin abundance inside the nucleus.

Nevertheless, also fractionation with hypotonic buffer demonstrates

decreased nuclear abundance of Myo1C K892A (Fig EV1C).

To confirm the requirement for PI binding in Myo1C nuclear

localization, and to rule out possible secondary effects of the K892A

▸Figure 2. Phosphoinositide binding is indispensable for nuclear localization of Myo1C.

A Wide-field fluorescence microscopy images showing localization of HA-tagged Myo1C constructs in transiently transfected human osteosarcoma (U2OS) cells. Scale
bar, 10 lm.

B Quantification of the percentage of U2OS cells showing nuclear, diffuse, or cytoplasmic localization of HA-tagged Myo1C constructs in three independent
experiments � SD (n = 90 cells quantified per construct).

C Western blot analysis of chromatin fractions and total lysates of U2OS cells transfected with specified HA-Myo1C constructs.
D Quantification of relative amounts of HA-tagged Myo1C species in the chromatin fraction. Data represent mean � SD from three independent experiments and are

normalized to Myo1C WT. Statistically significant differences tested by Student’s t-test.
E Quantification of the HA-tagged Myo1C constructs localizations as in (B), data are the mean from three independent experiments � SD (n = 90 cells quantified per

construct).
F Confocal microscopy images of U2OS cells transiently transfected with indicated HA-tagged Myo1C constructs. Scale bar, 10 lm.
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substitution, we designed a rescue construct consisting of the PH

domain of phospholipase C isoform d (PLC d) known for its high

affinity for PIP2 [29] fused to the C-terminus of full-length Myo1C

carrying K892A substitution (Fig 1F). Addition of the PH domain to

Myo1C K892A efficiently rescues its nuclear localization (Figs 2E

and EV1D), confirming the importance of PI binding by the Myo1C

tail for this process. Importantly, confocal microscopy shows that

similar to the WT protein, the rescue construct localizes to the

nuclear interior and not simply to the membrane components of the

nucleus (Fig 2F). In addition, biochemical fractionation confirmed

the nuclear localization of the rescue construct (Fig 2C and D).

Noteworthy, addition of the PH domain, from either PLC d or

Myo1C, to pyruvate kinase did not promote its nuclear localization

(Figs 2E, and EV1D and E), demonstrating that PH domain is

required, but not sufficient, for nuclear localization of Myo1C.

Of note, also Myo1C isoform C, which lacks the 16-amino acid

N-terminal extension, fully recapitulated the localization pattern of

Myo1C isoform B and the effect of K892A substitution on it

(Fig EV2A). This indicates that PI binding is a critical determinant of

nuclear localization of all Myo1C isoforms. Thus, our data lead to

the conclusion that PI binding by the PH-like domain, localized in

the tail region of Myo1C, is indispensable for nuclear localization of

the protein.

Phosphoinositide binding is required for nuclear import
of Myo1C

Having established the importance of PI binding for the nuclear

localization of Myo1C, we sought to uncover its molecular mecha-

nism. Two alternative scenarios, nuclear retention and import,

could explain our observations. The first one involves an interac-

tion of Myo1C with nuclear PIs, which would lead to its retention

in the nucleus. PIs have been identified as components of such

nuclear compartments as interchromatin granules and nucleolus

[30–32] as well as nuclear speckles [33], where they were proposed

to play a role in polyadenylation of pre-mRNA [34]. In the other

scenario, the PI interaction is required for the actual nuclear import

process of Myo1C. To distinguish between nuclear retention and

import, we first compared the nuclear import rates of Myo1C WT

and Myo1C K892A. Unfortunately, FRAP measurements with the

K892A mutant were impossible due to its low nuclear abundance.

To circumvent this issue, we took advantage of the truncated

version of Myo1C lacking the head domain (Myo1C tail, Fig 1F),

which is export-incompetent and thus nuclear (Fig 1C), allowing us

to analyze nuclear import without the need of taking export into

account. GFP-Myo1C tail WT shows a uniformly nuclear localiza-

tion, while a careful examination of cells expressing GFP-Myo1C

tail K892A yields an uneven localization pattern: While there are

cells with a very clear nuclear signal, a certain subpopulation

shows varying degrees of cytoplasmic localization (Fig 3A). Note-

worthy, these latter cells are often found close to each other, as if

they have just divided. These observations suggest that GFP-Myo1C

tail K892A might show delayed kinetics of nuclear accumulation

after the re-formation of nuclear envelope after mitosis, which

could be explained in terms of import differences between WT and

K892A constructs. To test this possibility, we imaged U2OS cells

stably expressing GFP-Myo1C tail WT and GFP-Myo1C tail K892A

at roughly the same levels (Fig 3B) in the course of 12–14 h to

capture cell divisions (Fig 3C). Analysis of videos showed that

nuclear accumulation of K892A mutant construct after mitosis is

dramatically slower than that of the WT protein (Figs 3D and

EV2B), indicating that PI binding indeed contributes to the nuclear

import of Myo1C.

PIs are membrane lipids, and with the notable and peculiar

exception of nuclear PIs [35], they do not exist beyond lipid bilay-

ers, implying that Myo1C interaction with membrane might be at

the core of its nuclear import mechanism. A good candidate orga-

nelle for this would be endoplasmic reticulum (ER), since it is

enriched in phosphatidylcholine and PIs [36]. Second, ER forms a

continuous membrane structure with the nuclear envelope, and

third, proteins of the INM have been shown to use ER for their

nuclear import [37]. Indeed, confocal microscopy revealed that

Myo1C partially colocalized with the ER marker calreticulin

(Fig EV3A) and cell fractionation experiments demonstrated the

presence of both endogenously (Fig EV3C) and exogenously

expressed Myo1C in the ER membrane fraction, while Myo1C

K892A mutant was less abundant in ER fraction (Fig EV3B). To

further address the nuclear import mechanism of Myo1C, we used a

well-established in vitro import system based on selective permeabi-

lization of plasma membrane in HeLa cells with digitonin [38,39].

Semipermeabilized cells were then incubated with the import

substrates, HeLa lysate as a source of transport factors and

energy-regenerating mix. As a result, we observed clear nuclear

accumulation of both the model import substrate (NLS-GST-GFP)

and recombinant GFP-Myo1C tail/calmodulin complex (Fig 4).

Remarkably, the presence of soluble import factors did not seem to

be crucial for Myo1C nuclear import, since the GFP-Myo1C tail/

calmodulin complex showed significant nuclear accumulation even

in the absence of HeLa lysate, while import of NLS-GST-GFP was

highly inefficient under these conditions (Figs 4A and B, and EV3C).

In line with this, transport of GFP-Myo1C was insensitive to addition

of RanQ69L. Interestingly, addition of wheat germ agglutinin

(WGA) halted the transport of both constructs (Fig 4). Finally,

removal of the energy source prevented nuclear localization of also

Myo1C (Fig 4).

To further probe the assumption that soluble transport factors

are not required for nuclear import of Myo1C, we analyzed the

effect of importin knockdown on Myo1C localization. Based on the

literature data, we targeted those importins, which were earlier

shown to co-precipitate with Myo1C tail constructs in pull-down

experiments, namely importin 5 (Ipo5), importin 7 (Ipo7), and

importin b (Ipob) [22]. Neither individual depletion of these impor-

tins, nor their pairwise depletions, however, led to any significant

effect on nuclear localization of stably expressed HA-tagged Myo1C

in U2OS cells (Fig EV4A and B), although the levels of knockdown

were confirmed to be sufficient (Fig EV4C). Thus, at least above-

mentioned importins do not seem to mediate Myo1C nuclear import.

Finally, to analyze how much of Myo1C is present in the soluble

form in U2OS cells, and hence accessible for soluble cytoplasmic

import factors, we fused HA-tagged Myo1C WT with the NLS

sequence of SV40 Large T antigen known to exploit importin a/b-
dependent import pathway [28]. Addition of the NLS sequence did

not affect the localization of Myo1C WT, while it efficiently drove

the Myo1C K892A protein into the nucleus (Fig EV5C). This shows

that majority of cytoplasmic Myo1C is most likely bound to

membranes and is simply inaccessible for soluble transport factors.
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At the same time, the K892A mutant is more soluble than the wild-

type protein and, therefore, could interact with cytosolic import

factors. Yet, the localization of this mutant is almost exclusively

cytoplasmic (Fig 2), which once again suggests that Myo1C uses a

less conventional import pathway based on its association with the

ER membrane through PI binding.

A

B

D

C

Figure 3. PI binding is required for nuclear import of Myo1C.

A Localization of GFP-Myo1C tail WT and K892A constructs in inducible stable U2OS cell lines by wide-field fluorescence microscopy. Scale bar, 40 lm.
B Western blot with antibody against GFP, showing equal expression of GFP-Myo1C tail WT and K892A in respective cell lines.
C Representative time-lapse images of U2OS cells stably expressing GFP-Myo1C tail WT and K892A. Time point “0 min” corresponds to the earliest detected moment

after cytokinesis. Scale bar, 20 lm.
D Relative nuclear fluorescence recovery rates after cytokinesis in cells expressing GFP-Myo1C tail WT and K892A. Data are mean � SD (n = 22 cells from three

independent experiments). Rate was approximated with straight lines from the fluorescence recovery curves (see Fig EV2B), and statistically significant differences
were tested by Student’s t-test.
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A

B

Figure 4. In vitro import assay shows no requirement for soluble transport factors in Myo1C nuclear import.

A Nuclear import of recombinant GFP-Myo1C tail WT complexes with calmodulin was analyzed in semipermeablized HeLa cells. NLS-GST-GFP expressed in Escherichia
coli was used as control import substrate. Where indicated, HeLa lysate and/or energy regeneration mix was omitted and import inhibitors were added. Scale bar,
20 lm.

B Quantification of in vitro import experiments with percentage of cells exhibiting nuclear accumulation of substrate plotted. Data are mean from three fields of view
(each containing 40–60 cells) � SD. L, lysate; E, energy; RanQL, RanQ69L; WGA, wheat germ agglutinin.
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The fact that GFP-Myo1C tail failed to accumulate in the nucleus

in the absence of energy (Fig 4A and B) and the robust binding of

Myo1C to ER membranes in semipermeabilized cells (Fig 5B)

allowed us to study whether ER binding precedes nuclear localiza-

tion of Myo1C. We first allowed GFP-Myo1C to bind to ER in the

absence of energy, then washed away the soluble proteins and

added energy. Since GFP-Myo1C only accumulated in the nucleus

upon addition of energy, at conditions where the only source of

Myo1C is membrane-bound (Fig 5A), this demonstrates that ER

binding precedes nuclear localization of Myo1C.

Any role for the NLS-like sequence?

If Myo1C relies primarily on ER membrane binding for its nuclear

import, how can this be reconciled with the presence of an NLS-like

sequence in this molecule? As this is a polybasic region, we

considered the possibility that the NLS-like sequence might mediate

Myo1C interactions with either DNA or PIs, which are both nega-

tively charged at physiological pH. To test these two possibilities,

we produced recombinant GFP-tagged tail domain of Myo1C carry-

ing substitutions in the NLS-like sequence identical to those in the

full-length protein (NLSmut in Fig 1F). To study chromatin-binding

properties of the NLSmut protein, we used a co-precipitation assay

in which isolated chromatin is incubated with purified proteins,

precipitated by centrifugation, washed, and analyzed for the pres-

ence of the protein in question. Of note, purity of chromatin was

ensured by immunoblotting against ER lumenal protein calreticulin

and cytosolic tubulin (Fig EV5B). GFP-Myo1C tail WT and GFP-

Myo1C tail NLSmut were both found to co-precipitate with purified

chromatin at similar levels, while purified GFP alone showed virtu-

ally no binding (Fig 6A). Noteworthy, both protein species are

highly soluble and do not precipitate on their own due to complex

formation with calmodulin. Furthermore, subcellular fractionation

of U2OS cells transfected with GFP-tagged Myo1C tail constructs

showed no difference in their abundance in the chromatin fraction

(Fig 6B and C), in agreement with chromatin co-precipitation exper-

iments (Fig 6A). Likewise, also GFP-Myo1C tail K892A efficiently

interacted with chromatin, thus confirming that PI binding is likely

required for import and not nuclear retention, as also demonstrated

by our live-cell imaging assay (Fig 3). To sum up, the NLS-like

sequence is unlikely to play crucial role in Myo1C interaction with

chromatin.

To test the second possibility, lipid binding, we carried out co-

sedimentation experiments with PIP2-containing phospholipid

vesicles. Up to 90% of total GFP-Myo1C tail WT binds to PIP2-

containing lipid vesicles, while the bound fraction for both K892A

and NLSmut mutants is reduced to 30–40% (Fig 6D). These data

confirm the earlier studies that implicate the PH-like domain of

Myo1C in PI binding [27,40], but also suggest that another site, over-

lapping with the NLS-like sequence, contributes to the interaction.

Therefore, the effect of mutations in the NLS-like sequence on

nuclear localization can be explained in terms of impaired interac-

tion of Myo1C with phospholipids.

Discussion

Protein Myo1C, typically deemed cytoplasmic together with other

myosins, is also present in the nucleus, where it plays important

roles in regulating gene expression. In this study, we analyze the

molecular determinants of its localization and unexpectedly uncover

that Myo1C does not follow a conventional transport pathway for

soluble cargos. We show that interaction with membrane PIs is

indispensable for nuclear targeting of Myo1C and that its localiza-

tion to the chromatin fraction is preceded by interaction with the ER

membrane. Thus, we argue that Myo1C utilizes a nuclear import

route reminiscent of diffusion–retention mechanism of INM

proteins, which makes it the first up to date non-integral membrane

protein to follow this pathway.

To continue the analogy with INM proteins, the import reaction

of Myo1C is stalled when no energy regeneration mix is provided

(Fig 4). Ungricht et al [8] showed that energy depletion affects ER

structure and diffusional mobility of ER proteins due to decreased

ER connectivity. Likewise, mobility of Myo1C in the ER membrane

A

B

Figure 5. In vitro import assay shows that association of Myo1C with ER
precedes its nuclear import.

A First, cells were incubated with import substrate (GFP-Myo1C tail WT) in
the absence of energy to saturate ER with the myosin (“� energy”). Then,
unbound substrate was washed off and cells were supplemented with
energy mix (creatine kinase, phosphocreatine, GTP, ATP), HeLa cytosolic
extract, and incubated for 30 min at 30°C. Scale bar, 20 lm.

B A higher-magnification image showing that recombinant GFP-Myo1C tail
WT associated with the membranes of the endoplasmic reticulum in
digitonin-permeabilized HeLa cells. Scale bar, 10 lm.
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A

D

B C

Figure 6. NLS-like sequence in Myo1C does not contribute to interaction with chromatin, but is involved in lipid binding.

A Chromatin co-precipitation experiment with recombinant GFP, GFP-Myo1C tail WT in complex with calmodulin, as well as indicated mutants. Proteins co-
precipitating with chromatin were detected with GFP antibody.

B Western blotting analysis of chromatin fractions and total lysates of U2OS cells transfected with indicated GFP-Myo1C tail constructs.
C Quantification of relative amounts of GFP-tagged Myo1C tail constructs in the chromatin fraction. Data represent mean � SD from three independent experiments

and are normalized to GFP-Myo1C tail WT.
D Quantification of lipid-binding activity of recombinant GFP-Myo1C tail WT in complex with calmodulin, as well as respective mutants from a phospholipid vesicle co-

sedimentation assay. Data are mean � SD from three independent experiments. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine.

Source data are available online for this figure.
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might decrease upon energy depletion, which will ultimately result

in diminished nuclear accumulation. However, certain features of

Myo1C import differ from INM proteins. Most significantly, there is

a clear size limitation for diffusion–retention-based nuclear import

of INM proteins. Polypeptides with nucleoplasmic domains larger

than 60 kDa cannot reach the INM [41,42], which might be

explained in terms of restricted NPC permeability. It has been

suggested that upon transport through NPC, INM proteins do not

use the central channel, but more likely pass through the so-called

lateral openings in the NPC, positioned close to the pore membrane.

Myo1C physically cannot pass through such a channel, as its largest

dimension of ~12 Å [43] surpasses the narrowest dimension of the

lateral opening in NPC (~9 Å), [44]. Therefore, it is likely that

Myo1C uses another mechanism to pass through NPC. Indeed, inhi-

bition of FG-Nups with WGA prevented nuclear accumulation of

Myo1C (Fig 4), suggesting that unlike INM proteins, Myo1C uses

the central channel of NPC to enter the nucleus. Although not

formally proven, it has been suggested that nuclear import of yeast

INM proteins Heh1 and Heh2 would also take place through the

central channel. These proteins contain canonical NLSs and require

karyopherins Kap60/95 and the Ran GTPase cycle for INM targeting

[45]. Mechanistically, an intrinsically disordered linker in Heh2 is

proposed to facilitate the access of the karyopherins to FG-Nups

[46]. Although nuclear targeting of Myo1C does not require soluble

factors (Fig 4), its transport might be mediated by membrane-bound

protein adaptors. Of note, importin a has been shown to interact

with membranes in a co-fractionation assay [47], and importin a16
was identified as a membrane-bound karyopherin involved in INM

targeting of certain viral proteins [48]. Moreover, a number of

proteins, such as b-catenin [49] and human T lymphotropic virus

type 1 protein [50] are able to directly interact with nucleoporins

and thus do not require karyopherins for their import. The mecha-

nism by which Myo1C is translocated from the ER membrane

through the NPC will be an interesting subject for further studies.

Another striking difference between Myo1C and INM proteins is

in the mechanism of membrane targeting. INM components are inte-

gral membrane proteins, which are tightly anchored in lipid bilayers

by means of their transmembrane domains and thus can only exist

within the membrane milieu. On the contrary, Myo1C represents a

peripheral membrane protein, meaning it can bind membranes in a

reversible manner. The mechanism of this interaction is based on

specific PI binding through a PH-like domain in the tail of Myo1C

[27]. Binding to PI, in particular to PIP2, appears to be the basic

mechanism for Myo1C targeting to the sites of high accumulation of

actin and various actin-binding proteins, which also bind PI [51]. It

might also be the main mechanism of Myo1C recruitment to the

sites of ongoing endocytosis, secretion, and membrane contraction

[40,52]. Our results indicate that PI binding can be also essential for

Myo1C targeting to the nucleus (Figs 2 and 3). Involvement of PIs

provides new possibilities for the regulation of Myo1C nuclear local-

ization. Levels of membrane PI are subject to multiple layers of

regulation by dedicated phospholipases, phosphatidylinositol phos-

phatases, and kinases [53], which should have an impact on Myo1C

interaction with the ER membrane and hence nuclear localization.

The pathway we suggest would be, in principle, similar to the one

described for ERM proteins (ezrin, radixin, and moesin). Their activ-

ity and membrane localization is regulated by chemokine signaling:

SDF1-induced activation of phospholipase C results in PIP2

degradation, which subsequently leads to release of ERM proteins

from the membrane and their inactivation by dephosphorylation

[54].

The PH domain of Myo1C is necessary, but not sufficient for

nuclear localization of Myo1C (Figs 2 and EV1E). Thus, another

essential part of our model is nuclear retention of Myo1C through

association with certain nuclear components. Chromatin is a good

candidate, since ChIP-seq analysis has suggested co-occupancy of

Myo1C with the RNA polymerase II and active epigenetic marks

across the entire genome [55]. According to our results, nuclear

retention is not based on Myo1C binding to nuclear PIs, since

protein carrying K892A substitution interacts with isolated chro-

matin as efficiently as the wild-type protein (Fig 6B). Another possi-

bility might be direct DNA binding by Myo1C, earlier proposed by

De Lanerolle et al [56]. Indeed, the tail of Myo1C carries a substan-

tial positive net charge due to high abundance of arginines and lysi-

nes, which could account for electrostatic interactions with

negatively charged DNA backbone. Although PH domain of Myo1C

alone cannot localize to the nucleus, addition of the IQ and post-IQ

regions, even when the putative NLS is mutated, promotes efficient

nuclear accumulation of Myo1C (Figs 2 and EV1E). It has earlier

been shown that GFP-post-IQ-PHMyo1C shows no nuclear localiza-

tion [22]. This suggests that especially the IQ region, but not the

NLS within this region, could play a role in nuclear retention of

Myo1C. Interestingly, structural studies have shown that calcium

binding to calmodulin induces drastic conformational changes in

Myo1C IQ-post-IQ, which probably indicates that this domain is a

hotspot of protein–protein interactions [57]. Alternatively, the

N-terminal sequences of at least the longer isoforms A and B of

Myo1C could contribute to nuclear targeting and thus retention

[13]. In budding yeast, the histone variant H2A.Z is required for

INM targeting of the SUN domain protein Mps3 [58]. Detailed

analysis of nuclear interaction partners for Myo1C could reveal

protein factors that contribute to its nuclear localization either

through retention or the actual transport.

A particularly puzzling element of Myo1C structure is an NLS-

like sequence, which was earlier suggested to function as a genuine

NLS in an importin-based import pathway [22]. Our results show no

particular requirement for soluble transport factors in the nuclear

import of Myo1C (Figs 4 and EV4), thus implying other functions

for the NLS-like sequence. It should be noted that this is again very

reminiscent of INM proteins, which also possess functionally redun-

dant NLS-like sequences [8]. Since the NLS-like sequence represents

a stretch of six positively charged residues, a possibility of electro-

static interaction with either DNA or negatively charged phospho-

lipids, such as PIs, arises. We show that interaction of Myo1C tail

with PIP2-containing lipid vesicles is substantially diminished in the

NLSmut construct (Fig 6D), which leads us to the conclusion that

Myo1C possesses in fact two PIP2-binding sites. One of them is

represented by the above-mentioned PH-like domain, while the

second seems to overlap with calmodulin-binding IQ2 motif. Of

note, the existence of a second phospholipid-binding site in Myo1C

tail has long been discussed in the literature, and IQ motifs have

been suggested to mediate phosphatidylserine binding [27,59].

However, up until now this possibility has not been tested by means

of site-directed mutagenesis.

In the course of evolution, cells have developed multiple mecha-

nisms of nuclear protein targeting. Our research suggests that
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alongside with the conventional karyopherin-based import path-

ways, such factors as interaction with membrane phospholipids can

play a role in nuclear import. A substantial part of this mechanism

would be interaction with nuclear structures, which would guaran-

tee nuclear retention. In fact, such a mechanism would not neces-

sarily require the presence of separate binding sites for, for

example, phospholipids and DNA, as either patches of positively

charged residues or more specialized domains could interact with

both. For instance, interaction with acidic phospholipids competes

with DNA binding in Escherichia coli protein DnaA, which is respon-

sible for initiation of chromosomal DNA replication. In this case, the

membrane-binding domain overlaps with the domain of sequence-

independent DNA binding [60]. In a similar way, direct interaction

with phospholipids causes inhibition of DNA binding by mamma-

lian DNA topoisomerase I [61]. Following this line of reasoning, one

can speculate that such a relationship between DNA- and phospho-

lipid-binding sites might have been beneficial at the early stages of

eukaryote evolution, before the emergence of more specialized

import pathways.

Materials and Methods

Plasmids and antibodies

Details of the plasmids cloned for the study are available upon

request.

Isoform B of mouse Myo1C, whose amino acid sequence is iden-

tical to that of the human protein, was amplified using cDNA of

mouse NIH 3T3 fibroblasts and cloned into earlier described

p2HA-C1 vector [24] or pEGFP-C1 vector (Clontech). Mutation

DABL (323IIAKGEEL330 replacing with AGA peptide), IQ2mut

(I745N/Q746A/R750A/G751S), NLSmut (R755A/R756S/K757A/

K760A/R761S/K762A), and K892A were introduced using standard

PCR overlap extension protocol. SV40 NLS was added to the

C-terminus of HA-tagged constructs. Constructs for inducible stable

cell lines were prepared using pcDNA 4TO (Life Technologies) as

backbone, into which GFP-Myo1C tail WT and K892A were cloned.

For protein production in E. coli, His6-GFP-Myo1C tail WT, K892,

and NLSmut fusions were cloned into pET Duet vector (Novagen)

together with human calmodulin 1 sequence. For the control import

substrate, EGFP was amplified from pEGFP-C1 using 30 primer with

NLS sequence and cloned into pGAT2 vector for fusion with GST.

Antibodies such as anti-HA (HA7), anti-Flag (M2), anti-Myo1C

(anti-myosin Ib, M 3567), anti-Myo1C (HPA001768), anti-histone

H3 (H0164), anti-actin (AC40), and anti-tubulin (B-5-1-2) were from

Sigma. Anti-GFP (GF28R) and anti-calnexin (6F12BE10) were from

Abcam and anti-calreticulin (2679S) from Cell Signaling Technolo-

gies. Alexa Fluor 488- and HRP-conjugated streptavidin as well as

HRP-conjugated anti-mouse, HRP-conjugated anti-rabbit, Alexa

Fluor 488-conjugated anti-mouse, Alexa Fluor 488-conjugated anti-

rabbit, Alexa Fluor 594-conjugated anti-mouse were from Life Tech-

nologies.

Cell culture, transfections, immunofluorescence, and microscopy

Human osteosarcoma (U2OS) and HeLa cells (both were gifts

from Lappalainen Lab, University of Helsinki) were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Lonza) containing

10% FBS (GIBCO), 100 Units/ml penicillin, and 0.1 mg/ml strep-

tomycin (Pen-Strep, GIBCO). All cells were grown in humidified

95% air/5% CO2 incubator at +37°C, and regularly tested for

mycoplasma contamination by PCR-based methods and DAPI

staining.

For transfections, U2OS cells were plated onto coverslips in a 24-

well tissue culture plate (~30,000 cells/well) 1 day prior to transfec-

tion. On the next day, cells were transfected with DNA constructs of

interest using JetPrime transfection reagent (Polyplus transfection)

according to the manufacturer’s instructions (200 ng DNA per well

was used). After 24 h, cells were processed for immunofluorescent

staining (see below).

For microscopy, cells were fixed with 4% paraformaldehyde for

15 min, washed three times with Dulbecco’s medium containing

0.2% BSA, and permeabilized for 5 min with 0.5% Triton X-100 in

PBS. For antibody staining, permeabilized cells were first incu-

bated in Dulbecco’s medium containing 0.2% BSA for 30 min and

incubated with primary antibody for 1 h. Coverslips were washed

and incubated with Alexa Fluor-conjugated secondary antibody for

1 h with or without DAPI. Coverslips were washed three times

with Dulbecco’s medium, rinsed with MilliQ water, and mounted

in DABCO-supplemented Moviol. Cells were imaged using 63× or

20× objective of Leica DM6000B upright fluorescence wide-field

microscope equipped with Hamamatsu Orca-Flash4.0V2 sCMOS

camera. Confocal images were acquired with either Leica TCS SP5

confocal microscope, 63×/1.3 objective and LAS AF software, or

Zeiss LSM 700 confocal microscope, 63×/1.30 objective and ZEN

software.

Recombinant protein expression and purification

His-tagged N-terminal GFP fusions of Myo1C were expressed in

complex with human calmodulin 1 using BL codon + E. coli strain.

Protein expression was induced by addition of 0.4 mM IPTG to

bacterial cultures grown in BL medium 20°C overnight. After that,

cells were harvested, lysed, and Myo1C/calmodulin complexes were

purified by combination of Ni affinity and size-exclusion chromatog-

raphy. GST-GFP-NLS was expressed in E. coli Rosetta strain and

purification by means of Ni sepharose and size-exclusion chro-

matography.

In vitro transport assay

HeLa cells were grown on fibronectin (10 lg/ml)-coated glass

coverslips at the density of 20,000 cells/slide. On the day of exper-

iment, culturing medium was aspirated, and cells were washed

with ice-cold PBS once and incubated for 5 min with assay buffer

(20 mM HEPES–KOH pH 7.2, 110 mM potassium acetate, 4 mM

magnesium acetate, 0.5 mM EGTA) containing 25 lg/ml digitonin

(Sigma). Semipermeabilization was followed by 3 × 5 min washes

with cold assay buffer; 50 ll of import mixture containing trans-

port-competent cytoplasmic HeLa cell extract [8], energy-regener-

ating system (10 mM creatine phosphate, 0.5 mM GTP, 0.5 mM

ATP, 0.05 mg/ml creatine kinase in assay buffer), 2 mg/ml WGA,

and recombinant GFP-Myo1C tail WT (2 lM) were added to cells

on coverslips, and import was allowed to proceed at room temper-

ature.
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Lipid-binding Assays

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phospho-L-serine (POPS), and porcine brain

L-a-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) were purchased

from Avanti Polar Lipids (Alabaster, AL).

Lipids were mixed in desired ratios, and the organic solvents were

evaporated under a stream of nitrogen. The lipid film was further

dried under vacuum for at least 3 h and hydrated in 20 mM HEPES

buffer, pH 7.4 containing 150 mM NaCl to yield multilamellar vesi-

cles in a lipid concentration of 1 mM. To obtain unilamellar vesicles,

vesicles were extruded through a polycarbonate membrane filter

(100-nm pore size) using a mini-extruder (Avanti Polar Lipids Inc.,

Alabaster, AL). Proteins and liposomes with final concentrations of 3

and 250 lM, respectively, were incubated at room temperature for

10 min and centrifuged at 385,000 g using a Beckman rotor (TLA

100) for 30 min at 20°C. After centrifugation, equal proportions of

supernatants and pellets were loaded onto SDS–PAGE and the gels

were stained with Coomassie Blue. The intensities of protein bands

were quantified using the Quantity One program (Bio-Rad), and the

data are shown as % of protein in the pellet fraction.

Live-cell imaging

Stable cell lines were plated onto glass-bottomed dishes (MatTek

Corporation) induced with 1 lg/ml tetracycline and incubated for

24 h prior to live-cell imaging. Time-lapse images were acquired

with 3I Marianas imaging system (3I Intelligent Imaging Innova-

tions) in the wide-field mode, equipped with appropriate filters,

heated sample chamber (+37°C) with controlled CO2 and 63×/1.2 W

C-Apochromat Corr WD = 0.28 M27 objective. SlideBook 5.0 soft-

ware (3I Intelligent Imaging Innovations) and sCMOS (Andor) Neo

camera were used for the image acquisition. Time-lapse images

were acquired with the frequency one image in 15 min during 14 h.

Further analysis of the video frames was performed with Micro-

scopy Image Browser software [62]. For quantification of nuclear

fluorescence recovery, background signal was subtracted from the

nuclear signal and divided by background-adjusted cytoplasmic flu-

oresce. Initial segments of thus obtained fluorescence recovery

curves (normally, in the interval 30–165 min) were then approxi-

mated with straight lines, whose slopes reflect the recovery rate of

nuclear fluorescence after cell division.

Fluorescence recovery after photobleaching experiments were

performed on Leica TCS SP5II HCS A confocal microscope using the

protocol described in Ref. [25]. For analysis, background was

subtracted and prebleach nuclear intensity was set to one. FLIP

imaging to measure nuclear export rates was performed on Zeiss

LSM 700 confocal microscope equipped with motorized Axio Imager

M2 upright microscope stand, W Plan-Apochromat 40×/1.0 objec-

tive, 488 nm/10 mW laser, heated sample chamber (+37°C) with

controlled CO2. In this assay, cytoplasm of a cell expressing GFP-

tagged protein is continuously bleached and loss of nuclear fluores-

cence is monitored as a measure of export. ZEN software was used

to create a bleaching protocol consisting of 40 cycles. Every cycle

consisted of a scan followed by up to five iteration of bleaching. For

analysis, background was subtracted and prebleach nuclear inten-

sity was set to one.

Biochemical fractionation and chromatin isolation

For chromatin isolation, cells were grown on 6-cm plates and when

applicable transfected with 2 lg construct of interest 48 h prior to

experiment. Isolation of chromatin was carried out according to a

modified protocol by Holden and Horton [63]. Briefly, cells were

harvested by trypsinization, washed with PBS containing “Complete”

EDTA-free protease inhibitor cocktail (Sigma), and pelleted by

centrifugation (500 g, 5 min). Part of cell suspension was taken for

the “total” samples prior to centrifugation. Cells were then lysed with

lysis buffer containing 50 mM HEPES pH 8.0, 150 mM NaCl, and

25 lg/ml digitonin (Sigma) on ice for 10 min. Crude nuclei were

pelleted (1,500 g, 5 min) and resuspended in chromatin buffer,

containing 50 mM HEPES pH 8.0, 150 mM NaCl, and 1% Triton

X-100. Extraction of intracellular membranous components including

endoplasmic reticulum, nuclear envelope, and mitochondria was

carried out for 30 min on ice. Enrichments of this fraction were moni-

tored by blotting against ER luminal marker calreticulin. After

centrifugation (2,000 g, 5 min), resulting chromatin pellet was

washed with PBS and resuspended in 1× Laemmli sample buffer.

After sonication and boiling at 98°C for 5 min, samples were run on

SDS polyacrylamide gradient gels (Bio-Rad), transferred onto nitrocel-

lulose membrane, and blotted with antibody of interest. Anti-histone

H3 and anti-tubulin antibody were used to control equal loading of

different samples. For quantification, the signals were first normal-

ized to the respective loading control, and then, the signal in the

chromatin fraction was normalized against the total signal, and the

value for GFP-Myo1C tail was set to one.

Isolation of intact nuclei was carried out as follows. Around

5 × 106 cells grown on Petri dishes were trypsinized and washed once

with ice-cold PBS, after which cells were soaked in 10 mM HEPES pH

7.9 containing 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, and protease

inhibitors (buffer A). After 30-min incubation on ice, cells were lysed

with B-type tight pestle Dounce homogenizer. Subsequently, lysate

was layered over equal volume of buffer A containing 1 M sucrose

and centrifuged for 30 min at 4°C (5,000 g). Upper layer was used as

cytoplasmic fraction, and nuclear pellet was washed once again with

the sucrose buffer prior to being lysed with 1× Laemmli loading buffer.

For chromatin co-precipitation experiments, chromatin isolated

from 50 × 103 to 70 × 103 cells was incubated with 2 lM solution of

recombinant GFP-Myo1C tail/calmodulin complex in assay buffer

(25 mM HEPES pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 0.1% Triton X-

100) for 30 min at room temperature. Chromatin was then precipitated

by centrifugation (2,000 g, 5 min), washed several times with assay

buffer, lysed with Laemmli sample buffer, run on SDS–PAGE, trans-

ferred on nitrocellulose membrane, and blotted with GFP antibody.

Statistical analysis

Statistical analyses were performed in Excel by two-tailed Student’s

t-test, with two-sample unequal variance, because the data

conformed to normal distribution.

Expanded View for this article is available online.
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