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To compensate for sensory processing delays, the visual system
must make predictions to ensure timely and appropriate behav-
iors. Recent work has found predictive information about the
stimulus in neural populations early in vision processing, starting
in the retina. However, to utilize this information, cells down-
stream must be able to read out the predictive information from
the spiking activity of retinal ganglion cells. Here we investigate
whether a downstream cell could learn efficient encoding of
predictive information in its inputs from the correlations in the
inputs themselves, in the absence of other instructive signals. We
simulate learning driven by spiking activity recorded in salaman-
der retina. We model a downstream cell as a binary neuron
receiving a small group of weighted inputs and quantify the
predictive information between activity in the binary neuron and
future input. Input weights change according to spike timing–
dependent learning rules during a training period. We characterize
the readouts learned under spike timing–dependent synaptic up-
date rules, finding that although the fixed points of learning dy-
namics are not associated with absolute optimal readouts they
convey nearly all of the information conveyed by the optimal
readout. Moreover, we find that learned perceptrons transmit po-
sition and velocity information of a moving-bar stimulus nearly as
efficiently as optimal perceptrons. We conclude that predictive in-
formation is, in principle, readable from the perspective of down-
stream neurons in the absence of other inputs. This suggests an
important role for feedforward prediction in sensory encoding.
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To respond efficiently to changing sensory inputs the brain
must predict the future state of the world from past sensory

information. For instance, in the salamander visual system at the
minimum such predictions need to compensate for the 50- to 80-ms
processing time of the retina (1) as well as the time for a motor
response to be generated. Making these predictions requires
leveraging the spatiotemporal structure of the natural world, a
computation that is performed efficiently at the first stage of
visual processing, in populations of retinal ganglion cells
(RGCs) (2). Neurons downstream of the retina likely infer
predictions about object motion, but to do so these downstream
cells must learn to read out predictive information from ret-
inal inputs.
The retina has been used as a model to evaluate the theory of

predictive coding (3–6), in which deviations from an expected
signal are encoded to maximize information transmission effi-
ciency (7–10). Predictive information (11–13) in the retina, in
contrast, is a bottom-up encoding of the predictive aspects of
spatiotemporal structure in sensory stimuli (2, 14). Depending
on context and timescales, it could be advantageous for neural
circuits to use the predictability of stimuli in different ways (6,
15–23). In the retina, internal temporal correlation in population
activity over tens to hundreds of milliseconds can be leveraged to
make predictions about the future state of the external world (2).
Thus, for early visual processing the efficient computation of
predictive information may be a principal function of retinal
circuits and their downstream readouts.

Here we explore how this predictive information encoded in
retinal population firing can be read out and learned by down-
stream circuits. One possible readout mechanism is the percep-
tron (24), that is, a linear weighting of inputs, followed by a
threshold nonlinearity. Such a readout has the advantage of
being a biologically feasible, single-step computation, and pre-
vious work has shown that perceptrons can efficiently read
out predictive information in small sets of cells (2). We show
that optimal perceptron readouts of predictive information are
learnable, via spike-timing–dependent plasticity (STDP) rules, in
the absence of other instructive signals about the stimulus. We
find that each readout’s internal word–word predictive in-
formation, the information it has about the future input activity,
is also related to that readout’s external word–stimulus pre-
dictive information, the information it has about the future of the
stimulus. Moreover, optimal readouts of one are likely to be
near-optimal readouts of the other. This remarkable fact allows
for the efficient encoding of external, stimulus-predictive in-
formation by efficient downstream readout of retinal input
correlations. These results are most relevant to early visual
processing stages.

Results
Fundamentally what matters to the survival of an organism is not
the optimal readout of spiking activity from a particular stimulus
for which information can be explicitly calculated, but instead
the optimal readout of predictive information from stimuli it
encounters in the natural environment. We investigated whether
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efficient readouts of predictive information during a natural-
movie stimulus can be learned. Supposing this readout function
had access to information calculations to determine readout ef-
ficiency, the number of possible readout functions for sets of four
cells exceeds 32,000 (i.e., 22

4−1). For sets of five cells there are
more than two billion possible readout functions. This sampling
problem is simplified by restricting to readouts to perceptrons,
but then the question remains of how the brain finds the optimal
perceptron. A possible solution lies in taking advantage of the
internal word–word predictive information of RGC population
spiking activity and learning an optimal readout based on these
correlated inputs.
We analyzed optimal readouts of predictive information in a

population of larval tiger salamander RGCs (n = 53) previously
recorded using a multielectrode array (2). The retina was stim-
ulated using a moving-bar stimulus as well as a video approxi-
mating the natural habitat of the larval tiger salamander. Evoked
spike patterns were expressed as a binary word across a set of
cells, with a 0 for silence and a 1 for spiking activity (one or more
spikes) in each 16.7-ms time bin. Throughout the paper we will
discuss stimulus information (quantifiable only for activity
recorded during the moving-bar stimulus) and internal wordword
information (quantifiable for both stimulus types).

Reading Out Stimulus Predictive Information in a Sensory Population.
We compared stimulus information and internal predictive in-
formation for spiking activity driven by a moving bar with posi-
tion and velocity determined by second-order damped harmonic
motion (phase plot, Fig. 1A, Top) driven by random velocity
perturbations (Fig. 1A, Bottom). While such dynamics are sim-
ple, they capture some features that are common in the physics
of everyday motion and known to be effective drivers of retinal
activity (15, 25, 26), such as periods of constant velocity and
reversals of direction. Random velocity kicks can trigger a long
excursion from the origin, during which the current position and
velocity of the bar are highly predictive of its future position
and velocity. While we did not directly estimate bar position and
velocity from RGC spiking activity, others have done so with
high accuracy (27) using linear decoding (28).
As an example of how position and velocity encoding in RGCs

generated predictive information we show four cells, all with
sensitivity to particular position and velocity features occurring
100 ms in the past (Fig. 1B), which is consistent with the 50- to
100-ms delay incurred by retinal circuitry (1). Spikes in two of the
RGCs (RGC 13 and 16) indicated, with high probability, that the
bar passed through the center of the image with high speed
100 ms before the spike, whereas spikes in RGC 27 and 49 in-
dicated the bar had low velocity and position far from the center.
All four of these cells were informative of past features of the
moving-bar stimulus, while two of these RGCs (RGC 27 and 49)
were also predictive of future stimulus features (Fig. 1B). This
can be interpreted in the phase plot of the bar dynamics (Fig.
1A). RGC 27 and 49 spiked when the bar was in a region of
phase space where the deterministic forces on the bar were
strong and the deterministic trajectory traveled far from the fixed
point at (0,0), so trajectories were predictable for longer periods
of time.
Graphically, the information spiking activity carries about the

bar stimulus features (position and velocity) is the difference
between entropies of the prior distribution (gray contours, Fig.
1B, replotting the data from Fig. 1A) and the spike-triggered
distribution (Fig. 1B, blue). This is quantified as the mutual in-
formation (Fig. 1C) between spiking activity at time t and the
stimulus position and velocity at t+ dt. Following our qualitative
observations above, each of these cells was highly informative
about past features, but only RGC 27 and 49 conveyed much
predictive stimulus information, defined here and throughout
the rest of the paper as the mutual information Iðxt; fpt+dt, vt+dtgÞ
of spiking activity and stimulus position/velocity at relative time
dt (=1 bin, or +16.7 ms).

Activity across these four cells was informative of future
stimulus, but highly redundant. By reading out only the most
predictive spike patterns nearly all of the predictive information
of a cell group can be compressed to a single bit (2). Exhaustively
sampling a full set of binary readouts for more than four cells is
computationally intractable. Restricting readouts to perceptrons
ameliorates this sampling problem (see Fig. S1 for an estimate of
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Fig. 1. Spikes in sets of RGCs are informative of both past and future po-
sition and velocity of a moving-bar stimulus. (A) A population of RGCs was
stimulated using a moving-bar stimulus, with dynamics of the stochastic
overdamped harmonic oscillator. (Top) Phase plot of the dynamics with
overlaid shading showing the distribution of bar position and velocity over
the duration of the recording. (Bottom) Distribution of stochastic “kicks” to
velocity. (B) Cross-section of the distribution of position and velocity of the
bar stimulus relative to spiking in each of four RGCs, taken at two time
points, Δt =−100 ms (Left, past) and Δt =+16.7 ms (Right, future). Prior
distribution of position and velocity is shown as gray contours in background
to illustrate how spiking in an RGC constrains expected values of bar position
and velocity. (C) Stimulus information quantified for each of the four RGCs
in B as a function of perispike time, from 150 ms before the RGC spike to
100 ms after. RGC 27 and 49 have large amounts of stimulus-predictive in-
formation (Δt >0). (D) Two example readouts (Left: solid black lines indicate
strong connections and dashed gray lines weak ones). The readout-spike-
triggered distribution of position and velocity was computed at perispike
time Δt =−100 ms and Δt =+16.7 ms. Both readouts have high (5.1 and
5.4 bits per s) past information (Δt =−100 ms), but only the green readout
has high stimulus-predictive information (4.2 bits per s). (E) Word–word in-
ternal predictive information is correlated with word–stimulus predictive
information across sets of four cells. (F) The fraction of word–stimulus in-
formation carried by a readout is correlated with the fraction of internal
word–word information carried by that readout. Grayscale shows density of
readouts across the sets in E; superimposed dots show all perceptron read-
outs for this particular set of four cells. Purple and green dots are the ex-
ample readouts from D. Error bars for information estimates are smaller
than the marker size (<0.2 bits per s in E; <0.02 in F). EOM, equation of
motion; info, information; pdf, probability density function; pred, predictive.
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the impact of this restriction). For this set of four RGCs we show
two illustrative examples of perceptron readouts. Both readouts
are highly informative of past stimulus features (Fig. 1D), but
only one readout carried predictive information (green, Fig. 1D).
More generally, a large majority (mean: 78%, SE: 16% across
n = 240 sets) of linear readouts will have predictive information
less than 1 bit per s. For this particular example with known
stimulus feature selectivity a readout with high predictive in-
formation (5.1 bits per s, or 65% of total word–stimulus in-
formation) was found by pooling the most predictive cells with
similar feature selectivity. However, downstream circuits in the
brain must find an effective readout without direct access to
labeled stimulus features.
The generalized correlation between present and future

spiking activity, or internal predictive information, is Iðxt; xt+dtÞ,
where the “word” xt is the binary pattern of spikes (1) and silence
(0) at time t. Across sets of four cells, the stimulus predictive
information is highly correlated with the internal word–word
predictive information (Fig. 1E, r = 0.65, n = 240 sets). More-
over, readouts that carried a large fraction of the word–stimulus
predictive information tended to also carry a large fraction of the
internal word–word predictive information (Fig. 1F). Thus, by
finding effective readouts of internal predictive information the
strong relationship between internal and stimulus prediction
enables downstream neurons to read out stimulus predictive
information without having direct access to the stimulus.
This relationship between internal and stimulus prediction was

established for data recorded during the moving-bar stimulus. To
determine whether this is more general and extends to spiking
activity under different types of visual stimuli for which stimulus
prediction may not be possible to quantify we evaluated the in-
ternal predictive information of spiking activity driven by a nat-
ural video, a clip of a swimming fish at the 10-cm viewing
distance of a typical salamander eye (Fig. 2A), as well as during a
checkerboard stimulus, which is not predictable. To perform
these calculations, we took up to 1,000 random samples of 4- and
10-cell groups of cells from the salamander retina recording and
computed their internal as well as their stimulus predictive in-
formation. Internal predictability reflects the timescale of cor-
relation in the stimulus (Fig. 2B), with the longest timescale for
natural movies and the shortest for a random, flickered check-
erboard stimulus (Materials and Methods). However, the specific
values of stimulus predictive information during the moving-bar
stimulus and the internal predictive information during natural-
movie stimulation were highly correlated across randomly drawn
groups of cells (Fig. 2C; r = 0.65 for sets of 4 cells and 0.80 for
sets of 10 cells; P < 1e-7). Moreover, the efficiency of individual
readouts for each group of cells was highly correlated between
the stimulus types (Fig. 2 D and E). An efficient readout under
one set of stimulus conditions (natural-movie responses) was
likely to be a good readout under other conditions (moving-bar
responses). However, of all possible readouts only a small mi-
nority were efficient readouts of predictive information. We
therefore turned to the question of whether efficient readouts of
predictive information could be learned using simple, biologically
plausible learning rules based on STDP.

Learning the Optimal Readouts of Internal Word–Word Predictive
Information. By finding efficient readouts with high predictive
information we identified a subset of words at time t that were
predictive of activity at time t+Δt. We next asked whether ef-
ficient readouts could be found in an unsupervised fashion using
local learning rules, depending only on the activity of the inputs
and the output, and absent any teaching signal. The success of a
given learning rule is strongly dependent on the structure of
predictive patterns in the data, and in general the complex word–
word temporal structure may make it impossible for a single rule
to find effective weights for all groups of cells. Random
weightings of inputs do not maintain a large fraction of the in-
ternal or stimulus predictive information (Figs. 1F and 2D).
Using the RGC data as inputs, we quantify the predictive capacity

of readouts learned under simple spike-timing–dependent rules. We
simulated a classical form of an STDP rule (29), which strengthens
synapses to inputs that evoke an output spike and weakens synapses
to inputs that follow an output spike. Results for variants of this
basic rule, including triplet-spike STDP (30) and homeostatic
mechanisms, are shown in Fig. S3. In other contexts, such temporal
asymmetry in learning dynamics has been linked to prediction of
neural sequences in populations (31), and we hypothesized that this
could also be useful for identifying the most predictive patterns.
For each set of cells we generated a random set of initial patterns
of input weights and ran a simulation driven by the spiking data
recorded during the natural-movie stimulus. The natural-movie clip
(19.2 s) was repeated 102 times in the experiment, and we drew the
training set from half of these clips (Materials and Methods). Pre-
dictive information was computed on the left-out movie clips.

A B

D E

C

Fig. 2. Internal predictive information can guide stimulus prediction with-
out explicit reference to stimulus parameters. (A) Raster plot of spikes from a
set of four RGCs (same cells as in Fig. 1) to a 19.2-s clip of a natural movie
(frame, Top), with 51 (of 102 total) repetitions of the clip shown. A fish icon
in later plots denotes calculations based on responses to the natural-movie
stimulus. (B) Internal information reflects the spatial and temporal correla-
tions in the stimulus. Average internal information of four-cell sets during
the natural movie (green, longest timescale), moving bar (red), and checker-
board (yellow, shortest timescale). Shaded region represents ±1 SE across
cell sets. (C) Stimulus-predictive information during the moving-bar movie is
correlated with internal predictive information during the natural movie.
Error bars smaller than marker size. (D) The fraction of word–stimulus in-
formation carried by a readout during the moving-bar stimulus is correlated
with the fraction of internal word–word information carried by that readout
during the natural movie. Shading represents average density of readouts
across all randomly sampled sets of four cells (n = 240), with the readouts of
one set of four cells (red; same set in Fig. 1 and A) overlaid. Most readouts
have low predictive information. Error bars are <0.02, smaller than the point
size. (E) For sets of 4 and of 10 cells, linear correlations between the readout-
word internal predictive information and the readout-stimulus predictive
information are high. The distribution of correlations in which readout
identity was shuffled is shown for sets of four cells. pred. info., predictive
information.
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Depending on initial connectivity, one of several final configurations
of readout weights was learned, so each set has multiple learned
readouts (Fig. 3A and Fig. S3). We quantified efficiency of learned
readouts using a firing-rate-adjusted metric that compared the
predictive information of learned readouts to the highest predictive
information of any readout at or below the firing rate of the learned
readout (Fig. 3A). This was done to normalize across readouts and
to ameliorate biases resulting from those that produce more output
spikes; with a wider dynamic range, more input information can be
represented, but we wish to restrict the output cell to a biologically
plausible firing rate.
For small input groups (four cells), learned readouts conveyed

near-optimal predictive information (Fig. 3B). The average
percent of the optimal predictive information learned was 86%
(14% SE, n = 240 sets). Learned readouts did not saturate the
maximum firing rate and were distributed across the range of
readout firing rates, with an average firing rate (mean: 2.3 Hz,
SE: 0.9 Hz, n = 240 sets) that was 68% of the maximum firing rate.
We quantified the similarity of learned readout rules to the optimal
readout rule (Fig. 3A, gray line) based on how frequently the rules
produced the same output for a given input, weighted by the fre-
quency of the input. Learned readout rules were similar, but not
identical, to optimal readout rules (Fig. 3C; mean: 0.71, SE: 0.20,
n = 240 sets; black line). Although they did not precisely match the
optimal readout rules, readouts learned under the STDP rule were
efficient at representing predictive information.

Learning Efficient Readouts of Up to 10 Cells. Estimating the sta-
tistics of anatomical convergence from RGCs, via thalamus, to
cortical neurons is difficult knowing only the convergence rates
from retina to lateral geniculate nucleus (LGN) (estimated at
10–30, refs. 32–34) and LGN to cortex (estimated at 30, ref. 35),
and without knowing how these rates are correlated. Still, it is
useful to know if efficient readouts can be found for modest-
sized input groups. We therefore simulated learning under the
pair STDP rule for sets of 7 and 10 cells. Exhaustive sampling is
not possible for these larger groups. We estimate that our sub-
sampling of readouts of sets of 7 and 10 cells underestimates the
optimal bound by less than 5%, based on comparison with an
optimized probabilistic rule (Fig. S1). However, the optimized
probabilistic readout is not a single-step, biologically tractable
function, so we continue to compare learned readouts to the
most informative sampled readouts.

Compared with the optimal sampled readouts we observe a
small decrease in readout efficiency (Fig. 3B), from 87% on
average for groups of 4, to 82% (SE over groups, 10%, n = 244)
for groups of 7 (red) and 80% (SE over groups, 8%, n = 244) for
groups of 10 (blue). Learned readouts for these larger groups are
less similar to the optimal readout than for groups of four inputs
(0.63 and 0.62 for groups of 7 and 10, respectively; Fig. 3C).
While there is some correlation between similarity to the optimal
rule and readout efficiency, many readouts have a high degree of
predictive information efficiency with low structural similarity to
the optimal rule (Fig. S3). Thus, for sets of 4–10 cells, efficient
readouts of predictive information can be learned without find-
ing the exact structure of the optimal readout.

Stimulus Information of Learned Readouts. For sets of 4–10 cells,
learned readouts capture most of the optimal readout predictive
information, measured as a percent of the optimal readout in-
ternal predictive information (measured for responses to
natural-movie stimuli). How efficient are learned readouts at
representing stimulus information? To address this, we compare
the stimulus information of the learned readouts to that of the
full set of cells and to the optimal readouts. For each group of
cells we identified the learned (blue) and corresponding optimal
(red) internal-information readouts in our simulations (Fig. 4A)
and computed information about stimulus position and velocity
for those pairs of readouts (Fig. 4B). Because the optimality
criterion is based on the efficiency of the readout of internal
predictive information, it is possible that the readout-stimulus
information is higher for other readouts, as we observed with
this pair of learned and optimal readouts (Fig. 4B). The learned
readout-stimulus information is compared with the word–stim-
ulus information (solid black line, Fig. 4 B and C) and the op-
timal readout-stimulus information (dashed red line, Fig. 4 B and
C). Because the firing rates of learned and corresponding opti-
mal readouts may change depending on the stimulus type, we
compared information efficiency in bits per spike by normalizing
by the respective firing rates. The results were qualitatively un-
changed without this normalization. Relative to the word–stim-
ulus information, learned readouts are much more efficient for
groups of 4 cells than for groups of 10 cells. Across sampled
initial conditions the median (based on internal information)
learned readout of a set of four cells is 67% (SEM: 4%, taken
across sets) as efficient for stimulus information as the full cell
set. For readouts of the sets of 10 cells the efficiency is only 32%
(2%, SEM) of the full set (Fig. 4C, solid line). However, com-
pared with the optimal linear readouts, typical learned readouts
remained relatively efficient, with an average of 91% (8%, SEM)
of the information retained for the sets of 4 cells and 71% (8%,
SEM) for the sets of 10 cells. Moreover, a highly efficient
readout (defined as >95% efficiency relative to the optimal
linear readout) is learned for at least one of the simulated initial
conditions in the vast majority of sampled sets of cells (223/
240 sets of 4, 231/244 sets of 7, and 225/244 sets of 10). In
general, for 10-cell groups, a saturating amount of stimulus
predictive information is recovered as internal information grows
(Fig. 4D), possibly because higher-order correlations in the in-
puts begin to have a larger effect and cannot be captured by a
single-layer perceptron readout.

Discussion
Producing successful behavior in an ever-changing environment
using sensory information, acquired in the recent past, necessi-
tates prediction at least at one stage of neural processing. Such
predictions are enabled by long-range spatiotemporal correla-
tions present in natural stimuli. For example, in recordings of
populations of RGCs of salamander retina driven by a simple
stimulus with partially predictable dynamics, joint activity pat-
terns transmit information that is predictive of future stimuli (2).
However, for the organism to make use of this information,
downstream networks need to read it out. In early sensory
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Fig. 3. Near-optimal readouts are learned under STDP rules. (A) Learned
readouts (dots) are close to the optimal perceptron hull (gray line); the
highest internal predictive information of any readout at or a below a given
firing rate. (B) Learned readouts for sets of 4 (black), 7 (red), and 10 (blue)
cells capture a large percent of maximal predictive information, defined as
the learned readout predictive information divided by the optimal percep-
tron hull value at that firing rate. Cumulative distributions are across cell sets
and initial conditions. (C, Top) Two learned readouts, with their corre-
sponding optimal readout. Each input word either evokes a readout spike
(white box) or not (black box). (C, Bottom) Cumulative distribution of the
similarity to the optimal rule of learned readouts. Similarity is the fraction of
time bins with one or more input spikes for which the learned and optimal
rule produced the same output (Materials and Methods). For sets of four
cells, a large fraction (39%) of initial conditions led to learned readouts that
were optimal. pred-I, predictive information.
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processing stages this learning likely occurs without independent
instructive signals providing stimulus information.
We examined whether the temporal correlations within pop-

ulations of RGCs can be used to guide the search for readouts of
predictive information. Sets of cells were drawn agnostic to the
cell types of constituent cells, although RGC populations are
made up of diverse anatomical cell types (36, 37) and whether
anatomical or functional cell types of cells in a set explain the
variability in predictive information across sets and its efficient
readout is an interesting question for future work. We showed
that groups of cells with high external, stimulus-predictive in-
formation also had high internal predictive information on two
classes of stimuli, a moving bar with stochastically driven damped
oscillator dynamics and a natural movie. While there is not a
perfect correlation between the two, efficient readouts of one
type of information were likely to be efficient readouts of the
other. The generalization of internal predictability across stim-
ulus classes partially reflects the ability of the retina to adapt to
the statistics of stimuli (4, 38), as well as the qualitative features
of damped harmonic motion—inertial motion, reversals, and
starts and stops—that also appear in the natural movie. The re-
lationship between stimulus-predictive information and internal
correlation potentially arises because firing in the retina is main-
tained by short-term plasticity mechanisms and other network
nonlinearities when stimuli are predictable. The implication of the

generalization across stimulus classes and between internal and
stimulus prediction is that reading out predictive information in
one context remains relevant in other settings.
We simulated a set of biologically plausible learning rules

based on STDP using as “training data” the spiking activity
recorded from a set of RGCs driven by a natural movie. This
training condition is challenging but intended to approach a
realistic scenario: A downstream neuron reading out bottom-up
predictive information does not have independent access to the
stimulus or to an error signal to guide its selection of readout
weights. While the learning dynamics did not lead to the absolute
optimal readout weight structure for all initial conditions, the
readouts that were found had high information efficiency: Rel-
ative to the optimal readout of internal predictive information,
learned readouts conveyed >80% of the predictive information
available to perceptron readouts. Thus, a very simple learning
rule found synaptic weights that effectively read out most of the
available predictive information. Recent work in machine
learning has demonstrated that STDP combined with recurrent
units can be used to implement gradient descent (39) and could
be used to extend the prediction of external stimulus features
further into the future.
Finally, we extended our simulations to larger groups of cells.

We found that while the efficiency of the learned readouts rel-
ative to optimal single-bit readouts remained high the efficiency
relative to the full input group decreased, such that readouts of
groups of 10 cells typically preserved 30% of the total predictive
information. This suggests a limit to the compressibility of pre-
dictive information, and thus an estimate of how many inputs a
downstream cell can efficiently read out. In other words, reading
out from groups of four cells can be accomplished with high
absolute efficiency. Perhaps the best way to combine more than
four cells is to break down the readout into indivisible units of
four cells, which are later recombined in subsequent processing.
Alternatively, it could be that restricting our readout to a simple
perceptron is overly limiting, and if we knew how to fully sample
the 22

N
readouts for a group of N cells we could retain much

more of the input predictive information. We do not expect this is
the case, however, based on the picture painted by the exhaustive
sampling of readouts of sets of four cells and our analysis of the
estimated readout bound for larger groups (Fig. S1).
We emphasized convergence: reading out a single bit from

pools of inputs, which would happen downstream from the ret-
ina. This particular dataset was taken from the larval salaman-
der, and in the visual system of amphibians retinal projections
terminate in the optic tectum and thalamus (40). Classic work in
the optic tectum of amphibians showed that feeding behavior can
be evoked directly from electrical stimulation of parts of the
optic tectum (41). Perhaps utilizing predictive information is
primarily useful for making fast, subconscious predictions of the
future of sensory stimuli and thus limited to automatic, reflex-
like behaviors. However, salamander RGCs are not unique in
encoding predictive information: Predictive information is also
encoded by rat RGCs.* In the mammalian visual system there
are both convergence and divergence as visual information
passes from the limited number of channels of the optic nerve to
LGN and on to cortex. This pattern may be required to chain
together combinations of single-bit readouts that are predictive
over larger spatial and temporal regions. In future work it will be
interesting to see if it is possible to build such predictions out of
an ensemble of single-bit readouts of many small groups of cells.

Materials and Methods
Multielectrode Recordings During Movie Stimulation of Dissected Retina. The
dataset used in this study was previously published (2), and complete ex-
perimental details can be found in ref. 42. Briefly, a multielectrode array
(252 electrodes, 30-μm spacing) was used to record from a larval tiger
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Fig. 4. Stimulus information of learned readouts is near-optimal.
(A) Identification of a learned readout (blue) and its respective optimal
readout (red) from a set of input 10 cells, with sampled readouts (gray) and
the optimal perceptron hull (red line; see Fig. S1). Readout-word information
is normalized by word–word information during the natural movie. (B) The
full word (black line) captures the most stimulus information, but the
learned (dashed blue line) and optimal (dotted-dashed red line) readouts
have comparable stimulus information. Stimulus information is predictive
over the Δt >0 portion of the curves. (C) Efficiency of typical readouts of
stimulus predictive information relative to the full cell set (black) and rela-
tive to the optimal readout under natural-movie stimulation (red). As set size
increases, efficiency remains high relative to the optimal readouts and de-
creases relative to the full word. Error bars represent SEM across sampled
sets of cells. (D) For sets of 10 input cells the fraction of internal word–word
information carried by a readout during the natural movie tends to be
higher than the fraction of word–stimulus information carried by that
readout during the moving-bar stimulus. A single cell set example is plotted
as dots overlaid on the density, averaged across all sampled sets of 10 cells. info,
information; prob, probability.

*Salisbury JM, Deny S, Marre O, Palmer SE, Computational and Systems Neuroscience
2016, February 25–28, 2016, Salt Lake City, abstr.
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salamander retina as images were projected onto the photoreceptor layer.
Voltages from the electrodes were recorded at 10 kHz over the course of the
multihour experiment and spikes were sorted, yielding 53 simultaneously
recorded single units. The movies, referred to as either the naturalistic movie
or moving bar, were presented using a 360- by 600-pixel display at 60 frames
per second with 8 bits of grayscale. The naturalistic movie was a 19-s clip of fish
swimming in a tank with plants in the background and was repeated
102 times. The moving bar was an 11-pixel-wide black bar against a gray
background, with dynamics for its position and velocity following the equa-
tions for a stochastic damped harmonic oscillator in the overdamped regime
(SI Materials and Methods). The naturalistic movie responses were used for the
training dataset and for predictive information calculations (Figs. 2–4), except
where specifically noted otherwise. The moving-bar responses were used for
calculating the information about past and future bar position and velocity
(Figs. 1, 2, and 4). The checkerboard stimulus (Fig. 2) consisted of a checker-
board pattern which updated randomly every 33.33 ms.

Binary Neuron Model. Sorted spikes were binned into time bins of width
Δt = 1=60 s. Activity of a set of m cells at time t =nΔt is described by the
m-bit binary word xt. The readout yt of this set of cells is a binary function
on the set of 2m possible binary words. In the case of a perceptron readout
(24), this function is yt =0 if w ·xt ≤b and otherwise 1, wherew is the length-
m synaptic weight vector and b= 1. We require weights to be excit-
atory (wi ≥ 0).

Information Calculations. Word–word internal predictive information is the
mutual information between the binary word xt at time t and time t′= t +dt

for some temporal offset dt (43–45): IðXt ;Xt′Þ=
P

x
PX ðxtÞPX ðxt′jxtÞlog2

PX ðxt′ jxt Þ
PX ðxt’Þ .

Readout predictive information is the mutual information of the perceptron
activity yt at time t and the word xt+dt at time t′= t +dt. Details of information
calculation methods are in SI Materials and Methods. Distributions were

generally well-sampled, so uncertainty in information estimates were less than
0.06 bits per s for readout information quantities and 0.18 bits per s for word–
word information quantities (SI Materials and Methods).

Drawing Cell Sets and Sampling Readout Functions. Cell sets were drawn from
the population of 53 total recorded cells (SI Materials and Methods and Fig.
S5). To estimate the predictive information bound as a function of firing
rate, we sampled all positive-weight perceptrons for sets of 4 cells and up to
1,500 perceptrons for the sets of 7–10 cells for which learning simulations
were carried out. The efficiency of this sampling method is analyzed in
Fig. S1.

STDP. The learning rule is a simplified STDP rule (29, 46) adapted for binary
neurons and depends on the timing of a single presynaptic and a single
postsynaptic spike: Δwt = «ðytxt −αLTDyt−1xtÞ. This rule generates potentia-

tion of a weight wðiÞ
t if the input spike triggered an output spike at time t

and depression if an output spike preceded an input spike. We use hard
bounds on w, 0<wi <wmax and set «= 0.01. Practically, because firing is
sparse, the maximum weight was chosen to be superthreshold (1.1), which
ensured nonzero firing rates of learned readouts. Results from variations of
this learning rule are shown in Fig. S2.

Similarity to the Optimal Rule. The similarity to the optimal readout is the
fraction of time bins with one or more input spikes for which the learned and
optimal rule produced the same output. See Fig. S3 for details. MATLAB code
used for the analysis is available from the authors at github.com/ajsederberg/
learning-predictive-info-readouts.
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