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ABSTRACT

The ligamentum teres (LT) has traditionally been described as a redundant structure with no contribution to
hip biomechanics or function. There has been renewed interest in the LT as a source of hip pathology due to the
high prevalence of LT pathology observed at the time of hip arthroscopy. The LT acts a secondary stabilizer to
supplement the work of the capsular ligaments and works in a sling-like manner to prevent subluxation of the hip
at the extremes of motion. The presence of free nerve endings within the LT indicates a definite role in pain gen-
eration, with the LT undergoing various mechanical and histological adaptations to hip pathology.

INTRODUCTION

The ligamentum teres (LT) and its role in hip function has
been of constant debate since Professor W.S. Savory first
presented a paper to the Cambridge Philosophical Society
in April 1874 on its function [1]. It has been established
that the LT assumes an important role in the neonatal hip
as a stabilizing structure and a conduit for the blood supply
of the femoral head [2, 3]. However, traditional orthopedic
teaching has been to regard the LT as a redundant or ves-
tigial structure in the adult hip [4]. With the advent of hip
arthroscopy in the last few decades there has been renewed
interest in the role the LT plays in hip stability and as a
generator of hip pain [5].

The recognition of LT pathology (including synovitis, par-
tial and complete tears) at the time of hip arthroscopy is
increasingly common with a reported prevalence up to
51% [5-7]. Lesions involving the LT have been said to be
the third most common cause of hip pain in athletes
undergoing diagnostic arthroscopic procedures [8].

Since the last published reviews of the LT [9, 10], there
has been a number of new publications regarding the LT.
Our aim has been to gather together this new information
in an update review. The purpose of this review is to define
the functional role the LT plays in the adult hip with sup-
portive evidence from the literature. Specific focus was

given to its role as a hip stabilizer and a pain generator, in
addition to other proposed roles such as proprioception,
and synovial fluid distribution. In doing so, the authors
present an analysis of the anatomy, the histological struc-
ture, and the biomechanical function of the LT, and the
various changes the LT undergoes in hip pathology.

Hip stabilization

Our current understanding is that the LT acts as a secon-
dary stabilizer of the hip, supplementing the role of the
capsular ligaments, and works in a sling-like manner to pre-
vent subluxation of the femoral head at the extremes of
motion. To better understand the role of the LT in hip
motion, a number of cadaveric studies [11-14] have been
performed in the last decade, including the ‘string model
studies of Martin et al. [12, 13, 15]. This has been aided by
a better understanding of anatomy and histology.

In open hip preservation surgery, the LT is routinely
transected to facilitate delivery of the femoral head. It has
been shown that resection of the LT leads to long-term
mild symptoms of instability (giving way of the hip) in
almost a quarter of patients, despite other pathologies
(cam lesions, pincer lesions, labral tears etc.) being
addressed at the time of surgery [16]. This suggests that
the LT has a definite role in stabilization of the hip, a role
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which may be amplified when there is abnormal bone mor-
phology, as occurs in femoroacetabular impingement
(FAI) or hip dysplasia, or when the other stabilizing struc-
tures, such as the capsule, are deficient, as occurs in capsu-

lar laxity or joint hypermobility.

Structural anatomy
Wenger et al. [17] have previously likened the LT to the
anterior cruciate ligament (ACL) of the knee. They pro-
posed that the structural anatomy (double bundle) and
ultimate load to failure were similar to the ACL and, as
such, the LT may play a role in the hip similar to that of
the ACL in the knee.

Although it remains unclear whether the LT assumes
the same important role in stability of the hip, there are
striking anatomical similarities between the two. The LT is
a pyramidal structure (Fig. 1) with a mean length of 30—
35mm [11], similar to the ACL. The ligament has a broad
origin from almost the entire transverse acetabular liga-
ment and is attached to the ischial and pubic bases by two
bands or bundles [18, 19], with the posterior bundle stron-
ger than the anterior bundle. Again, this is similar to the
ACL [20]. On the ischial side, the origin of the LT is
described as being stronger and marginally broader,
extending past the osseous cavity of the acetabulum and
onto the periosteum of the ischium and the capsule [21].
Both the LT and the ACL are surrounded by synovium
[22], which is commonly found to be inflamed at the time
of arthroscopy [23].

An important anatomic difference between the two liga-
ments is the base from which they originate. While the
ACL arises distinctly from the tibial plateau [20], the LT
has an attachment on the adjacent postero-inferior aspect
of the acetabular cotyloid fossa which contains fibro-fatty
tissue (pulvinar) and small vessels encased in synovium
[24]. This ‘pulvinar’ is sometimes found to be hyperemic
in the setting of LT synovitis [25], suggesting the

Fig. 1. Intra-operative image of the normal LT showing the dou-
ble bundle anatomy.

synovium of the pulvinar and LT are confluent, and both
may be impinged during abnormal rotation of the femoral
head. More recently, the LT has been shown to have multi-
ple attachment sites (up to six) from the base of the coty-
loid fossa [26]. These anatomic findings alone would
suggest the LT plays an integral role in the coaptation of
the acetabulum and femoral head in a dynamic manner.

Mechanical properties

A key question regarding the importance of the LT, and its
possible similarity to the ACL, relates to its strength and
conflicting evidence exists in the literature on this matter.
In 2007, Wegner et al. published a frequently cited study in
which they determined the ultimate load to failure of the
LT was similar to that of the human ACL. The authors, in
fact, used a porcine model loading the porcine LTs in cus-
tom fixation rings and found that the mean ultimate load
to failure of the LT was 882 N, which is similar to a human
ACL [17]. More recently, Philippon ef al. [27] studied the
human LT, using a custom ball and socket fixture and
dynamic tensile testing machine, and found a mean ulti-
mate failure load of 204 N, with a mean native length of
32mm and cross-sectional area of 59 mm? with mean
length of 38 mm at its yield point and 53 mm at its failure
point [27]. Furthermore, the LT has a linear stiffness of
16 N/mm and elastic modulus of 9.24 MPa, which is signit-
icantly less than a human ACL refuting earlier suggestions
of the LT assuming a role similar to the ACL in the knee.
However, a limitation here is that cadaveric specimens
with a mean age of 54 years were used, which may not
reflect the true ultimate load to failure in young adults. In
fact, the ultimate load to failure of the cadaveric LTs is
more similar to human medial patellofemoral ligament
(MPFL) of the knee [28] and the anterolateral ligament of
the knee [29], rather than the ACL.

HISTOLOGY

Histologically, the LT is composed of parallel undulating
collagen fiber bundles of type I, III, IV and V collagen,
along with fibrous and adipose tissue interspersed with
blood vessels and nerves [30]. This connective tissue
(CT) matrix is surrounded by a layer of investing syno-
vium composed of a single layer of cuboidal cells. This his-
tological structure is similar to the ACL [31], which has a
majority composition of type I collagen fibers arranged in
parallel undulating bundles. However, it bears similarity to
the MPFL in histology also [32], with loose collagen struc-
tures interspersed in a dense collagen framework.

Thus, while the LT shares many histological and ana-
tomical similarities to the ACL, its mechanical properties
are more similar to the MPFL.
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Biomechanical studies of the LT in isolation

In studies where only the LT, femoral head and acetabu-
lum are preserved [11-13], and the hip is stressed until the
end point of the LT is reached, it has been found that the
range of motion values required to reach such an end-
point in simple uni-planar motion are well outside the nor-
mal physiological range of motion of the hip—bone to
bone contact occurs well before the end point of the LT is
reached in uni-planar motion. This suggests the LT is not
a primary restraint but rather a secondary checkrein. Its
main role appears to be in multi-planar motion, or more
natural physiologic motion of the hip, where its end point
is reached much earlier, especially in flexion and abduction
(similar to a squat position) [13].

The LT moves with the femoral head, much like a sling,
and wraps around it in such a way to prevent inferior sub-
luxation with abduction, posterior subluxation with IR and
anterior subluxation with ER [12]. The LT becomes taut
with ER and lax with IR in flexion [33]. The LT has main
effect on limiting rotations in the mid-high flexion position
[15]. It is perhaps in these positions (such as standing to
sitting, getting into and out of car etc.) where the LT is
stressed the most. All the aforementioned studies assume a
normal non-dysplastic hip. In the setting of hip dysplasia
or capsular laxity, the role of the LT becomes more pro-
nounced in stabilizing the hip [34].

Biomechanical studies of the LT and capsular ligaments
When the femoral head, acetabulum, LT and the capsular
ligaments (iliofemoral, pubofemoral and ischiofemoral) are
preserved in a cadaveric model the contributions of the LT
to hip stability change. van Arkel et al. found that the cap-
sular ligaments provide the primary restraint to IR and ER
throughout the complete range of motion of the hip. They
found that the LT has a more defined role a secondary
restraint in ER during high flexion (>60°) with neutral/
full adduction [14], with a minimal contribution in IR and
ER FLEX AB. Further they found that the main restraint
to the high flex ER position is the lateral iliofemoral liga-
ment, advocating for capsular suturing at the time of LT
debridement/repair.

If the LT assumes a secondary stabilizing role in the
presence of intact capsular ligaments, it may be of more
importance when these ligaments are released or lax. This
suggestion is supported by the work of O’Donnell et al.,
who found that routine anterior capsular tightening, using
either RF or suture plication, leads to significant improve-
ment in results for patients having partial LT tear debride-
ments [35]. This method has resulted in a lesser re-tear
rate than their earlier method of LT debridement alone

[36].
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The above findings also appear to be consistent with
that same group’s previously devised LT test [37]—pain at
the extremes of ER/IR in a position of mid flexion and
slight abduction. We believe this test reproduces the end-
point of the LT at the extreme of the assessed multi-planar
motion, with an inflamed, and/or torn LT inciting a pain
response within the hip.

Dysplasia of the hip
As the LT has been proposed to be a secondary stabilizer,
its role in hip dysplasia is of particular interest, both in
developmental dysplasia of the hip (DDH) and FAL It is
perhaps the loss of osseous stability, which increases the
importance of the LT as a stabilizer and hence leads to syn-
ovitis and/or tears of the LT.

In the setting of DDH it has been shown that the LT
undergoes various adaptations including: disruption of the
collagen framework; elastic fibers become thicker and
more numerous; cells are irregularly distributed and are in
different stages of functional activity [38]. Further fibro-
cartilaginous metaplasia is seen within the LT which may
be secondary to the stress.
Interestingly, there appears to be a change in the collagen
compositions of the LT in DDH, with an increase in both
type III collagen [39] and the ratio of type III to type I col-
lagen [40]. These changes suggest that the LT adapts to
increased mechanical stress in DDH by becoming thicker

increased mechanical

and more elastic. This may lead to an increased propensity
to tear. Interestingly, patients with CT disorders (such as
Marfans and Ehlers-Danlos syndrome) often have muta-
tions to the genes encoding type III collagen [41], it may
be that the upregulation of this particular type of collagen,
as is also the case with DDH patients [39, 40], is partly
responsible for changes to the LT in such patients, in addi-
tion to the capsular laxity.

FEMOROACETABULAR IMPINGEMENT
In the setting of FAI, tear prevalence of up to 51% has
been reported at the time of hip arthroscopy [5-7]. In ath-
letes with FAI these numbers are higher with a 70% tear
rate (60% partial and 10% complete) which is postulated
occur as a result of increased stress on the LT [42]. The
precise reason for the increased prevalence of LT tears in
this cohort of patients has yet to be fully elucidated. As in
the setting of DDH, studies have demonstrated that LT
tears are associated with abnormal bone morphology and
increased age, with LT tears being more common in
patients with a low lateral coverage index (center edge
angle—acetabular inclination) [43] and with a lower cen-
ter edge angle alone [44]. This may be due to the levering
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effect of the femoral head on the acetabulum causing
increased strain in the LT with ultimate failure.

The presence of LT pathology in the setting of FAI
often heralds more significant chondral damage to both
the femoral and acetabular articular surfaces. There is a 3.1
times higher incidence of chondral damage, particularly to
the middle-inferior part of the acetabular fossa and the
apex of the femoral head, with the presence of LT tears
[44, 45]. Unfortunately, the exact etiology of this associa-
tion and whether it is more prevalent in cam or pincer
impingement has not been borne out in these studies. The
question still remains, which comes first the LT tear or the
chondral damage?

It is possible that the altered biomechanics created in
the setting of FAI subjects the LT to increased damage. It
is known that patients with cam impingement typically
have reduced internal rotation [46] which may result in
tightening of the LT. Many of these patients compensate
by externally rotating their hips during hip flexion to
account for the cam deformity. It is possible that this
maneuver when performed rapidly, as occurs in sporting
activity, may predispose a tight and less compliant LT to
excess forces resulting in tearing over time. Further, a defi-
cient LT renders the hip less stable particularly during the
extremes of motion, as outlined above, which may increase
the shear forces on the articular surfaces of both the femo-
ral head and the acetabulum, resulting in accelerated chon-

dral damage.

Benign joint hypermobility

Of particular interest recently has been the pathological
changes to the LT in states of capsular laxity and general-
ized hypermobility. When the capsular ligaments are lax, as
occurs in generalized hypermobility, the hip has an
increased range of motion, which increases the excursion
and endpoints of the LT and possibly leads to its stretching
and eventual tearing.

Patients with generalized hypermobility (as defined by a
Beighton test score of 4 or more) have a reduced capsular
thickness (capsular laxity) and a high prevalence of partial
tears of the LT [47]. Further, a thin hip capsule alone is
associated with a higher incidence of LT pathology [48].

Athletes are more hypermobile than the general popula-
tion, with a high incidence of capsular laxity seen in some
sports in particular such as golf, running, gymnastics [49].
It is perhaps in this group of athletes where LT damage
assumes more significance as a contributor to microinst-
ability [S0]. The incidence of chondral damage is high
across all sports including golf, dancing, soccer and tennis
[49]. It is proposed that the pattern of chondral damage
[S1] well described in the setting of athletes with capsular

laxity [49], may be a result of increased laxity of the cap-
sule and subsequent damage to the LT, which in turn leads
to microinstability of the hip and chondral damage. The
high prevalence of FAI in athletes [52, 53] compounds this
situation by putting the LT at a levering disadvantage. In
patients with LT tears who have generalized hypermobility,
reconstruction of the LT has improved patient related out-
come measures [54, 55].

Role in pain generation

Degenerative arthritis of the hip is a painful condition. It is
proposed that free nerve endings found in the LT [30, 56]
mediate a component of the pain response in degenerative
arthritis. Further, it is well established that tears or synovi-
tis of the LT alone, without the presence of any other hip
pathology, are capable of causing hip pain [8, 10].
Debridement and/or reconstruction of the ligament alone
has been shown to be effective in alleviating pain in the
majority of patients [23, 54, SS, 57, 58]. This suggests that
the LT is in itself a pain generator, mediated by the free
nerve endings within the ligament. Radiofrequency abla-
tion and or debridement possibly denudes these free nerve
endings, eliminating the source of the painful hip, however,
this has not been proven histologically yet.

Histology of free nerve endings

The presence or absence of nerve fibers within the LT has
been controversial however more recent studies [30, 59, 60]
have definitively shown that most, if not all, LT have nerve
fibers, with a mean diameter of 56.5 um [30], consistent
with pain mediating unmyelinated fibers. These free nerve
endings are concentrated in the center of the ligament [56]
and appear to be of type Iva (nociceptive) variety [S6, 60],
proving a definite role for the LT as source of pain within
the hip. Although concentrated in the center of the liga-
ment, they are sparsely dispersed in the rest of the ligament
proper. Thus, any tears or synovitis of the LT, mediate pain
by exciting these free nerve endings.

Degenerative arthritis of the hip
In degenerative arthritis of the hip, it has been postulated
that the LT assumes a role more consistent with pain-gen-
eration [8, 58, 61]. In their study of eleven cadaveric hip
joints with degeneration, Samptachalit et al. found that the
LT shows a spectrum of degenerative changes similar to
tendon pathology. The thinnest LT undergoes near com-
plete disruption of the ligament, intermediate thickness
LTs show fatty replacement with and without fibromatous
degeneration, fibromatous degeneration with and without
mucoid degeneration and eosinophilic change, whereas the
thickest LT show mucoid and fibromatous degeneration
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with microscopic tears [62]. Dehao et al. [30] further
found occasional foci of osteochondroid and chondroid
changes within the CT component which were more prev-
alent with more severe degeneration of the hip.

It is possible that in the degenerative hip, in addition to
well established foci of pain such as the chondral damage,
the structural damage to the LT alone (Fig. 2) is capable
of exciting free nerve endings in the ligament. This damage
appears to be graded, with mild changes in less affected
hips and more severe metaplastic changes to the LT in
more affected hips. A causal relationship between the
severity of hip arthritis and increasing damage to the LT is
yet to be established by radio-histological studies.

Shinohara et al. [63] examined the histological changes
in complete LT detachments from the femoral head and
found that the transition zone of the femoral head attach-
ment undergoes histological change including loss of type
II collagen and aggrecan, and abundance of single-stranded
DNA positive chondrocytes. The upregulation of single
stranded cells suggests that single stranded DNA damage
is amplified in the presence of detachment, indicating that
detachment or tears are not a purely mechanical event but
rather may result from underlying weakening of the transi-
tion zone.

This appears to be consistent with the weakening of the
ligament seen in degenerative arthritis. A weakened liga-
ment will conduct more stress and hence excite more pain
fibers. Studying if the concentration of free nerve endings
in the degenerating LT increase or decrease will help us
better understand the contribution of the LT as a pain gen-
erator in the degenerating hip. To this effect, a recent study
has found that in the setting of arthritis, there is a definite

Fig. 2. Intra-operative image of a degenerate LT in the setting of
early osteoarthritis of the hip.
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upregulation of free nerve endings in both the capsule and
the LT [64].

Interestingly, recent work on the LT has found small
arterioles within the ligament proper which provide a
blood supply to the ligament. There are numerous small
blood vessels within the CT matrix of the ligament with a
mean diameter of 182 pm. Most of the smaller arteries are
surrounded by a layer of encircling fat [30]. This may pro-
vide a cushioning effect to maintain patency of the vessels
during hip motion and so preserve an unhindered blood
supply to the LT.

It is possible that this unhindered cushioned blood sup-
ply is what allows the LT to degenerate in a spectrum-like
manner and also allows nourishment of the LT’s free nerve
endings despite the presence of bone to bone contact in
severe degenerative arthritis.

Role in proprioception

The LT was previously thought to serve a proprioceptive
role in the hip, however, the presence or absence of mecha-
noreceptors within the LT continues to be a subject of
debate. There are four types of nerve endings based on
Freeman and Wyke’s classification [65]: Type I (Ruffini)
low-threshold and slow-adapting; Type II (Pacini)
low-threshold and fast-adapting; Type III (Golgi) low-
threshold and slow-adapting; and type IV (Free nerve end-
ings) high-threshold nociceptors.

Some recent histological studies [66, 67] have shown
that there is a lack of any of the Type I-III mechanorecep-
tors in either the LT or the hip joint capsule. However,
Moraes et al. [64] found all four types of mechanorecep-
tors in the labrum, capsule and the LT, and an upregula-
tion of these receptors in the setting of arthrosis.

It is possible that the suggested proprioceptive role of
the LT is mediated by the presence of mechanoreceptors,
however, the free nerve endings themselves may subserve a
proprioceptive role in the painful hip.

Role in synovial fluid distribution

Under normal physiologic loads, the hip joint is lubricated
by fluid film lubrication [68]. The LT, by virtue of its intra-
articular position and its motion with femoral head rota-
tion, has proposed to have a ‘windshield wiper’ effect to
facilitate synovial fluid distribution [4]. It is possible that as
the femoral head rotates, the LT acting in a sling-like man-
ner, distributes synovial fluid across the femoral head sur-
face, much the same way as a windshield wiper of the car.
This may allow for more equal distribution of synovial fluid
across the hip joint, however, this has not yet been proven.
Although this theory has often been quoted, the original
source of the theory is uncertain.
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Synovitis is being increasingly recognized as central to
degenerative arthritis of the hip [69, 70]. It is possible that
in degenerative arthritis of the hip, due to the increased
fluid secondary to synovitis and the thickening and meta-
plasia of the LT as previously discussed, the LT is both
weaker and at a mechanical disadvantage to distribute the
increased volume of synovial fluid within the early degener-
ate hip. This may affect the proper lubrication of the hip,
and accelerate damage to the hip cartilage.

CONCLUSION

The LT is not a redundant structure in the adult hip. Its
primary role appears to be as a secondary stabilizer to sup-
plement the work of the capsular ligaments, particularly in
mid-flexion, abduction/adduction and rotation. It may
have a more defined role to prevent subluxation in a sling
function around the femoral head. It acts as a source of
pain within the hip joint, a role subserved by the free nerve
endings in the ligament, and undergoes mechanical and
histological transformations based on hip pathology. These
same free nerve endings may serve a secondary propriocep-
tive role in the painful hip. Further, the LT may act to dis-
tribute synovial fluid within the hip joint.
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