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Abstract

Super-resolution ultrasound microvessel imaging with contrast microbubbles has recently been 

proposed by multiple studies, demonstrating outstanding resolution with high potential for clinical 

applications. This study aims at addressing the potential noise issue in in vivo human super-

resolution imaging with ultrafast plane wave imaging. The rich spatiotemporal information 

provided by ultrafast imaging presents features that allow microbubble signals to be separated 

from background noise. In addition, the high frame rate recording of microbubble data enables the 

implementation of robust tracking algorithms commonly used in particle tracking velocimetry. In 

this study, we applied the nonlocal means (NLM) denoising filter on the spatiotemporal domain of 

the microbubble data to preserve the microbubble tracks caused by microbubble movement and 

suppress random background noise. We then implemented a bipartite graph-based pairing method 

with the use of persistence control to further improve the microbubble signal quality and 

microbubble tracking fidelity. In an in vivo rabbit kidney perfusion study, the NLM filter showed 

effective noise rejection and substantially improved microbubble localization. The bipartite graph 

pairing and persistence control demonstrated further noise reduction, improved microvessel 

delineation and a more consistent microvessel blood flow speed measurement. With the proposed 

methods and freehand scanning on a free-breathing rabbit, a single microvessel cross-section 

profile with full width at half maximum of 57 μm could be imaged at approximately 2 cm depth 

(ultrasound transmit center frequency = 8 MHz, theoretical spatial resolution ~200 μm). Cortical 
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microvessels that are 76 μm apart can also be clearly separated. These results suggest that the 

proposed methods have good potential in facilitating robust in vivo clinical super-resolution 

microvessel imaging.

Index Terms

Super-resolution imaging; contrast microbubbles; microvessel imaging; microbubble tracking; 
nonlocal means filtering; bipartite graph

I. INTRODUCTION

The use of ultrasound contrast microbubbles to break the diffraction limit of ultrasound and 

realize super-resolved microvessel imaging has recently been demonstrated in multiple 

studies [1–8]. Among these studies, Errico et al. [1] proposed a seminal method, ultrasound 

localization microscopy (ULM), that uses ultrafast ultrasound imaging to record spatially 

isolated microbubble blinking events from decorrelated microbubble signals that can be 

generated by microbubble disruption, dissolution and motion. ULM achieved ~λ/10 

subwavelength spatial resolution with a wide dynamic range of blood flow speed 

measurement (1 mm/s to several cm/s) that is Doppler angle-independent [1, 9]. In an in 
vivo murine brain study, ULM demonstrated visualization of ~10 μm microvessels over the 

entire depth of the mouse brain (~10 mm) [1]. Such extraordinary combination of resolution 

and penetration and the accurate hemodynamics measurement provides a paradigm-shifting 

tool for structural and functional evaluation of tissue microvasculature.

Translating super-resolution microvessel imaging techniques such as ULM from preclinical 

to clinical applications has great potential of providing new imaging biomarkers for early 

detection, diagnosis and prognosis of many diseases. In vivo human imaging, however, can 

be more challenging than murine brain imaging. For example, in murine brain imaging, the 

targeted tissue is shallow, the animal is sedated, the transducer is fixed, and data 

accumulation for as long as 150 s and 18 bolus injections of microbubbles is achievable [1]. 

For in vivo human imaging, on the other hand, the targeted tissue can be much deeper 

(which results in ultrasound signals with lower signal-to-noise-ratio (SNR)), physiologic and 

operator-induced motion is inevitable (thus reducing the available data accumulation time), 

and significantly fewer bolus injections (typically 2~5) can be performed [10]. These 

potential challenges demand substantial technical development of the super-resolution 

microvessel imaging techniques and need to be addressed before a successful clinical 

translation can occur.

As part of the efforts to facilitate clinical translation, this study focused on the low SNR 

issue, which is frequently observed in in vivo human imaging. The common underlying 

principle of super-resolution microvessel imaging is to localize the center locations of the 

microbubbles and track the microbubble movement to derive the blood flow speed [1–3, 7]. 

When the microbubble signal SNR is low (e.g, noise from ultrasound attenuation, thermal 

noise, residual tissue clutter, etc. is high), it can be challenging to differentiate the isolated 

microbubble signal from ultrasound noise. This results in unreliable microbubble 

localization, accumulation, and tracking [2, 5]. This issue may be worse for ultrafast plane 
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wave imaging-based super-resolution imaging because the unfocused plane waves typically 

have poorer penetration and lower SNR than conventional focused waves, unless a very large 

number of angular spatial compounding frames are used (which can be inadequate for 

microbubble tracking due to significantly decreased frame rate) [11]. On the other hand, the 

ultrafast plane wave data acquisition offers rich spatiotemporal information that can be 

advantageous for microbubble detection and tracking. In this study, we take advantage of 

two properties of ultrafast imaging to improve the microbubble localization and tracking: 1) 

the high frame rate recording of the microbubble signal provides unique microbubble 

movement “tracks” that can be observed in the spatiotemporal domain, which provides a 

strong feature that can be used to differentiate microbubble signals from noise; 2) the high 

frame rate imaging results in highly spatiotemporally coherent microbubble signals from 

frame to frame, which provides an opportunity to use established global tracking algorithms 

as commonly used in particle tracking velocimetry (PTV) for robust microbubble tracking. 

Specifically, for the first point, we propose to implement the nonlocal means (NLM) 

denoising filter [12] on the spatiotemporal microbubble data to suppress the background 

noise and extract the microbubble movement tracks; and for the second point we propose to 

use a two-frame PTV tracking method based on minimum distance bipartite graph pairing 

[13, 14] to realize efficient and robust microbubble tracking.

To obtain a more realistic imaging environment and a microbubble data set more 

representative of what is expected in humans, in this paper we used an in vivo rabbit kidney 

model with freehand scanning to test the proposed methods. Using an in vivo setup also 

eases the burdens of creating a proper in vitro imaging model (e.g., simulated or phantom 

data) with the appropriate noise characteristics, which is not trivial and requires additional 

investigation. Nevertheless, this in vivo experiment setup allows convenient comparisons 

before and after the application of the proposed methods on the same set of reference data, 

which is appropriate for the purpose of demonstrating the effectiveness of the introduced 

methods.

The rest of the paper is organized as follows: in the Materials and Method section, we briefly 

introduce the animal preparation and key steps of microbubble super-resolution imaging, 

and then focus on introducing the details of the spatiotemporal NLM denoising method and 

the bipartite graph microbubble pairing and tracking method. We then show results of the 

improvement achieved by each method together with the final super-resolved microvessel 

perfusion image and microvessel blood flow speed image. We finalize the paper with 

discussion and conclusions.

II. MATERIALS AND METHOD

A. In vivo rabbit study setup

The testing microbubble data set was obtained from a female New Zealand white rabbit. The 

experiment conformed to the policy of the Institutional Animal Care and Use Committee 

(IACUC) at Mayo Clinic. The rabbit was anesthetized with ketamine (35.0 mg/kg) and 

xylazine (6.0 mg/kg). The right kidney of the rabbit was imaged. For ultrasound data 

acquisition, a Verasonics Vantage system (Verasonics Inc., Kirkland, WA) and a linear array 

transducer L11-4v (Verasonics Inc., Kirkland, WA) were used. A 5-angle (−4° to 4° with a 
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step size of 2°) plane wave compounding with effective pulse-repetition-frequency (PRF) of 

500 Hz was used (center frequency = 8 MHz). The mechanical index (MI) of the transmit 

pulse was 0.4 [1]. The spatial resolution of the ultrasound data was 0.172 mm. A total of 

1000 ensembles were acquired (corresponding to 2 s time duration), with 200 ensembles 

(0.4 s time duration) acquired in each second (total data acquisition time = 5 s). The rabbit 

was allowed to have free breathing and freehand scanning was conducted. The imaging 

field-of-view (FOV) was carefully chosen so that only in-plane kidney motion caused by 

breathing was observed (i.e., no out-of-plane tissue motion). Before data acquisition, a 0.1 

ml (5.0–8.0 × 108 microspheres per mL) bolus injection of Optison (GE Healthcare, 

Milwaukee, WI) suspension was administered through the marginal ear vein followed by a 1 

ml flush of saline. Ultrasound data acquisition started after the kidney was fully perfused by 

microbubbles.

B. Processing steps for super-resolution imaging

Figure 1 summarizes the key processing steps for super-resolution imaging. A 2-D phase 

correlation-based rigid geometric image registration method (the “imregcorr.m” function in 

Matlab) was used to first remove the in-plane tissue motion caused by breathing. The 

blinking microbubble signal (caused by microbubble movement, disruption, and dissolution) 

was then extracted by a subtraction of immediately adjacent frames (i.e., frame-to-frame) of 

the in phase quadrature (IQ) data [1], which removes the background tissue signal and 

constant microbubble signals. The ultrasound data before and after the frame-to-frame 

subtraction is shown in Figs. 2(a) and (b), respectively. The extracted blinking microbubble 

signal was then passed down to the rest of the processing chain.

C. Spatiotemporal nonlocal means (NLM) denoising filtering

After frame-to-frame subtraction, the blinking microbubble signal is more clearly revealed 

(Fig. 2(b)). However, one can also easily appreciate the ultrasound noise that resembles the 

microbubble signal, for example, the locations indicated by the green arrows in Fig. 2(b). 

Since microbubble localization relies on recognition of patterns that resemble the ultrasound 

system point-spread-function (PSF), these noise signals can be falsely identified as 

microbubbles. A 2D spatial smoothing filter combined with amplitude thresholding (i.e., 

rejection of image intensities values lower than a certain threshold) can alleviate the noise 

issue. However, this may not work in regions where the noise has amplitude comparable to 

the microbubble signal, and spatial smoothing filters may merge the originally isolated 

microbubbles, undermining the super-resolution capability. From an image processing 

perspective, it is very challenging to separate the microbubble signal from noise based only 

on the spatial information provided in Fig. 2(b). Therefore, we propose to add the temporal 

dimension into the processing and consider denoising the microbubble signal in a 

spatiotemporal domain. Figures 2(d)-(f) show such an example. In Fig. 2(d), one can clearly 

discern the microbubble “tracks” resulting from microbubble movement with the blood flow 

in the spatiotemporal domain (axial dimension and temporal dimension), as opposed to the 

random background noise that does not resemble any feature or pattern. This distinct feature 

of the microbubble signal in the spatiotemporal domain allows more robust denoising. In 

this study, we used the established NLM filter for the denoising task, to best preserve the 

microbubble track features and suppress noise without significant blurring (a key 

Song et al. Page 4

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2018 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characteristic of NLM filtering). The detailed principles of NLM filtering can be found in 

[12, 15]. Briefly, as shown in Fig. 2(d), the NLM filter compares the intensity values 

between two patches of pixels (one patch x(Ni) centered on the targeted pixel xi (indicated 

by the green box in Fig. 2(d)) and the other patch x(Nj) centered on another pixel xj that is a 

certain distance away (indicated by the red box in Fig. 2(d)) and replaces the pixel value of 

xi with a weighted average of the pixel values within the search window (indicated by the 

yellow box in Fig. 2(d)). Specifically:

(1)

where w(i, j) is the weight between patch i and patch j and is given by:

(2)

Zi is a normalization factor that ensures the sum of w is equal to unity, and h controls the 

amount of filtering (the higher the h the more the smoothing). The center pixel xi is assigned 

with the highest weight obtained from the search window I. As suggested by Eq. (2), the 

higher the similarity of intensity values between the targeted pixel patch and the nonlocal 

patch, the higher the weight. The patch size N is typically determined by the size of the 

feature (i.e, size of the microbubble tracks, which was chosen to be 0.5 mm spatially by 20 

ms temporally in this study ) and the search window size I was empirically chosen to be 

twice the patch size. The smoothing control factor h was chosen to be one standard deviation 

of the background noise of the spatiotemporal data. After NLM denoising filtering, as shown 

in Figs. 2(e) and (f), one can see the marked improvement of the signal quality thanks to the 

effective suppression of background noise by the NLM filter. The microbubble tracks were 

well preserved with minimum blurring. After applying the NLM filter on the entire data set, 

one can again appreciate the significant improvement of signal quality in Fig. 2(c), as 

compared Fig. 2(b). Videos of the microbubble signals before and after the spatiotemporal 

NLM filtering are provided in the supplemental materials (Supplement videos 1–2).

D. Microbubble localization

The processing used for microbubble localization is described through an example, as shown 

in Fig. 3. The NLM filtered microbubble signal was first thresholded by intensity value (i.e., 

rejecting pixels with intensity values < −40 dB (fine-tuned to this specific dataset) of the 

maximum microbubble intensity value in each frame) to further suppress unreliable 

microbubble signal and noise. The data was then spatially interpolated to 0.02 mm 

resolution using 2D linear interpolation (the “interp2.m” function in Matlab), as shown in 

Fig. 3(b). A system PSF (Fig. 3(g)) was derived based on typically observed microbubble 

signal dimensions and shape (i.e., full width at half maximum, Fig. 3(f)) using a multivariate 

Gaussian model. The PSF was then used to perform a 2D normalized cross-correlation with 

each frame of the interpolated microbubble signal, resulting in 2D cross-correlation 

coefficient maps (Fig. 3(c)). Pixels with cross-correlation coefficient less than 0.6 were then 
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rejected, creating isolated blobs. The peaks of each isolated blob, representing the center 

location of the microbubble, were identified by searching for the regional maximum cross-

correlation coefficient value (e.g., “imregionalmax.m” function of Matlab). The example of 

localization results are given in Figs. 3(e) and (h).

E. Bipartite graph-based microbubble pairing and tracking

Similar to particle tracking velocimetry (PTV) where high speed cameras capture the motion 

of flow particles, super-resolution microvessel imaging uses high frame rate ultrasound to 

capture the flow motion of microbubbles. Because of the high frame rate recording, the most 

likely position that the same target (i.e., particles or microbubbles) in frame n will appear in 

frame n+1 is the location that is closest to where the said target was in frame n. Therefore, 

by pairing targets between consecutive frames in a bipartite graph fashion with the goal of 

minimizing total pairing distance, the targets can be robustly tracked [13]. Here we use the 

examples shown in Fig. 4 and the detailed flowchart of the pairing algorithm in Fig. 5 to 

explain the pairing and tracking method. As shown in Fig. 4(a), the distance between each 

possible pair of microbubble locations in adjacent frames is first calculated to form a 2D 

matrix. A physiological blood flow speed limit of 50 cm/s was applied to the distance 

matrix, rejecting cases of microbubble movement greater than 1 mm with a 2 ms time 

interval between two consecutive frames (Fig. 2(b)). Mutually pairing each microbubble in 

frame n and each microbubble in frame n+1 with a minimum total distance can be solved by 

the classic Hungarian algorithm for assignment problems (a.k.a. Kuhn-Munkres algorithm) 

[16, 17]. However, due to the existence of false microbubble signals resulting from noise and 

other microbubble events (e.g., disappearance of microbubble signal or emergence of new 

microbubble signal), some microbubble signals cannot (and should not) be paired. Standard 

formulations of the Hungarian algorithm require that all targets in at least one of the frames 

(the frame with the smaller number of targets) be paired, and this can give a suboptimal 

result in our situation. Here we developed a partial assignment algorithm for bipartite graph 

pairing which does not require all targets to be paired. The detailed algorithm is presented in 

the flowchart in Fig. 5. Briefly, the algorithm enforces that the pairing distance has to be 

mutually minimal for the paired microbubbles. If a microbubble in frame n has exhausted its 

pairing options in frame n+1 and still cannot be paired, then this microbubble signal will be 

discarded. The pairing distance and direction were recorded to track microbubble movement 

from frame to frame. Figure 4(c) shows an example of microbubble locations in two 

consecutive frames n and n+1, and Fig. 4(d) shows the pairing result with tracked 

microbubble movement between the same two frames. One can see that some microbubbles 

in frame n could not find a paired microbubble in frame n+1, and were consequently 

discarded.

To facilitate more robust microbubble tracking, a persistence control can be conveniently 

adapted for the proposed pairing method. The persistence control requires that the same 

microbubbles be paired in P consecutive frames (excluding the current frame where the 

targeted microbubble is in) to be counted as a reliable microbubble signal, which can then be 

used in final super-resolution accumulation and blood flow speed calculation. As an 

example, for P = 3, the same microbubbles have to be paired between frames n and n+1, n+1 

and n+2, and n+2 and n+3. The path of the microbubble movement was recorded and each 
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time a microbubble propagated through a pixel, the pixel value was increased by 1. The final 

super-resolution microvessel perfusion map was constructed from this microbubble counter 

result. The super-resolution microvessel blood flow speed map was obtained by calculating 

blood flow speed v at each spatial location (i,j):

(3)

where C is the total number of times a microbubble appeared at pixel (i,j), T is the time 

duration between consecutive frames (i.e., 1/PRF), and Δd is the microbubble movement 

distance between consecutive frames. To improve robustness of Δd estimation, a cumulative 

sum ds was calculated from each Δdn obtained from P consecutive frames:

(4)

Then a linear fit was performed on ds, and a new step microbubble movement Δd′ can be 

calculated by:

(5)

Δd′ was finally used in Eqn. (3) to calculate microbubble flow speed.

III. RESULTS

A. Spatiotemporal NLM filtering results

Figure 6 shows one frame of microbubble localization results using the microbubble signal 

that is not filtered (Fig. 6(a)), filtered with a 2D spatial Gaussian smoothing filter (kernel 

size = 0.86 mm, σ=1), and the proposed spatiotemporal NLM filter. The impact of noise on 

microbubble localization is clearly demonstrated in these examples. Without filtering, many 

false microbubbles are localized. While the 2D Gaussian filter alleviates the noise, it 

significantly blurs the microbubble signal and results in cases where isolated microbubble 

sources could not be resolved (examples shown by the green arrows in Figs. 6(b) and (c)). 

Meanwhile a substantial amount of noise is still misidentified as microbubbles with 2D 

Gaussian filtering (e.g., the medulla region inside the kidney and the area below the kidney). 

Spatiotemporal NLM filtering, on the other hand, did not blur the microbubble signal and 

robustly rejected most of the noise signal.

The improvement brought by the spatiotemporal NLM filter can be further illustrated in Fig. 

7, which shows the accumulated super-resolution microvessel perfusion images obtained 

from various filtering options as in Fig. 6 (to facilitate a better visualization of the 

microvessel structure and improvement, only local regions of the kidney are shown in the 
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comparison results hereinafter). One can appreciate the impact of noise when no filtering is 

applied. A similar microvascular structure could be observed among the three filtered 

results, but the NLM filtered result has the least amount of noise and shows marked 

improvement of delineation of the super-resolved microvessels.

B. Bipartite graph pairing results

Figure 8 shows example results of microbubble pairing by using the Hungarian algorithm 

[17] (Fig. 8(b), source code available from [18]) and the proposed partial assignment 

algorithm (Fig. 8(c)). Similar pairing results were obtained for both algorithms, except for 

the central portion of the data. As marked by the white dashed lines in Fig. 8(b), the 

Hungarian algorithm had 2 pairs of microbubbles (one in frame n close to microbubble 

index number 240 and the other one in frame n+1 close to microbubble index number 187) 

that were left unpaired (i.e., no intersections with any available distance dots) by the partial 

assignment algorithm. As a result, the Hungarian algorithm delivered a higher number of 

pairings, but at the expense of a higher overall pairing distance. For all the microbubbles in 

this example (Figs. 8(a) and (b) only show part of the pairing distance matrix), the 

Hungarian algorithm paired 379 pairs of microbubbles with a total pairing distance of 96.6 

mm, while the partial assignment algorithm paired 350 pairs of microbubbles with a total 

pairing distance of 39.5 mm. This can be further illustrated in Fig. 8(d), where it can be seen 

that for the unmatched pairings between the two algorithms, the Hungarian algorithm 

typically provides a higher pairing distance. One reason for this behavior of the Hungarian 

algorithm, which was originally designed to solve the assignment problem with the goal of 

minimizing total assignment cost, is that it provides as many pairings as possible while 

minimizing the pairing distances. For microbubble pairing, however, due to the existence of 

false microbubble signals and the disappearance or birth of microbubbles, maximizing the 

number of pairings may not be the optimal solution. The proposed partial assignment 

algorithm trades off the total number of pairings for lower pairing distances and allows for 

discarding microbubbles that cannot be paired. The final accumulated super-resolution 

microvessel perfusion images before and after pairing with the proposed partial assignment 

algorithm are shown in Fig. 9. It can be seen that the pairing process – and the discarding of 

signals that could not be paired – gave rise to a further reduction of unreliable microbubble 

signals and noise (example regions indicated by white arrows), especially for the lower 

cortex of the kidney with relatively low microbubble SNR.

C. Persistence controlled pairing and tracking results

Figure 10 shows the accumulated super-resolution microvessel images with different 

persistence control settings. The images without persistence control are the same as the post-

pairing results shown in Fig. 9. From Fig. 10 one can see that persistence control further 

reduces noise and enhances microvessels with persistent microbubble signals that can be 

tracked for multiple frames (example regions indicated by white arrows). Similar to the 

observation in Fig. 9, the improvement is more significant for the lower cortex of the kidney. 

The higher the persistence control factor the higher the fidelity of microbubble tracking. 

However, the higher constraint of multi-frame tracking from the high persistence control 

may also eliminate real microvessels and results in a less detailed microvascular image (e.g., 

Figs. 10(c) and (d)). As shown in Fig. 10, a persistence control factor of 5 (i.e., the same 
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microbubble has to be tracked continuously within a 10ms time interval) empirically 

provides a good tradeoff between noise reduction and microvessel visualization. In this 

dataset, a total number of approximately 1.1 × 105 microbubble events were detected after 

the NLM denoising and microbubble localization processes. After the pairing and 

persistence control steps, ~0.6 × 105 microbubble events were preserved and used to 

construct the final microvessel perfusion and flow speed maps.

To effectively alleviate the sparse and pixelated appearance of the super-resolved 

microvessel images without introducing blurring, a local weighted average algorithm 

proposed in [3] can be implemented. Briefly, for a non-zero local window (i.e., regions for 

which at least one microbubble propagated through), the center pixel value is replaced by a 

distance-weighted average of all non-zero pixel values within this local window. In this 

study, a 3 × 3 (0.06 mm × 0.06 mm) local window was used for weighted averaging. Figure 

11 shows the final weighted average result of the P = 5 persistence controlled microvessel 

image. At approximately 2 cm depth, a single microvessel cross-section profile with full 

width at half maximum of 57 μm could be imaged. Microvessels that are 76 μm apart can 

also be clearly separated. Although one can clearly observe the larger vessels (e.g., vessels 

larger than arterioles) in Fig. 11, multiple microbubble passages may be necessary to 

robustly measure their dimensions. A movie showing the dynamic super-resolved 

microvessel accumulation process can be found in Supplemental video 3.

The improvement from the persistence control method can be further illustrated by the 

microvessel blood flow speed maps in Fig. 12. All the blood flow speed maps were 

processed with the local weighted average method. The blood flow direction was color-

coded with blue corresponding to blood flow towards the transducer and red corresponding 

to flow away from the transducer. The blood flow speed measurement distributions of the 

local upper cortex and lower cortex of the kidney as in Fig. 12 are shown as histograms in 

Fig. 13. From Fig. 12, one can see that similar to the observations from the microvessel 

perfusion images, persistence control was effective in suppressing the noise and providing a 

better delineation of the microvessels. Figure 13 shows a narrower blood flow speed 

distribution with a higher persistence control factor, which indicates that a more uniform and 

consistent blood flow speed measurement could be achieved with persistence control. 

Similar to the observations above, the improvement is more pronounced for the lower cortex 

of the kidney where the microbubble SNR is relatively low.

D. Comparisons with the Hungarian algorithm-based tracking and cross-correlation-based 
local microbubble tracking methods

Figures 14 and 15 further demonstrate the effectiveness of the spatiotemporal NLM 

denoising filter in facilitating more robust microbubble tracking by suppressing noise. Both 

figures also demonstrated comparisons among different tracking methods that include the 

cross-correlation-based local microbubble tracking technique similar to the ones used in 

Errico et al. [1] and Christensen-Jeffries et al. [3], the Hungarian algorithm, and the 

proposed partial assignment algorithm. Both Hungarian and partial assignment methods 

used a blood flow speed limit of 50 cm/s. All tracking methods used the same microbubble 

localization signals. For cross-correlation-based local tracking, a 42 μm by 62 μm (axial by 
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lateral) local window (about the size of a single microbubble PSF) centered on the 

microbubble peak was used to search in an 82 μm by 122 μm search window in adjacent 

frames by use of 2D normalized cross-correlation. Microbubble movement was estimated by 

locating the peak of the normalized cross-correlation coefficient. For all tracking methods, a 

persistence control of 5 frames was used to reject unreliable microbubble signals. As shown 

in Figs. 14 and 15, all tracking methods showed substantially improved results after the 

spatiotemporal NLM filtering. There was significantly less noise in the microvessel density 

maps as well as the blood flow speed maps with the NLM denoising filter. Among various 

tracking methods, the proposed partial assignment algorithm showed improved results over 

the Hungarian algorithm both with and without the NLM filter (green arrows in Fig. 14), 

especially for the flow speed estimates. This can be attributed to the more robust 

microbubble pairing by the proposed partial assignment algorithm as illustrated in Fig. 8. 

Cross-correlation-based local tracking showed similar performance as the partial assignment 

algorithm. This is expected because as shown in Supplemental video 2, the microbubble 

density in this study was low and thus it was straightforward to use the local cross-

correlation-based approach for bubble tracking. In cases where microbubble density is high 

or microvessel morphology is more complicated, a more elegant local tracking method such 

as the Markov chain-based tracking algorithm proposed in [2] may be necessary. Table I 

summarizes the computational cost of the NLM denoising filter and each tracking algorithm. 

Both Hungarian algorithm and partial assignment algorithm are significantly cheaper than 

the cross-correlation-based local tracking method. This is because both Hungarian and 

partial assignment methods converted the tracking problem to a much simpler task of finding 

the track in a 2D distance matrix (Fig. 4(b)) that gives minimal total pairing distance. 

Computationally this is much less intensive than normalized cross-correlation-based 

searching for each individual microbubble.

DISCUSSION

In this study we proposed two methods to take advantage of the rich spatiotemporal 

information of ultrafast plane wave imaging data, with the objectives of improving 

microbubble localization and tracking to improve the overall robustness of super-resolution 

microvessel imaging. The first method applied the nonlocal means (NLM) denoising filter 

on the spatiotemporal microbubble signal to effectively suppress the decorrelated 

background ultrasound noise by preserving the coherent microbubble movement tracks. The 

second method uses the principles of bipartite graph pairing to robustly track microbubble 

motion by minimizing the global pairing distances while allowing for the presence of signals 

that should not be paired. Each step of the two methods showed significant reduction in 

noise and enhanced microvessel image quality in an in vivo rabbit kidney data set. A final 

super-resolution microvessel image was generated in which microvessels as small as 57 μm 

in full width at half maximum could be discerned and 76 μm apart could be separated at 2 

cm depth, together with quantitative Doppler-angle independent blood flow speed 

measurements for each microvessel.

An NLM denoising filter has been previously used in ultrasound B-mode imaging and 

showed superior performance in preserving the ultrasound image features without blurring 

while achieving substantial speckle reduction [12]. Similar to the speckle reduction 
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application, the spatiotemporal microbubble data also presents strong features from 

microbubble movement while background noise is random and redundant. This provides an 

ideal situation for the NLM denoising filter. Figure 16(b) shows an example of 

implementing the NLM denoising filter solely on the spatial domain (i.e., axial and lateral 

dimensions) of the microbubble data (i.e., to denoise Fig. 2(b)), as opposed to 

spatiotemporal filtering. One can see that the spatial NLM filter could not provide as robust 

denoising as the spatiotemporal NLM filter, especially for the lower left region of the kidney 

cortex (indicated by the white arrows). This is because with spatiotemporal filtering, the 

microbubble behavior over time provides strong features that allow the NLM to perform 

well. In this paper the spatiotemporal microbubble data was extracted from the axial-

temporal domain of the ultrasound data (i.e., the NLM filter was performed on 2D 

microbubble data with one dimension in axial dimension and the other dimension in 

temporal dimension). An alternative spatiotemporal data can be extracted from the lateral-

temporal domain, and the NLM filtered result is shown in Fig. 16(c). While the lateral-

temporal filtering provides slightly better denoising result than spatial NLM filtering (Fig. 

16(b)), it is still not as good as the axial-temporal NLM filter. The microbubbles are also 

better isolated (e.g., region indicated by red arrows) by using the axial-temporal data. One 

potential reason for the better performance of axial-temporal filter in this study is that kidney 

blood flow direction is primarily along the axial direction (Supplemental videos 1 and 2), 

which provides a stronger microbubble movement feature that facilitates a more robust NLM 

denoising. Theoretically a 3D NLM filter (two dimensions in space and one dimension in 

time) should be able to account for the different microbubble movement directions. 

However, 3D NLM filter can be very computationally expensive for the large ultrafast 

ultrasound data size. Future studies need to be conducted to fully investigate the feasibility 

of using 3D NLM filters for microbubble signal denoising.

The patch size selection of the NLM denoising filter has a significant impact on microbubble 

signal denoising and computational cost: larger patch sizes tend to smooth out more features 

(i.e., bubble tracks) and are more computationally expensive, while smaller patch sizes tend 

to preserve more features and are faster to compute. This can be illustrated by Fig. 17 below 

which shows the effect of NLM denoising using different sized patches (indicate by the red 

boxes). The patch size of 0.5 mm by 20 ms was used in this study to achieve optimal 

denoising without suppressing microbubble signals.

Unlike local microbubble tracking techniques (such as the cross-correlation-based method 

showed in this study) where a local search window is typically used to locally monitor the 

microbubble movement, the bipartite graph pairing and tracking algorithm tracks 

microbubble movement on a global scale. The basic principle of this tracking method, 

similar to the case in PTV, is that under high speed tracking the most likely position in which 

a microbubble will appear in the next frame is in the close vicinity of its position in the 

current frame. This can be demonstrated in the microbubble signal movie in Supplemental 

video 1. Another advantage of the global tracking method is that all possible pairings are 

considered simultaneously between two consecutive frames in the form of a pairing distance 

matrix, and the task of pairing and tracking is condensed into a simple 2D matrix (e.g., Fig. 

4(b)) by minimizing the global pairing distances. This avoids the use of computationally 
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expensive local tracking methods such as 2D cross-correlation (Table I) and the need to 

establish complicated models to track a large number of microbubbles simultaneously.

This study aimed at addressing the potential low SNR issue when performing super-

resolution microvessel imaging in human. As mentioned in the introduction, there are many 

other potential technical challenges of the super-resolution imaging technique. For example, 

in this study a basic phase correlation image registration method was used to remove the 

global tissue motion caused by breathing. Recently a fine-tuned phase-correlation based 

rigid-motion correction method designated for ultrasound localization microscopy was 

proposed [19]. These methods may be acceptable for motions similar to the kidney motion 

observed in this study which was mostly global (i.e., the entire kidney moves together) and 

translational. For more complicated non-rigid tissue motion a more robust registration 

method may be necessary. In addition, in this study a simulated ultrasound system PSF was 

used to localize the microbubble location. The PSF was simulated based on measuring the 

typical microbubble dimensions and shapes (e.g., full width at half maximum) observed in 

the rabbit kidney data. In practice, the ultrasound PSF is not spatially invariant and can be 

affected by confounding factors such as phase aberration, reverberation, and other noise. The 

PSF may also be different among different imaging systems and imaging applications. A 

more advanced deconvolution method such as blind deconvolution may be more reliable in 

localizing the microbubbles. Nevertheless, the proposed NLM filtering and microbubble 

pairing methods can improve upon these techniques and increase the overall robustness of 

super-resolution imaging.

The theoretical resolution limit of the super-resolution imaging sequence used in this study 

can be calculated following the theories proposed in Errico et al. [1], where the axial 

resolution limit is given by the axial localization error  (c is the ultrasound 

speed, στ is the timing resolution of the system given by Eq. (6) below, and n is the number 

of channels used in receive processing), and the lateral resolution limit is given by the lateral 

localization error  (f is the focal length and D is the transducer array 

dimension). The timing resolution limit of the system στ is bounded by the Cramér-Rao 

lower bound (CRLB) of the ultrasound system, which is given by [20]:

(6)

where f0 is the ultrasound transmit pulse center frequency (8 MHz), T is the kernel size for 

the time delay estimation (for microbubble localization, this is essentially the timing 

resolution of the raw channel RF signal, which is equal to 28 ns in this study), B is the 

bandwidth of the transmit pulse (conservatively estimated to be 25%), ρ is the normalized 

correlation coefficient between the experimental signal and the reference PSF used for 

localization (the correlation cutoff threshold value of 0.6 as in Fig. 3(d) was used to be 

conservative), and SNR is the signal-to-noise-ratio and was assumed to be 20 dB. στ was 

calculated to be 80.3 ns, which gives an axial resolution limit of 5.5 μm, and lateral 

resolution limit of 9.9 μm at 1 cm depth, and 19.7 μm at 2 cm depth (elevational focal depth 
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of the L11-4v transducer). The lateral resolution limit at the elevational focal depth is 

approximately 1/10 of the diffraction limit of the 8 MHz transmit pulse, which is 192.5 μm. 

This is in good agreement with the observations reported in Errico et al. [1] and Desailly et 
al. [9].

In this study, a simple and cheap frame-to-frame subtraction method was used to reject 

tissue signal and extract the blinking microbubble signal. Recently multiple studies have 

shown the robustness of using SVD-based clutter filters for microvessel tissue clutter 

filtering [21–23]. However, as compared to frame-to-frame subtraction, SVD-based filters 

can be computationally more expensive. In this study, we found the frame-to-frame 

subtraction method effective in tissue signal suppression thanks to the high frame-rate 

imaging and significantly improved SNR of blood signal provided by microbubbles. In cases 

where blood flow speed is significantly higher or the imaging frame rate is significantly 

lower, however, the frame-to-frame subtraction may result in inaccurate microbubble peak 

locations. More advanced filtering techniques such as SVD may be more appropriate for 

these applications. Future studies are needed to systematically investigate the impact of 

different tissue rejection and microbubble extraction techniques for super-resolution 

imaging.

Similar to the Hungarian algorithm, the partial assignment algorithm developed in this study 

is based on the bipartite graph matching theory that specifically deals with weighted 

bipartite graphs [24] (that is, the edges connecting vertices of the graph have different 

weights, such as the pairing distance between microbubbles in this study). The Hungarian 

algorithm provides optimal solutions to this kind of “max-flow, min-cost” problem (i.e., 

maximum matching with minimum cost) with the premise that the final matching has to be 

perfect (a perfect matching requires all vertices to be adjacent to some edge) [25]. This is the 

key difference between the Hungarian algorithm and the proposed partial assignment 

approach which does not require the matching to be perfect - some microbubbles were 

allowed to be unpaired and discarded. Note that the partial assignment in this study is 

different from the partial association problem in the Hungarian algorithm in which, for 

instance, M workers need to be assigned to N jobs with M ≥ N, and the Hungarian algorithm 

will guarantee N parings (i.e., a perfect match) while our algorithm does not (e.g., final 

number of parings ≤ N). This allows the proposed algorithm to be more flexible and 

effective in rejecting false and unreliable microbubble signals (Fig. 8), which is not a 

problem that the Hungarian algorithm was originally designed to solve. Figure 18 further 

illustrates the difference between the two algorithms by comparing the pairing results from 

the same set of microbubble location data. One can see that the proposed partial assignment 

algorithm consistently provided lower total pairing distances than the Hungarian algorithm, 

except when no blood flow speed limit was utilized (that is, using the original distance 

matrix as in Fig. 4 (a) for pairing). This is expected because the Hungarian algorithm is the 

optimal solution to a weighted pairing problem as in Fig. 4 (a), when no a priori information 

about microbubble flow speed is provided. When a priori blood flow speed limit was used as 

thresholds to reject unrealistic distance entries (Fig. 4 (b)), as shown in Fig. 18, both 

algorithms showed improved performances with a descending trend of pairing distances. A 

speed limit of 150 cm/s was sufficient to ensure robust performance of the proposed 

algorithm, which is a very relaxed constraint because the upper bound of physiological range 
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of normal blood flow speed is typically less than 150 cm/s (e.g., peak common carotid artery 

blood flow speed is approximately 66 cm/s [26]). The two algorithms showed well-matched 

pairing results that were over 80% for blood flow speed limit greater than 75 cm/s, about 

90% for the 50 cm/s limit used in this study, and nearly 100% for speed limit less than 25 

cm/s, which is also the point when the pairing distance curves of the two algorithms 

eventually merged.

There are some limitations of this study. First, the proposed methods were tested on an in 
vivo rabbit kidney data set where the ground truth of the microvessel structure and 

microvessel blood flow speed was unknown. The microvessel structure can be potentially 

validated with other imaging techniques such as micro computed tomography (CT). 

However, the microvessel blood flow speed may be difficult to validate in vivo. A simulation 

platform or a tissue mimicking microflow phantom with appropriate in vivo microvessel 

hemodynamics and noise characteristics may be needed for the validation. Second, we did 

not compare the proposed tracking methods with existing microbubble tracking methods 

such as the Markov chain-based technique proposed in [2]. This study was designed to show 

the step-by-step improvements from the proposed methods based on the same reference 

data. Future studies will be conducted to further validate the proposed methods with the 

existence of ground truth as well as comparing with other microbubble tracking techniques. 

And finally, the dataset used in this study was obtained from a short acquisition that only 

lasted 5 seconds, which may result in an insufficient number of microbubble events to 

accurately depict the kidney microvasculature. With a long-term goal of clinical translation 

of the super-resolution imaging technique, in this study we performed free-hand scanning 

and allowed the rabbit to breathe freely to best mimic in vivo human scanning. Also we 

acquired microbubble data from only 1 bolus injection (with dose adjusted to the weight of 

the rabbit), which was also attempting to simulate a human imaging setup. Combining all 

these factors, it was challenging to obtain a long and rich microbubble dataset without 

significant tissue motion that is similar to the 150s dataset with 18 bolus injections and fixed 

transducer scanning used in Errico et al. [1]. At present, the longest robust dataset we were 

able to acquire lasted 15 seconds with a total of 4125 frames (as compared to the 5 seconds 

data with 1000 frames used above) and ~3 × 105 microbubble events (single bolus injection). 

The microvessel perfusion image from this dataset is shown in Fig. 19. One can clearly see 

the significantly improved details of the kidney cortical microvessels with this dataset. 

Future investigations need to be conducted to increase microbubble blinking events with a 

limited dose of bolus injection in clinic and improve the robustness of image registration to 

maximize the available microbubble signals that can be used for super-resolution imaging of 

the tissue microvasculature.

CONCLUSIONS

In this study we demonstrated significant improvement of microvessel super-resolution 

imaging by using a spatiotemporal nonlocal means (NLM) denoising filter and the bipartite 

graph-based microbubble pairing and tracking. The NLM filter effectively rejected 

ultrasound noise and preserved the microbubble signal without significant blurring, 

facilitating more robust microbubble localization. The bipartite graph-based pairing with 

persistence control further suppresses unreliable microbubble signals and enhances the 
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microvessel imaging quality as well as the consistency of microvessel blood flow speed 

measurement. This study demonstrated visualization of microvessels as small as 57 μm and 

separation of microvessels that are 76 μm apart at 2 cm depth from a freely-breathing rabbit 

with a freehand ultrasound scan, paving the way for the future clinical translation of the 

microvessel super-resolution imaging technique.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Processing steps of microvessel super-resolution imaging.
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Figure 2. 
Ultrasound amplitude image (B-mode) before frame-to-frame subtraction (a), after frame-to-

frame subtraction (b), and after spatiotemporal NLM denoising filtering (c). The red vertical 

line in (b) indicates the location from which the spatiotemporal data example in (d) was 

obtained. The green arrows in (b) indicate example locations where the NLM denoising 

effect can be well appreciated. (d) The spatiotemporal data extracted from (b), with one 

dimension corresponding to the axial direction z of the ultrasound data, and the other 

dimension corresponding to time t. The green solid box indicates the targeted pixel, the 

green box indicates the patch centered on the targeted pixel, the red solid box indicates a 

nonlocal pixel, the red box indicates the patch centered on the nonlocal pixel, and the yellow 

box indicates the search window. (e) the NLM filtered result of (d). (f) the difference image 

between (d) and (e). Movies of the before and after spatiotemporal NLM filtering results 

(Supplemental videos 1 and 2, respectively) are available in supplemental materials.
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Figure 3. 
Processes of microbubble localization. (a) shows an example of a local region of the 

microbubble data, followed by 2D spatial interpolation (b), normalized 2D cross-correlation 

with the derived system PSF (c), cross-correlation coefficient thresholding (d), and finally 

identifying microbubble center locations by searching local maximum correlation 

coefficient. (e) shows an example of the localization indicated by the red crosses. (f) shows a 

zoomed-in image of a microbubble signal and (g) shows the derived PSF signal based on (f). 

(h) shows one example of the microbubble localization result on the full FOV data.

Song et al. Page 19

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2018 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a) Distance matrix obtained by calculating the movement distance between all possible 

pairings of microbubbles from frame n to frame n+1. The axes indicate the indices of the 

microbubble locations. (b) Thresholded distance matrix using a blood flow speed limit of 50 

cm/s. (c) Microbubble locations in frames n and n+1. (d) Bipartite graph tracking result. The 

blue arrows indicate the distance and direction of microbubble movement between 

consecutive frames.
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Figure 5. 
Flow chart of the partial assignment pairing algorithm based on bipartite graph with 

minimum pairing distance.
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Figure 6. 
Microbubble localization (red dots) using the microbubble signal without any filtering (a), 

2D spatial Gaussian smooth filtering (b), and the proposed spatiotemporal NLM denoising 

filtering (c).
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Figure 7. 
Accumulated local super-resolution microvessel perfusion images (compressed by taking the 

square root of the original data for better visualization) obtained with the microbubble signal 

without any filtering (a), 2D spatial Gaussian smooth filtering (b), and the proposed 

spatiotemporal NLM denoising filtering (c). All images were from the central upper cortex 

of the kidney.
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Figure 8. 
Distance matrix before microbubble pairing, after pairing with the Hungarian algorithm (b), 

and after pairing with the proposed partial assignment algorithm (c). (d) plot of the paired 

distances for both pairing algorithms.
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Figure 9. 
Accumulated microvessel super-resolution perfusion maps (compressed by taking the square 

root of the original data for better visualization) before (a and c) and after (b and d) 

microbubble pairing.
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Figure 10. 
Accumulated local microvessel super-resolution perfusion maps (compressed by taking the 

square root of the original data for better visualization) without persistence control (a and d), 

with persistence control P = 5 (b and e) which corresponds to 10 ms of multi-frame tracking, 

and with persistence control P = 10 (c and f) which corresponds to 20 ms of tracking.
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Figure 11. 
Super-resolution microvessel perfusion images processed with the local weighted averaging 

method. Three regions of the original microvessel image were magnified to show the 

detailed microvasculature. The dynamic microvessel accumulation process can be found in 

Supplemental video 3. Bottom panel: a branching microvessel at about 2cm depth was 

located to measure the microvessel cross-section profile.
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Figure 12. 
Super-resolution microvessel blood flow speed maps obtained from different amount of 

persistence control. The left column shows the global result and the right column shows the 

magnified local regions in the upper kidney cortex (upper panel) and lower kidney cortex 

(lower panel). All blood flow speed maps are under the same scale indicated by the color 

bar. Flow direction towards the ultrasound transducer was color-coded in blue, and away 

from the transducer was color-coded in red.
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Figure 13. 
Histograms showing blood flow speed measurement distributions with different persistence 

control settings. (a) Upper cortex of the kidney. (b) Lower cortex of the kidney. The same 

regions of the upper and lower cortex as in Fig. 12 were used to generate the histograms.
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Figure 14. 
Microvessel density images processed with various combinations of filtering and tracking 

methods. Right column images were all denoised with the spatiotemporal NLM filter, and 

the left column images were not. The corresponding pairing and tracking algorithms are 

listed on the left side of each row. All density images are displayed under the same scale, 

which was intentionally set to make the images saturated in order to better illustrate the 

noise differences among different methods.
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Figure 15. 
Microvessel blood flow speed images processed with various combinations of filtering and 

tracking methods. Right column images were all denoised with the spatiotemporal NLM 

filter, and the left column images were not. The corresponding pairing and tracking 

algorithms are listed on the left side of each row. All flow speed maps are displayed under 

the same scale.

Song et al. Page 31

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2018 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 16. 
Microbubble images filtered by the spatiotemporal (axial-temporal dimension of data) NLM 

denoising filter (a), the spatial (axial-lateral dimension of data) NLM denoising filter, and an 

alternative spatiotemporal NLM filter using data in lateral-temporal dimension.
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Figure 17. 
Effect of patch size on NLM denoising and computational time. The red box in each figure 

indicates the patch size. The search window size is twice the patch size in each dimension.
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Figure 18. 
Pairing performances of the Hungarian algorithm and the proposed partial assignment 

algorithm with various blood flow speed limits as thresholds to reject entries of the pairing 

distance matrix. The left axis indicates the total pairing distance between two consecutive 

frames with localized microbubble signals, and the right axis indicates the percentage of 

matched pairings between the two algorithms.
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Figure 19. 
Super-resolution kidney microvessel perfusion images from the 15s dataset with 4125 

frames acquired from a free-breathing rabbit with free-hand scanning and a single bolus 

injection.
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Table I

Computational time associated with NLM filtering and different tracking methods

Method Computation time (s)

NLM denoising filter 396.8

Cross-correlation based local tracking 2735.9

Hungarian algorithm 86.2

Partial assignment algorithm 81.1
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