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Community detection is challenging when the network struc-
ture is estimated with uncertainty. Dynamic networks present
additional challenges but also add information across time peri-
ods. We propose a global community detection method, persis-
tent communities by eigenvector smoothing (PisCES), that com-
bines information across a series of networks, longitudinally, to
strengthen the inference for each period. Our method is derived
from evolutionary spectral clustering and degree correction meth-
ods. Data-driven solutions to the problem of tuning parameter
selection are provided. In simulations we find that PisCES per-
forms better than competing methods designed for a low signal-
to-noise ratio. Recently obtained gene expression data from rhe-
sus monkey brains provide samples from finely partitioned brain
regions over a broad time span including pre- and postnatal peri-
ods. Of interest is how gene communities develop over space and
time; however, once the data are divided into homogeneous spa-
tial and temporal periods, sample sizes are very small, making
inference quite challenging. Applying PisCES to medial prefrontal
cortex in monkey rhesus brains from near conception to adult-
hood reveals dense communities that persist, merge, and diverge
over time and others that are loosely organized and short lived,
illustrating how dynamic community detection can yield interest-
ing insights into processes such as brain development.

community detection | gene expression networks | dynamic networks

Networks or graphs are used to display connections within a
complex system. The vertices in a network often reveal clus-

ters with many edges joining vertices of the same cluster and
comparatively few edges joining vertices of different clusters.
Such clusters, or communities, could arise from functionality of
distinct components of the network, e.g., genes coregulating a
cellular process.

Statistical theory (1, 2) has mostly focused on static networks,
observed as a single snapshot in time or developmental epoch.
In reality, networks are generally dynamic, and it is of substan-
tial interest to visualize and model their evolution. Applications
abound, e.g., social networks in Twitter, dynamic diffusion net-
works in physics, and gene coexpression networks for developing
brains. Community detection is vital in all of these areas to illus-
trate the structure of the relationship of network nodes and how
they change over time. While statistical inference in static net-
works is well established (3–7), how to combine the information
in dynamic networks is comparatively less understood. Recent
works have sought to extend community detection to dynamic
networks (8–15) and to centrality (16) and to extend clustering
to dynamic data (17).

Our method, persistent communities by eigenvector smooth-
ing (PisCES), implements degree-corrected spectral clustering,
with a smoothing term to promote similarity across time periods,
and iterates until a fixed point is achieved. Specifically, this global
spectral clustering approach combines the current network with
the leading eigenvector of both the previous and future results.
The combination is formed as an optimization problem that can
be solved globally under moderate levels of smoothing when the
number of communities is known. We find that it is important to
choose appropriate levels of both smoothing and model order,
as well as to balance regularization with “letting the data speak,”
and we use data-driven methods to do so.

Dynamic networks derived from gene coexpression networks
reveal community structure among the genes that develops over
spatial or temporal periods, providing a fine-scale view of the
inner workings of cellular mechanisms. While it is known that
gene expression varies dramatically over developmental periods
in the brain, the specific changes in gene communities for a devel-
oping brain are not fully understood. Understanding brain disor-
ders like autism spectrum disorder and schizophrenia have been
particularly challenging to scientists because of the large number
of genes implicated. The clustering of risk genes for neurodevel-
opmental disorders in specific spatiotemporal periods can help to
explain the nature of these disorders.

Recently a rich source of data has become available pertain-
ing to this question. Transcription for numerous samples in rhesus
monkeys is assessed over a dense set of pre- and postnatal peri-
ods (18). Once the data are divided into fine anatomical regions
and developmental periods, however, sample sizes are very small
(<20), making it difficult to estimate the gene–gene adjacency
matrix from correlated expression of genes. PisCES can signifi-
cantly improve the power of community detection in this scenario.

We illustrate the power of dynamic community detection
methods by investigating the gene communities as they develop
over age and cortical layers in the medial prefrontal cortex. The
analysis reveals that while many communities are restricted to
particular developmental periods, others persist, illustrating the
existence of change points as well as periods of persistent com-
munity structure. For example, communities enriched for neural
projection guidance (NPG) are much more tightly clustered dur-
ing prenatal development, peaking just before birth. This pattern
is consistent with existing knowledge about neurodevelopment.
Genes with the annotation NPG have been linked to autism spec-
trum disorder (9) and our method can provide critical insight into
the interactions of these genes.

Significance

Statistical theory has mostly focused on static networks
observed as a single snapshot in time. In reality, networks
are generally dynamic, and it is of substantial interest to
discover the clusters within each network to visualize and
model their connectivities. We propose the persistent commu-
nities by eigenvector smoothing algorithm for detecting time-
varying community structure and apply it to a recent dataset
in which gene expression is measured during a broad range of
developmental periods in rhesus monkey brains. The analysis
suggests the existence of change points as well as periods of
persistent community structure; these are not well estimated
by standard methods due to the small sample size of any one
developmental period or region of the brain.
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Fig. 1. Performance on synthetic networks as a function of time hori-
zon and class dynamics, as measured by the adjusted Rand index between
true and estimated community labels. Networks were generated under a
dynamic DCBM (Eqs. 13–15) with three key parameters: pin and pout, which
determine the in-cluster and out-of-cluster edge probability/density, and r,
which determines the amount of change in cluster memberships between
consecutive networks (0 for no change). For A, K = 2, n = 100, pin =

(0.2, 0.25), pout = 0.1, and for B, K = 10, n = 500, pin = (0.2, 0.35), pout = 0.1.
Shown are 100 simulations per data point.

Methods
Spectral Methods for Static Networks. Spectral clustering is a popular class
of methods for finding communities in a static network, and many varia-
tions have been discussed in the literature (19–22). A prototypical method
is given by ref. 6. Given a symmetric n × n adjacency matrix A and a fixed
number of communities K, the method computes the degree-normalized (or
“Laplacianized”) adjacency matrix L, which is given by

L = D−1/2AD−1/2 where D = diag(degree). [1]

The method then returns the clusters found by K-means clustering on the
eigenvectors of L corresponding to its K largest eigenvalues in absolute
value. Methods for choosing K include refs. 23–26.

Eigenvector Smoothing for Dynamic Networks. Let A1, . . . , AT denote a
time series of symmetric adjacency matrices, and for t = 1, . . . , T , let Lt

denote the Laplacianized version of At , as given by Eq. 1. Let K be fixed, and
let Vt∈ Rn×K denote the matrix whose columns are the K leading eigenvec-
tors of Lt . Let Ut = VtVT

t , the projection matrix onto the column space
of Vt .

In static spectral clustering, one would apply K-means clustering to
V1, . . . , VT separately. To share signal strength over time, a simplified form
of PisCES would solve the following optimization problem, which returns a
sequence of matrices Ū1, . . . , ŪT that are smoothed versions of U1, . . . ,UT ,

min
Ū1, ..., ŪT

T∑
t=1

‖Ut − Ūt‖2
F + α

T−1∑
t=1

‖Ūt − Ūt+1‖2
F

subject to Ūt ∈ {VVT
: V ∈ Rn×K ,VT V = I} ∀ t,

[2]

and then apply K-means clustering to the eigenvectors of each smoothed
matrix Ū1, . . . ,ŪT separately.

The optimization problem Eq. 2 is nonconvex and, to the best of our
knowledge, no efficient methods for its global solution currently exist. We
propose the following iteration,

Ū`+1
1 = ΠK(U1 + αŪ`2 ) [3]

Ū`+1
t = ΠK(αŪ`t−1 + Ut + αŪ`t+1), t = 2, . . . , T − 1 [4]

Ū`+1
T = ΠK(αŪ`T−1 + UT ), [5]

where the mapping ΠK extracts the K leading eigenvectors and is given for
a matrix M by

ΠK(M) =

K∑
k=1

vkvT
k ,

where v1, . . . , vK are the K leading eigenvectors of M. To initialize, we set
Ū0

t = Ut for t = 1, . . . , T .

Convergence result. Theorem 1 is proved in SI Appendix, section S1, and
states that for proper choice of α, the iterative algorithm given by Eqs. 3–5
converges to the global optimum of Eq. 2:
Theorem 1. For α < 1

4
√

2+2
≈ 0.13, the iterations Eqs. 3–5 converge to the

global minimizer of Eq. 2 under any feasible initialization.
Intuition. To build intuition for the behavior of the method, observe that
if Ū`t−1 and Ū`t+1 are orthogonal to Ut , and if α< 1/2, then Eq. 4 implies

that Ū`+1
t = Ut , so that the information at neighboring times is effectively

ignored. Along these lines, in simulations where a change point exists in
the community memberships, smoothing is suppressed automatically at this
time point. This suggests that the method applies a variable amount of
smoothing to each time step, which goes to zero as the community mem-
berships at neighboring times become uncorrelated.

For t = 1, . . . , T and i = 1, . . . , n, let xti∈ RK denote the ith row of the
matrix Vt . For each time step t, static spectral clustering seeks to find cluster
centroids µk∈ RK for k = 1, . . . , K and a cluster assignment vector z ∈ [K]n

to optimize the K-means objective function

min
{µk},z

n∑
i=1

‖xti − µz(i)‖
2
.

In SI Appendix, section S2, we show that Eq. 2 can be derived as a spectral
relaxation of the following smoothed K-means objective, over time-varying
centroids and assignment vectors {µtk}T ,K

t=1,k=1 and {zt}T
t=1,

min
{µtk},{zt}

T∑
t=1

n∑
i=1

‖xti − µt,zt (i)‖
2

+
α

2

T−1∑
t=1

∆(zt , zt+1), [6]

where the penalty term ∆(zt , zt+1) utilizes the “chi-square” metric for com-
paring partitions (27, 28), which ensures smoothness of the cluster assign-
ments. However, the objective function allows the density of the blocks to
change drastically across different developmental periods.
Laplacian smoothing. Eqs. 7–9 give a variation in which L1, . . . ,LT are used
more directly,

Ū`+1
1 = ΠK(|L1|+ αŪ`2 ) [7]

Ū`+1
t = ΠK(αŪ`t−1 + |Lt|+ αŪ`t+1) t = 2, . . . ,T − 1 [8]

Ū`+1
T = ΠK(αŪ`T−1 + |LT |), [9]

where |Lt| denotes the matrix Lt with its eigenvalues replaced by their abso-
lute values.

How should these iterations be interpreted? Analogous to eigenvector
smoothing, we show in SI Appendix, section S3 that Eqs. 7–9 globally solve
the optimization problem

min
Ū1,...,ŪT

T∑
t=1

‖|Lt| − Ūt‖2
F + α

T−1∑
t=1

‖Ūt − Ūt+1‖2
F

subject to Ūt ∈ {VVT
: V ∈ Rn×K ,VT V = I} ∀ t,

[10]

for certain values of α and that this problem can be derived as a spectral
relaxation to an analogous version of Eq. 6, in which xti now denotes the ith
row of the square root of |Lt|.
Cross-validation. To chooseα, we use a cross-validation method for degree-
corrected clustering, found in ref. 24 (SI Appendix, section S4).
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Fig. 2. Performance on synthetic networks as a function of network
size and number of communities, as measured by ARI between true
and estimated community labels. (A–C) Networks are generated under
the dynamic DCBM with n∈{100, 500, 1,000}, K ∈{1, 4, 8, 12, ..., 40}, r =

0.1, pin = (0.2, 0.5), pout = 0.1, T = 10. Shown are 100 simulations per
data point.
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Fig. 3. Performance of PisCES in a scenario with outlier at time t = 6 (main
text). Simulations were generated from a dynamic DCBM with n = 500,
K = 10, pin = (0.3, 0.3), pout = 0.1, r = 1 for A6, and r = 0.1 outside the
change point. (A) ARI performance of PisCES applied to A1, . . . , A11 (blue
line), static spectral clustering (static, red dashed line), and PisCES applied
separately to A1, . . . , A5 and to A7, . . . , A11 (“separated,” green lines).
(B) ‖Ūt − Ūstatic

t ‖1, where Ūt is the output of PisCES (green) or “separate”
(blue), and Ūstatic

t is the output of static.

PisCES. PisCES extends Laplacian smoothing by allowing the number of
classes K to be unknown and possibly varying over time.

This is accomplished by replacing the operator ΠK in Eqs. 7–9 with a new
operator Π, which requires a model order selection method κ to choose the
number of eigenvectors from the data:

Π(M) =

κ(M)∑
k=1

vkvT
k .

Here κ: Rn×n 7→ N is a function that determines the number of eigenvectors
to be returned, and v1, . . . , vκ(M) are the eigenvectors of M corresponding
to its κ(M) largest eigenvalues in absolute value.

To choose the model order κ(M), in principle one could use or adapt exist-
ing methods for eigenvector selection, such as refs. 23–26. Alternatively, in
Model Order Selection κ we describe a new method that can be adapted to
the specific assumptions of the data-generating process.

The iterates for PisCES (that is, Eqs. 7–9 with ΠK replaced by Π) are heuris-
tic in that no convergence theorems are known. However, simulations sug-
gest that they can help when K cannot be accurately estimated from any
single network At due to noise.

To estimate the clusters, K means is applied to the eigenvectors of
Ū1, . . . , ŪT .

Model Order Selection κ. Given a Laplacianized matrix L∈ Rn×n with eigen-
values |λ1| ≥ · · · ≥ |λn|, κ(L) is given by

κ(L) = min{K : |λi| − |λi+1| < δ , for all i > K}, [11]

where δ is the threshold for the “noise” eigenvalues of a null model for the
data-generating process.

In generic network settings, a suitable null model could be to simulate
Laplacianized Erdos–Renyi adjacency matrices L(ER) with size and density
matching L and eigenvalues |λ(ER)

1 | ≥ · · · |λ
(ER)
n | and to return the 0.95 quan-

tile of the largest eigengap excluding λ(ER)
1 :

A mPFC samples from 0M to 48M
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Fig. 4. (A and B) Top two principal components
for mPFC samples in (A) postnatal ages 0 M to
48 M and (B) prenatal ages E40–E120. Age and
layer of each sample are depicted by marker shape
and color, respectively. Shown are postnatal lay-
ers L2 (blue), L3 (green), L4 (black), L5 (purple),
and L6 (red) and prenatal layers VZ (purple), SZ/IFZ
(cyan), IZ/OFZ (orange), SP (blue), L5/L6/CPi (green),
L2/L3/CPo (red), and MZ (black). Samples obtained
from a given age and layer are relatively homoge-
neous in their rates of transcription.

δ = quantile0.95

[
max{|λ(ER)

i | − |λ
(ER)
i+1|, i ≥ 2}

]
. [12]

This approach may be appropriate when the observation noise is assumed to
be independent across dyads (such as a stochastic block model)—e.g., when
the dyads are the observations.

A null model assuming dyadically independent observation noise may not
be appropriate when networks A1, . . . , AT are transformations of empirical
correlation matrices, as in Results. Instead, a more appropriate choice may
be to generate random samples that are matched in number to the observa-
tions that are used to form the correlation matrices underlying A1, . . . , AT .
Further details on such null models can be found in SI Appendix, section S5
and Figs. S1–S3.

Simulations
Simulations suggest that PisCES works well in practice. Here we
show three examples of simulation performance; more results
can be found in SI Appendix, section S6 and Figs. S4–S7.

Figs. 1 and 2 show simulations where A1, . . . ,AT are sym-
metric adjacency matrices each generated by a dynamic degree-
corrected block model (DCBM) (8), where

[At ]ij ∼ Bernoulli
(
ψtiψtjB

(t)
zti ,ztj

)
i , j ∈ [n], j > i , [13]

with [At ]ij = [At ]ji . Here zt ∈ [K ]n and ψt∈ Rn are vectors of
class labels and degree parameters, and B (t) ∈ [0, 1]K×K is a
connectivity matrix. zt evolves over time by

z(t+1)i =

{
zti with prob. 1− r
Multinomial( 1

K
, . . . , 1

K
) otherwise, [14]

where r denotes the probability that a node changes clusters, and
ψ(t) and B (t) are randomized at each stage by

ψt = 1/2 + πt/n [15]

B
(t)
lk =

{
Unif(p(1)

in , p
(2)
in ) l = k

pout l 6= k ,
[16]

where πt is a random permutation of 1:n , and pin = (p
(1)
in , p

(2)
in )

and pout are in-cluster and between-cluster density parameters.
For comparison, we evaluate a variational–expectation-maxi-

mization (“VEM”) likelihood method for the dynamic DCBM
(8) and a spectral method [“PCM” (preserving cluster mem-
bership)] (17); as a baseline we contrast these with static spec-
tral clustering (“static”). (Due to its computational complexity,
results for VEM are shown for n = 100 only, as its runtimes were
impractical for n ≥ 500.)

Fig. 1 shows improving performance for PisCES as the time
horizon T increases (which allows greater sharing of informa-
tion) and decreasing performance as the nodal classes evolve
more rapidly over time. Fig. 2 shows increasing performance
for all methods as the network size n increases and decreasing
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E40 E50 E70 E80 E90 E120

Fig. 5. Sankey plot for prenatal cases. Gray and red boxes denote com-
munities, with height indicating community size. Colored “flows” denote
groups of genes moving between communities, with height indicating flow
size. To reduce clutter, only large flows (>100 genes or >15% of its source
and destination community) are shown; small flows are partially drawn
using dotted lines. Each flow’s color is determined by its gene membership
and equals the mixture of the colors of its input flows. NPG-enriched com-
munities are denoted by red boxes, with ASD-enriched communities further
marked by a white circle (E80, fourth from top, and E120, ninth from top).

performance as the number of nodal classes K increases. In all
cases, PisCES performs comparably to or better than the other
methods.

In Methods, we mention that PisCES suppresses the amount of
smoothing at times where an outlier or a change point exists in
the data. To demonstrate this, Fig. 3 shows the results of a sim-
ulation with T = 11 where the class labels evolve as a dynamic
DCBM except at times t = 6 and t = 7, at which point they are
randomized with no dependence on past time steps. Fig. 3 shows
that the estimated Ūt at t = 6 closely resembles the output of
static spectral clustering, while at the other time steps the output
closely resembles that of PisCES applied to A1, . . . ,A5 and to
A7, . . . ,A11.

Results
Background. The transcriptional patterns of the developing pri-
mate brain are of keen interest to neuroscientists and oth-
ers interested in neurological and psychiatric disorders. Bakken
et al. (18) provide a high-resolution transcriptional atlas of rhe-
sus monkeys (Macaca mulatta) built from recorded samples of
gene expression, including expression of 9,173 genes that can be
mapped directly to humans. The samples span six prenatal ages
from 40 embryonic days to 120 embryonic days (E40–E120) and
four postnatal ages from 0 mo to 48 mo after birth (0 M to 48
M; SI Appendix, section S7). These ages represent key stages of
development in the prenatal phase and key milestones postna-
tally (newborn, juvenile, teen, and mature). The samples can also
be divided into different regions of the brain and further into dif-
ferent layers (i.e., subregions) within each region. For example,
in postnatal ages, the medial prefrontal cortex region (mPFC)
can be divided into contiguous layers L6–L2, with a more com-
plex layer parcellation in prenatal ages (SI Appendix, Table S2).

The changes in gene expression over spatiotemporal periods
have been fairly well studied, but changes in coexpression are
less well understood. Bakken et al. (18) used weighted gene coex-
pression network analysis (WGCNA) (29) to identify gene com-
munities in the cortex of rhesus monkeys at each age; roughly
speaking, this corresponds to dividing the samples by age, con-
structing gene coexpression networks from each subset of sam-
ples, and then performing a clustering analysis on each network.
Our goal is to take this investigation farther using PisCES, but in
this present work we give exploratory results only to demonstrate
proof of concept.

Due to its importance in understanding developmental brain
disorders, we focus on the mPFC and use only the 423 sam-
ples corresponding to that region in our analysis (SI Appendix,
Fig. S8). For these samples, variability in the first two com-
ponents of principal components analysis is explained roughly
equally by their layer or by their age, suggesting that they may
be grouped by either variable (Fig. 4). To illustrate that PisCES
can be used over time or location, we choose to divide the 209
prenatal samples by age category (E40–E120) and divide the
214 postnatal samples by their layer within the mPFC region
(L6–L2).

For each group of samples, coexpression networks (gene net-
works in which edges encode coexpression level between gene
pairs) are constructed by the procedure of refs. 18 and 29. Specif-
ically, adjacency matrix At for group t ∈ (E40–E120, L6–L2) is
generated by soft thresholding the empirical correlation matrix

[At ]ij = | corr(gi , gj )|6, i 6= j , [17]

where gi and gj are the recorded expression levels for genes i
and j in the samples belonging to group t .

PisCES Results. PisCES—using Eq. S17 for δ—is run separately
on the pre- and postnatal samples. The detected communi-
ties vary in composition, size, and density (Dataset S1); see SI
Appendix, Table S3 for descriptive summaries. For pre- and post-
natal analyses we compare the performance of algorithms, using
a measure of log-likelihood (SI Appendix, Fig. S9). PisCES gen-
erally performs the best across ages and layers, suggesting that
the dynamic progression is informative.

To assess the similarity of communities across periods we com-
pute the adjusted Rand index (ARI) (27) between subsequent
periods. We find that, for the most part, communities in adja-
cent ages or layers are more similar in composition than those in
noncontiguous periods (SI Appendix, Table S4); for example, we
find that communities in E120 are most similar to those in E90
(ARI = 0.23) and least similar to those in E40 (ARI = 0.05).

Many communities persist in pre- and postnatal samples as
illustrated by the Sankey plots (Fig. 5 and SI Appendix, Fig. S10).
To better understand the Sankey display, we focus on the tran-
sition from E40 to E50 and display thresholded weighted adja-
cency matrices along with the mapping between communities
(Fig 6A). The ninth community (blue) appears to dominate Fig.
5; however, closer inspection of Fig. 6A suggests that this cluster
may be dominated by genes that are connected with many genes
outside of the cluster, indicating that this cluster is not likely to
be interesting biologically.

To facilitate visual comparison of the adjacency matrices, only
those nodes belonging to the major flows between E40 and E50
have been included in Fig. 6B. Cluster boundaries are delin-
eated in red (featured) or gray. The density of some clusters
decreases markedly from E40 to E50 (clusters 2 → 3, 3 → 6,
9 → 10, 9 → 16), while others increase (clusters 5 → 7, 6 → 8,
6→ 9). Genes in dense clusters 7, 8, 10, 11, and 13 go to cluster 9
and lose their tight connectivity as they enter this catch-all clus-
ter, suggesting that some genes act together, but only for brief
periods.
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Fig. 6. (A) Sankey plot for stages E40 and E50 only, along with the thresholded Laplacian matrices LE40 and LE50 corresponding to those stages.
(B) Submatrices of LE40 and LE50 corresponding to those genes in large flows between E40 and E50 (excluding E40 communities 14 and 15). To facilitate
comparison, the genes in LE50 have been reordered to match their ordering in LE40. Red boxes highlight large difference between the submatrices. In both
A and B, the flow colors match their coloring in Fig. 5.

For each community, we examine the composition of genes to
interpret function using Enrichr (amp.pharm.mssm.edu/Enrichr/)
for annotation. Communities are highlighted in red for which
neural projection guidance (NPG) genes show significant enrich-
ment (Fig. 5 and SI Appendix, Fig. S10). Given the hypothesis
that strongly correlated genes share regulation and/or function
(30), we examined the communities to determine whether any
are enriched with the Simons Foundation Autism Research Ini-
tiative (SFARI) autism spectrum disorder (ASD) risk genes
(classes 1, 2, 3, and S) (https://gene.sfari.org/autdb/GS Home.do).
Across prenatal communities we observe the strongest cluster-
ing of ASD genes in two communities, one at E80 and another
at E120 (white dot in red). Both of these communities are
enriched for NPG and synaptic transmission (ST) genes and
fall in NPG- and ST-enriched paths (SI Appendix, Fig. S11).
NPG and ST genes have been strongly implicated with ASD
(31, 32).

We further investigate the 263 NPG genes that persist in
nominally significant enriched communities across at least three
consecutive periods (NPG+) to identify the properties of the
most highly persistent genes. These 64 NPG+ genes show a
notable pattern of expression across ages and layers in con-
trast to the other NPG genes (NPG−). The former set of genes
expresses more highly in mPFC at all ages and layers, but espe-
cially during the period just before and at birth (SI Appendix,
Fig. S12) A thresholded-correlation network (Fig. 7) shows how
the NPG genes coexpress within three epochs of development:
E70–E90, E120–0M, and 3M–12M. Clearly the NPG+ genes are
more tightly clustered at every epoch and there is a notable
pattern to the development of clustered genes over time (SI
Appendix, Fig. S13). All of these results suggest that a subset
of NPG genes plays a strong coordinated role in mid-to-late
fetal development in the mPFC, up to and including the time of
birth.
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Fig. 7. (A–C) The correlation networks for all NPG genes in different time
bands. NPG genes with pairwise correlations at least 0.7 in the specific
time band are connected with edges; nodes for NPG+ genes are filled.
Fruchterman–Reingold layout (implemented by igraph’s layout nicely func-
tion: igraph.org/r/doc/layout nicely.html) is applied to illustrate network
structures.

ST genes also show strong clustering and persistence in the
prenatal analysis; however, unlike NPG genes, the tight clus-
tering of ST genes is not apparent in the postnatal analysis of
layers. And yet ST genes become most strongly expressed at birth
and continue to be highly expressed throughout life in the mPFC
(SI Appendix, Fig. S14A). This seeming contradiction illustrates
a limitation of correlation to accurately capture the relationships
between genes under certain conditions. Examining the corre-
lation pattern between two ST genes over two periods of time
reveals the problem (SI Appendix, Fig. S14B). At E120 the genes
have considerable variability in expression and show a strong
correlation, but at 0M both genes are expressing at their maxi-
mum level. When this happens, there is insufficient variability in
expression to detect correlation between genes, and hence the
correlation is near zero. This suggests that other measures of
coexpression will be needed as we continue to investigate gene
communities.

Discussion
Community detection, which involves identification of the num-
ber of clusters in a network and the membership of each

node, is a challenging problem, especially in applications like
gene coexpression when the information about the network
is uncertain. This paper aims to improve community detec-
tion within networks by incorporating available information
about the evolution of a network over time. PisCES works
by smoothing the signal contained in a series of adjacency
matrices, ordered by time or developmental unit, to permit
analysis by spectral clustering methods designed for static
networks.

Applying PisCES to the medial prefrontal cortex in rhesus
monkey brains from near conception to adulthood reveals com-
munities that persist over numerous developmental periods,
communities that merge and diverge over time, and others that
are loosely organized and ephemeral. PisCES provides a pow-
erful tool to facilitate the discovery of such fine-scale dynamic
structures in coexpression data.

Weighted adjacency matrices derived from gene-coexpression
data over a number of time frames or developmental peri-
ods are ideal for PisCES. These estimates are usually derived
from correlation matrices and are often based on a lim-
ited number of samples when the spatial–temporal partitions
are extremely fine. But, in this situation, dynamic smoothing
across partitions can increase the reliability of the resulting
communities.

Estimates of community structure provided by PisCES for
the rhesus monkeys have highlighted features that comport with
known brain development, such as the coordinated expression
of NPG and ST genes. This provides a proof of concept for the
analysis paradigm. We posit that in-depth study of gene commu-
nities over spatial and temporal partitions of the brain will elu-
cidate key developmental periods and communities associated
with neurological disorders.

ACKNOWLEDGMENTS. We thank Sivaraman Balakrishnan, Bernie Devlin,
Maria Jalbrzikowski, and Lingxue Zhu for insightful comments. We also
thank the reviewers whose comments led us to discover Theorems 1 and
S3.1. This work was supported by National Institute of Mental Health Grants
R37MH057881 and R01MH109900 and the Simons Foundation SFARI 124827.

1. Kolaczyk ED (2009) Statistical Analysis of Network Data: Methods and Models
(Springer, New York), 1st Ed.

2. Newman M (2010) Networks: An Introduction (Oxford Univ Press, New York).
3. Holland PW, Laskey KB, Leinhardt S (1983) Stochastic block models: First steps. Soc

Networks 5:109–137.
4. Wang YJ, Wong GY (1987) Stochastic blockmodels for directed graphs. J Am Stat

Assoc 82:8–19.
5. Karrer B, Newman MEJ (2011) Stochastic blockmodels and community structure in

networks. Phys Rev E 83:016107.
6. Rohe K, Chatterjee S, Yu B (2011) Spectral clustering and the high-dimensional

stochastic blockmodel. Ann Stat 39:1878–1915.
7. Lei J, Rinaldo A (2015) Consistency of spectral clustering in stochastic block models.

Ann Stat 43:215–237.
8. Matias C, Miele V (2016) Statistical clustering of temporal networks through a

dynamic stochastic block model. J R Stat Soc Ser B Stat Methodol 79:1119–1141.
9. Ghasemian A, Zhang P, Clauset A, Moore C, Peel L (2016) Detectability thresholds

and optimal algorithms for community structure in dynamic networks. Phys Rev X
6:031005.

10. Cribben I, Yu Y (2017) Estimating whole-brain dynamics by using spectral clustering.
J R Stat Soc Ser C Appl Stat 66:607–627.

11. Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic social community detection and
its applications. PLoS One 9:e91431.

12. Xu KS, Hero AO (2014) Dynamic stochastic blockmodels for time-evolving social net-
works. IEEE J Selected Top Signal Process 8:552–562.

13. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community
structure in time-dependent, multiscale, and multiplex networks. Science 328:
876–878.

14. Bazzi M, et al. (2016) Community detection in temporal multilayer networks, with an
application to correlation networks. Multiscale Model Simul 14:1–41.

15. Bassett DS, et al. (2013) Robust detection of dynamic community structure in net-
works. Chaos 23:013142.

16. Taylor D, Myers SA, Clauset A, Porter MA, Mucha PJ (2017) Eigenvector-based central-
ity measures for temporal networks. Multiscale Model Simul 15:537–574.

17. Chi Y, Song X, Zhou D, Hino K, Tseng BL (2007) Evolutionary spectral clustering
by incorporating temporal smoothness. Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, eds Berkhin P,
Caruana R, Wu X (Association for Computing Machinery, New York), pp 153–162.

18. Bakken TE, et al. (2016) A comprehensive transcriptional map of primate brain devel-
opment. Nature 535:367–375.

19. Amini AA, et al. (2013) Pseudo-likelihood methods for community detection in large
sparse networks. Ann Stat 41:2097–2122.

20. Newman ME (2013) Spectral methods for community detection and graph partition-
ing. Phys Rev E 88:042822.

21. Sussman DL, Tang M, Fishkind DE, Priebe CE (2012) A consistent adjacency spectral
embedding for stochastic blockmodel graphs. J Am Stat Assoc 107:1119–1128.

22. Sarkar P, et al. (2015) Role of normalization in spectral clustering for stochastic block-
models. Ann Stat 43:962–990.

23. Chen K, Lei J (2017) Network cross-validation for determining the number of commu-
nities in network data. J Am Stat Assoc, 10.1080/01621459.2016.1246365.

24. Li T, Levina E, Zhu J (2017) Network cross-validation by edge sampling. arXiv:
1612.04717v4.

25. Wang YR, et al. (2017) Likelihood-based model selection for stochastic block models.
Ann Stat 45:500–528.

26. Le CM, Levina E (2015) Estimating the number of communities in networks by spectral
methods. arXiv:1507.00827.

27. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218.
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