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The appearance of rogue waves in deep sea is investigated by
using the modified nonlinear Schrödinger (MNLS) equation in one
spatial dimension with random initial conditions that are assumed
to be normally distributed, with a spectrum approximating real-
istic conditions of a unidirectional sea state. It is shown that one
can use the incomplete information contained in this spectrum as
prior and supplement this information with the MNLS dynamics
to reliably estimate the probability distribution of the sea sur-
face elevation far in the tail at later times. Our results indicate
that rogue waves occur when the system hits unlikely pockets of
wave configurations that trigger large disturbances of the surface
height. The rogue wave precursors in these pockets are wave pat-
terns of regular height, but with a very specific shape that is iden-
tified explicitly, thereby allowing for early detection. The method
proposed here combines Monte Carlo sampling with tools from
large deviations theory that reduce the calculation of the most
likely rogue wave precursors to an optimization problem that can
be solved efficiently. This approach is transferable to other prob-
lems in which the system’s governing equations contain random
initial conditions and/or parameters.

Laplace method | JONSWAP spectrum | peregrine soliton | intermittency |
Monte Carlo

Rogue waves, long considered a figment of sailors’ imagina-
tions, are now recognized to be a real, and serious, threat for

boats and naval structures (1, 2). Oceanographers define them as
deep-water waves whose crest-to-trough height H exceeds twice
the significant wave height Hs , which itself is four times the SD of
the ocean surface elevation. Rogue waves appear suddenly and
unpredictably and can lead to water walls with vertical size on
the order of 20–30 m (3, 4), with enormous destructive power.
Although rare, they tend to occur more frequently than predicted
by linear Gaussian theory (5, 6). While the mechanisms under-
lying their appearance remain under debate (7–9), one plausible
scenario has emerged over the years: It involves the phenomenon
of modulational instability (10, 11), a nonlinear amplification
mechanism by which many weakly interacting waves of regular
size can create a much larger one. Such an instability arises in the
context of the focusing nonlinear Schrödinger (NLS) equation
(11–17) or its higher-order variants (18–22), which are known to
be good models for the evolution of a unidirectional, narrow-
banded surface wave field in a deep sea. Support for the descrip-
tion of rogue waves through such envelope equations recently
came from experiments in water tanks (23–26), where Dysthe’s
modified NLS (MNLS) equation in one spatial dimension (18,
19) was shown to accurately describe the mechanism creating
coherent structures which soak up energy from its surroundings.
While these experiments and other theoretical works (27, 28)
give grounds for the use of MNLS to describe rogue waves, they
have not addressed the question of their likelihood of appear-
ance. Some progress in this direction has been recently made in
ref. 29, where a reduced model based on MNLS was used to esti-
mate the probability of a given amplitude within a certain time,
and thereby compute the tail of the surface height distribution.
These calculations were done by using an ansatz for the solu-
tions of MNLS, effectively making the problem 2D. The purpose
of this work is to remove this approximation and study the prob-
lem in its full generality. Specifically, we consider the MNLS with

random initial data drawn from a Gaussian distribution (30). The
spectrum of this field is chosen to have a width comparable to
that of the Joint North Sea Wave Project (JONSWAP) spectrum
(31, 32) obtained from observations in the North Sea. We cal-
culate the probability of occurrence of a large amplitude solu-
tion of MNLS out of these random initial data and thereby also
estimate the tail of the surface height distribution. These calcu-
lations are performed within the framework of large deviations
theory (LDT), which predicts the most likely way by which large
disturbances arise and therefore also explains the mechanism of
rogue wave creation. Our results are validated by comparison
with brute-force Monte Carlo simulations, which indicate that
rogue waves in MNLS are indeed within the realm of LDT. Our
approach therefore gives an efficient way to assess the probability
of large waves and their mechanism of creation.

1. Problem Setup
Our starting point will be the MNLS equation for the evolution
of the complex envelope u(t , x ) of the sea surface in deep water
(18), in terms of which the surface elevation reads η(t , x ) =

<
(
u(t , x )e i(k0x−ω0t)

)
(here k0 denotes the carrier wave number,

ω0 =
√
gk0, and g is the gravitational acceleration). Measuring

u and x in units of k−1
0 and t in ω−1

0 , we can write MNLS in
nondimensional form as
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where the bar denotes complex conjugation. We will consider
Eq. 1 with random initial condition u0(x ) ≡ u(0, x ), constructed
via their Fourier representation,
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u0(x ) =
∑
n∈Z

e iknx (2Ĉn)
1/2
θn , Ĉn = Ae−k2

n /(2∆2), [2]

where kn = 2πn/L, θn are complex Gaussian variables with
mean zero and covariance Eθn θ̄m = δm,n , Eθnθm = Eθ̄n θ̄m = 0.
This guarantees that u0(x ) is a Gaussian field with mean zero and
E(u0(x )ū0(x ′)) = 2

∑
n∈Z e

ikn (x−x ′)Ĉn . To make contact with
the observational data, the amplitude A and the width ∆ in Eq.
2 are picked so that Ĉn has the same height and area as the
JONSWAP spectrum (31, 32); see Supporting Information for
details.

Because the initial data for Eq. 1 are random, so is the solution
at time t > 0, and our aim is to compute

PT (z ) ≡ P
(
F (u(T )) ≥ z

)
, [3]

where P denotes probability over the initial data and F is a
scalar functional depending on u at time T > 0. Even though
our method is applicable to more general observables, here we
will focus on

F (u(T )) = max
x∈[0,L]

|u(T , x )|. [4]

2. LDT Approach
A brute-force approach to calculate Eq. 3 is Monte Carlo sam-
pling: Generate random initial conditions u0(x ) by picking ran-
dom θn ’s in Eq. 2, evolve each of these u0(x ) deterministically via
Eq. 1 up to time t = T to get u(T , x ), and count the proportion
that fulfill F (u(T ))≥ z . While this method is simple, and will
be used below as benchmark, it loses efficiency when z is large,
which is precisely the regime of interest for the tails of the distri-
bution of F (u(T )). In that regime, a more efficient approach is
to rely on results from LDT which assert that Eq. 3 can be esti-
mated by identifying the most likely initial condition that is con-
sistent with F (u(T ))≥ z . To see how this result comes about,
recall that the probability density of u0 is formally proportional
to exp(− 1

2
‖u0‖2C ), where ‖u0‖2C is given by

‖u0‖2C =
∑
n∈Z

|ân |2

Ĉn

, ân =
1

L

∫ L

0

e−iknxu0(x )dx . [5]

To calculate Eq. 3 we should integrate this density over the set
Ω(z ) = {u0 : F (u(T , u0)) ≥ z}, which is hard to do in practice.
Instead, we can estimate the integral by Laplace’s method. As
shown in Materials and Methods, this is justified for large z , when
the probability of the set Ω(z ) is dominated by a single u0(x )
that contributes most to the integral and can be identified via the
constrained minimization problem

1

2
min

u0∈Ω(z)
‖u0‖2C ≡ IT (z ), [6]

which then yields the following LDT estimate for Eq. 3

PT (z ) � exp (−IT (z )) . [7]

Here,�means that the ratio of the logarithms of both sides tends
to 1 as z→∞. As discussed in Materials and Methods, a multipli-
cation prefactor can be added to Eq. 7, but it does not affect
significantly the tail of PT (z ) on a logarithmic scale.

In practice, the constraint F (u(T , u0)) ≥ z can be imposed by
adding a Lagrange multiplier term to Eq. 6, and it is easier to use
this multiplier as control parameter and simply see a posteriori
what value of z it implies. That is to say, perform for various
values of λ the minimization

min
u0

(
1

2
‖u0‖2C − λF (u(T , u0))

)
≡ ST (λ), [8]

over all u0 of the form in Eq. 2 (no constraint), then observe that
this implies the parametric representation

IT (z (λ)) =
1

2
‖u?0 (λ)‖2C , z (λ) = F (u(T , u?0 (λ))). [9]

where u?0 (λ) denotes the minimizer obtained in Eq. 8. It is easy
to see from Eqs. 6 and 8 that ST (λ) is the Legendre transform of
IT (z ) since:

ST (λ) = sup
z∈R

(λz − IT (z )) = sup
z∈R

(
λz − 1

2
inf

u0∈Ω(z)
‖u0‖2C

)
,

[10]

3. Results
We considered two sets of parameters. In set 1, we took
A= 5.4 · 10−5k−2

0 and ∆ = 0.19k0. Converting back into dimen-
sional units by using k−1

0 = 36 m consistent with the JONSWAP
spectrum (31, 32), this implies a significant wave height
Hs = 4

√
C (0) = 3.3 m classified as a “rough sea” (33). It also

yields a Benjamin–Feir index (BFI) = 2
√

2C (0)/∆ = 0.34, (32,
34), meaning that the modulational instability of a typical ini-
tial condition is of medium intensity. In set 2, we took A= 3.4 ·
10−4k−2

0 and ∆ = 0.19k0, for which Hs = 8.2 m is that of a “high
sea” and the BFI is 0.85, meaning that the modulational instabil-
ity of a typical initial condition is stronger.

Fig. 1, Upper shows the time evolution of |u(t , x )| start-
ing from an initial condition from set 1 optimized so that
maxx |u(T , x )|= 8 m at T = 20 min. For comparison, Fig. 1,
Lower shows |u(t , x )| for a typical initial condition drawn from its
Gaussian distribution. To illustrate what is special about the ini-
tial conditions identified by our optimization procedure, in Fig. 2,
we show snapshots of the surface elevation η(t , x ) at three differ-
ent times, t = 0, 10, 20 min (black lines), using the constraint that
maxx |u(T , x )| ≥ 4.8 m at T = 20 min. Additionally, we aver-
age all Monte Carlo samples achieving maxx |u(t , x )| ≥ 4.8 m,
translated to the origin. Snapshots of this mean configuration are
shown in Fig. 2 (blue lines). They agree well with those of the
optimized solution (black lines). The one SD spread around the
mean Monte Carlo realization (light blue) is reasonably small,
especially around the rogue wave at final time. This indicates
that the event maxx |u(T , x )| ≥ 4.8 m is indeed realized with
probability close to 1 by starting from the most likely initial
condition consistent with this event, as predicted by LDT. The

Fig. 1. (Upper) Time evolution of |u(t, x)| from an initial condition opti-
mized for maxx|u(T, x)| ≥ 8 m at T = 20 min. (Lower) Same for a typical
Gaussian random initial condition.
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Fig. 2. Comparison between the average realization reaching maxx|u(T , x)|
≥ 4.8 m at T = 20 min (dark blue) and one SD around this mean (light blue),
with the solution reaching the same amplitude starting from the maximum-
likelihood initial condition (black) for t = 0, 10, 20 min.

usefulness of LDT is confirmed in Fig. 3, depicting the prob-
abilities of maxx |u(T , x )| for both sets 1 and 2 calculated via
LDT optimization (lines), compared with Monte Carlo sampling
(dots). As can be seen, the agreement is remarkable, especially
in the tail corresponding to the rogue wave regime. As expected,
the Monte Carlo sampling becomes inaccurate in the tail, since
there, the probabilities are dominated by unlikely events. The
LDT calculation, in contrast, remains efficient and accurate far
in the tail.

The probabilities plotted in Fig. 3 show several remark-
able features. First, they indicate that, as T gets larger, their
tails fatten significantly. For example, in set 1 PT=20 min(6 m)≈
10−5, which is 5 orders of magnitude larger than initially,
Pt=0 min(6 m) ≈ 10−10. Secondly, the probabilities converge to a
limiting density for large T . This occurs after some decorrelation
time τc ≈ 10 min in set 1 and τc ≈ 3 min in set 2. Similarly, the
LDT results converge. In fact, this convergence can be observed
at the level of the trajectories generated from the optimal u?0 . As

A B

Fig. 3. Probabilities PT (z) of maxx|u(T, x)| for different times T for sets 1 (A) and 2 (B). The probabilities estimated by Monte Carlo sampling with 106

realizations (dots) are compared with those predicted by LDT (lines). These probabilities agree over ∼5 orders of magnitude in probability, although LDT
allows for the calculation of the tail where Monte Carlo becomes prohibitively costly. The error bars in the Monte Carlo results represent the statistical error
of 2 SD (95% confidence interval) for the Bernoulli distribution with parameter PT (z).

Fig. 4 shows, reading these trajectories backward from t = T ,
their end portions coincide, regardless of whether T = 20 min,
T = 15 min, or T = 10 min. The implications of these observa-
tions, in particular on the mechanism of creation of rogue waves
and their probability of appearance within a time window, are
discussed in Interpretation.

Before doing so, let us discuss the scalability of our results to
larger domain sizes; see Supporting Information for more details.
As shown above, the optimization procedure based on LDT pre-
dicts that the most likely way a rogue wave will occur in the
domain is via the apparition of a single large peak in |u(t , x )|.
In the setup considered before, this prediction is confirmed by
the brute-force simulations using Monte Carlo sampling. It is
clear, however, that for increased domain size—e.g., by taking
a domain size of NL with N � 1—it will become increasingly
likely to observe multiple peaks, for the simple reason that large
waves can occur independently at multiple sufficiently separated
locations. In these large domains, the large deviation predictions
remain valid if we look at the maximum of |u(t , x )| in observa-
tion windows that are not too large (that is, about the size of the
domain L considered above). However, they deteriorate if we
consider this maximum in the entire domain of size NL, in the
sense that the value P

(
maxx∈[0,NL] |u(t , x )| ≥ z

)
predicted by

LDT matches that from Monte Carlo sampling at values of z that
are pushed further away in the tails. This is an entropic effect,
which is easy to correct for: Events in different subwindows must
be considered independent, and their probabilities superposed.
That is, if we denote by

PN
T (z ) = P

(
max

x∈[0,NL]
|u(T , x )| ≥ z

)
, [11]

it can be related to PT (z ) = P(maxx∈[0,L]|u(T , x )| ≥ z ) via

PN
T (z ) = 1− (1− PT (z ))N . [12]

This formula is derived in Supporting Information and shown to
accurately explain the numerical results. For efficiency, L is cho-
sen to be the smallest domain size for which boundary effects can
be neglected, in the sense that the shape of the optimal trajecto-
ries does no longer change if L is increased further. In effect,
this provides us with a method to scale up our results to arbitrary
large observation windows.

4. Interpretation
The convergence of PT (z ) toward a limiting function P(z ) has
important consequences for the significance and interpretation
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Fig. 4. Contour plot of the optimal trajectories from LDT for T = 10, 15,
and 20 min in set 1. The trajectories, superposed to match at t = T , coin-
cide, which is consistent with the convergence of the probabilities PT (z) for
large T .

of our method and its results. Notice first that this convergence
can be explained if we assume that the probability distribution of
the solutions to Eq. 1 with Gaussian initial data converges to an
invariant measure. In this case, for large T , the Monte Carlo sim-
ulations will sample the value of maxx |u| on this invariant mea-
sure, and the optimization procedure based on LDT will do the
same. The timescale τc over which convergence occurs depends
on how far this invariant measure is from the initial Gaussian
measure of u0(x ). Interestingly, the values we observe for τc are
in rough agreement with the time scales predicted by the semi-
classical limit of NLS that describes high-power pulse propaga-
tion (35, 36). As recalled in Supporting Information, this approach
predicts that the timescale of apparition of a focusing solution
starting from a large initial pulse of maximal amplitude Ui and
length-scale Li is τc =

√
TnlTlin, where Tnl =

(
1
2
ω0k

2
0U

2
i

)−1 is
the nonlinear timescale for modulational instability and Tlin =
8ω−1

0 k2
0L

2
i is the linear timescale associated with group disper-

sion. Setting Ui = Hs (the size at the onset of rogue waves) and
Li =

√
2π∆−1 (the correlation length of the initial field) gives

τc ' 18 min for set 1 and τc ' 8 min for set 2, consistent with the
convergence times of PT (z ). This observation has implications in
terms of the mechanism of apparition of rogue waves, in partic-
ular, their connection to the so-called Peregrine soliton, that has
been invoked as prototype mechanism for rogue wave creation
(5, 13, 37–40), in particular for water waves (24, 25, 41), plasmas
(42), and fiber optics (36, 43, 44). This connection is discussed in
Supporting Information.

Our findings also indicate that, even though the assumption
that u0(x ) is Gaussian is incorrect in the tail [that is, PT=0(z ) is
not equal to the limiting P(z ) in the tail], it contains the right
seeds to estimate P(z ) via PT (z ) if T & τc . (This convergence
occurs on the timescale τc which is much smaller than the mix-
ing time for the solutions of Eq. 1, i.e., the time it would take
from a given initial condition, rather than an ensemble thereof,
to sample the invariant measure.) Altogether, this is consistent
with the scenario put forward by Sapsis and coworkers in refs.
45 and 46 to explain how extreme events arise in intermittent
dynamical systems and calculate their probability: They occur
when the system hits small instability pockets which trigger a

large transient excursion. In this scenario, as long as the initial
probability distribution in these pockets is accurate, the dynam-
ics will permit precise estimation of the distribution tail. In some
sense, the distribution of the initial condition plays a role of the
prior distribution in Bayesian inference, and the posterior can be
effectively sampled by adding the additional information from
the dynamics over short periods of time during which instabil-
ities can occur. [Note in particular that the Gaussian field in
Eq. 2 is the random field that maximizes entropy given the con-
straint on its covariance C (x ).] In ref. 45, this picture is made
predictive by using a 2D ansatz for the initial condition u0(x )
to avoid having to perform sampling in high dimension over
the original u0(x ). What our results show is that this approx-
imation can be avoided all together by using LDT to perform
the calculations directly with the full Gaussian initial condition
in Eq. 2.

Interestingly, we can use the results above to calculate the
probability of occurrence of rogue waves in a given time win-
dow. More precisely, the probability p(z ,TI ) that a rogue wave
of amplitude larger than z be observed in the domain [0,L] dur-
ing [0,TI ] [i.e., that maxt∈[0,TI ] maxx∈[0,L] |u(t , x )| ≥ z ] can be
estimated in terms of P(z ) and τc as

p ≡ P
(

max
t∈[0,TI ]

max
x∈[0,L]

|u(t , x )| ≥ z
)
∼ 1− (1− P(z ))TI /τc ,

[13]

where we use the fact that rogue waves can be considered inde-
pendent on timescales larger than τc and assume TI � τc . The
function p is plotted in Fig. 5 as a function of z and TI . For exam-
ple, for set 1, Eq. 13 indicates a 50% chance to observe a rogue
wave of height z = 4 m (that is,∼8 m from crest-to-trough) after
11 h [using τc = 10 min and P(z = 4 m) = 1.1 ·10−2]; if we wait
30 h, the chance goes up to 85%. Similarly, for set 2, the chance
to observe a wave of 11 m height is ∼50% after 3 h and ∼85%
after 8 h (τc = 3 min and P(z = 11 m) = 1.2 · 10−2).

5. Concluding Remarks
We have shown how an optimization problem building on LDT
can be used to predict the pathway and likelihood of appear-
ance of rogue waves in the solutions of MNLS fed by random
initial data consistent with observations. This setup guarantees
accuracy of the core of the initial distribution, which in turn
permits the precise estimation of its tail via the dynamics. Our
results give quantitative estimate for the probabilities of observ-
ing high-amplitude waves within a given time window. These
results also show that rogue waves have very specific precur-
sors, a feature that was already noted in ref. 47 in the context
of a reduced model and could potentially be used for their early
detection.

A B

Fig. 5. Contour plots of the probability to observe a wave whose amplitude
exceeds z in the time window [0, TI] for sets 1 (A) and 2 (B).
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6. Materials and Methods
Laplace Method and Large Deviations. Here, we recall some standard large
deviation results that rely on the evaluation of Gaussian integrals by
Laplace’s method and are at the core of the method we propose. It is con-
venient to rephrase the problem abstractly and consider the estimation of

P(z) = P(φ(θ) > z), [14]

where θ ∈ RD are Gaussian random variables with mean zero and covari-
ance Id, and φ :RD→R is some real valued function—as long as we trun-
cate the sum in Eq. 2 to a finite number of modes, |n| ≤M, the problem
treated in this work can be cast in this way, with θ playing the role of
C−1/2u0 and φ(·) that of F(u(T , C−1/2·)). The probability P(z) in Eq. 14 is
given by

P(z) = (2π)−D/2
∫

Ω(z)
e−

1
2 |θ|

2
dθ, [15]

where Ω(z) = {θ : φ(θ) > z}. The interesting case is when this set does not
contain the origin, 0 /∈ Ω(z), which we will assume is true when z> 0. We
also make two additional assumptions:

1. The point on the boundary ∂Ω(z) that is closest to the origin is isolated:
Denoting this point as

θ
?(z) = argmin

θ∈∂Ω(z)
|θ|2, [16]

we assume that

1

2
|θ?(z)|2 is strictly increasing with z ≥ 0;

lim
z→∞

1

2
|θ?(z)|2 =∞.

[17]

2. The connected piece of ∂Ω(z) that contains θ?(z) is smooth with a curva-
ture that is bounded by a constant independent of z.

The point θ?(z) satisfies the Euler–Lagrange equation for Eq. 16, with the
constraint incorporated via a Lagrange multiplier term:

θ
?(z) = λ∇φ(θ?(z)) [18]

for some Lagrange multiplier λ. This implies that

θ?(z)

|θ?(z)|
=
∇φ(θ?(z))

|∇φ(θ?(z))|
= n̂(z). [19]

where n̂(z) denotes the inward pointing unit vector normal to ∂Ω(z) at
θ?(z). If we move inside the set Ω(z) from θ?(z) in the direction of n̂(z),
the norm |θ|2 increases under the assumptions in Eq. 17. Indeed, setting
θ = θ?(z) + n̂(z)u with u ≥ 0, we have

|θ|2 = |θ?(z)|2 + 2〈n̂(z), θ?(z)〉u + u2

= |θ?(z)|2 + 2|θ?(z)|z + z2,
[20]

where we use Eq. 19. In fact, if we were to perform the integral in that direc-
tion, the natural variable of integration would be to rescale u→ u/|θ?(z)|.
In particular, if we were to replace Ω(z) by the half space P(z) = {θ | n̂(z) ·
(θ−θ∗(z)) > 0}, it would be easy to estimate the integral in Eq. 15 by intro-
ducing a local coordinate system around θ∗(z), whose first coordinate is in
the direction of n̂(z). Indeed, this would give:

(2π)−D/2
∫

P(z)
e−

1
2 |θ|

2
dθ

= (2π)−D/2
∫ ∞

0
e−

1
2 |θ

? (z)|2−|θ? (z)|u− 1
2 u2

du
∫
RN−1

e−
1
2 |η|

2
dη

= (2π)−1/2e−
1
2 |θ

? (z)|2
∫ ∞

0
e−|θ

? (z)|u− 1
2 u2

du

= (2π)−1/2|θ?(z)|−1e−
1
2 |θ

? (z)|2
∫ ∞

0
e−v− 1

2 |θ
? (z)|−2v2

dv

∼ (2π)−1/2|θ?(z)|−1e−
1
2 |θ

? (z)|2 as z→∞. [21]

The last approximation goes beyond a large deviations estimate (i.e., it
includes the prefactor), and it implies

lim
z→∞

|θ?(z)|−2 log
(

(2π)−D/2
∫

P(z)
e−

1
2 |θ|

2
dθ
)

= −
1

2
. [22]

This log-asymptotic estimate is often written as

∫
P(z)

e−
1
2 |θ|

2
dθ � e−

1
2 |θ

? (z)|2 as z→∞. [23]

Interestingly, while the asymptotic estimate in Eq. 21 does not necessar-
ily apply to the original integral in Eq. 15 [that is, the prefactor may take
different forms depending on the shape of ∂Ω(z) near θ?(z)], the rougher
log-asymptotic estimate in Eq. 23 does as long as the boundary ∂Ω(z) is
smooth, with a curvature that is bounded by a constant independent of z.
This is because the contribution (positive or negative) to the integral over
the region between Ω(z) and P(z) is subdominant in that case, in the sense
that the log of its amplitude is dominated by |θ?(z)|. This is the essence of
the large deviations result that we apply in this work.

Numerical Aspects. To perform the calculations, we solve Eq. 1 with L = 40π
and periodic boundary conditions, and check that this domain is large
enough to make the effect of these boundary conditions negligible (Sup-
porting Information). The spatial domain is discretized by using 212 equidis-
tant grid points, which is enough to resolve the solution of Eq. 1. To evolve
the field u(t, x) in time, we use a pseudospectral second-order exponential
time-differencing (ETD2RK) method (48, 49).

When performing the Monte Carlo simulations, we use 106 realizations of
the random initial data constructed by truncating the sum in Eq. 2 over the
M = 23 modes with −11 ≤ n ≤ 11—i.e., −3∆ ≤ kn ≤ 3∆: These modes
carry most of the variance, and we check that adding more modes to the
initial condition did not affect the results in any significant way (Supporting
Information).

Optimization Procedure. As explained above, the large deviation rate func-
tion IT (z) in Eq. 6 can be evaluated by solving the dual optimization problem
in Eq. 8, which we rewrite as ST (λ) = infu0 E(u0, λ), where we define the cost
function

E(u0, λ) ≡
1

2
‖u0‖2

C − λF(u(T , u0)). [24]

We perform this minimization using steepest descent with adaptive step
(line search) and preconditioning of the gradient (50). This involves evaluat-
ing the (functional) gradient of E(u0, λ) with respect to u0. Using the chain
rule, this gradient can be expressed as (using compact vectorial notation)

δE

δu0
= C−1u0 − λJT (T , u0)

δF

δu
[25]

where J(t, u0) = δu(t, u0)/δu0 is the Jacobian of the transformation u0 →
u(t, u0). Collecting all terms on the right-hand side of the MNLS Eq. 1 into
b(u), this equation can be written as

∂tu = b(u), u(t = 0) = u0, [26]

and it is easy to see that in this notation J(t, u0) satisfies

∂tJ =
δb

δu
J, J(t = 0) = Id. [27]

Consistent with what was done in the Monte Carlo sampling, to get the
results presented above, we truncate the initial data u0 over M = 23 modes
using the representation

u0(x) =

11∑
n=−11

eiknx ân, kn = 2πn/L. [28]

This means that minimization of Eq. 24 is performed in the 2M − 1 = 45
dimensional space spanned by the modes ân, accounting for invariance by
an overall phase shift—to check convergence, we also repeat this calculation
using larger values of M and find no noticeable difference in the results
(Supporting Information).

In practice, the evaluation of the gradient in Eq. 25 is performed by inte-
grating both u(t) and J(t) up to time t = T . Eq. 27 is integrated by using the
same pseudospectral method as for Eq. 1 on the same grid. To perform the
steepest descent step, we then precondition the gradient through scalar
multiplication by the step-independent, diagonal metric with the compo-
nents of the spectrum Ĉn as diagonal elements.
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