
Head and neck squamous cell carcino-
ma (HNSCC) is the sixth most common 
cause of cancer mortality in the world. 
Some progress has been made in the 
therapy of HNSCC, however treatment 
remains unsatisfactory. Recent stud-
ies have shown that different types of 
long non-coding RNAs (lncRNAs) are 
dysregulated in HNSCC and correlate 
with tumor progression, lymph node 
metastasis, clinical stage and poor 
prognosis. lncRNAs are a class of func-
tional RNA molecules that can not be 
translated into proteins but can mod-
ulate the activity of transcription fac-
tors or regulate changes in chromatin 
structure. The lncRNAs might have po-
tential of biomarker in HNSCC diagno-
sis, prognosis, prediction and targeted 
treatment. In this review we describe 
the potential role of lncRNAs as new 
biomarkers and discuss their features 
including source of origin, extraction 
methods, stability, detection methods 
and data normalization and potential 
function as biomarkers in HNSCC.
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Head and neck cancers

Head and neck squamous cell carcinoma (HNSCC) including tumors that 
occur in the oral cavity is the sixth most common cancer and one of the most 
common cause of cancer mortality worldwide. Tobacco smoking, alcohol 
consumption and human papilloma virus (HPV) or Epstein-Barr virus (EBV) 
infections are the main causes of these malignancies. HNSCC often develops 
within pre-neoplastic fields of genetically altered cells. HNSCC is divided into 
many types according to tumor localization: tongue squamous cell carcino-
ma (TSCC), oral squamous cell carcinoma (OSCC), laryngeal squamous cell 
carcinoma (LSCC) and nasopharyngeal carcinoma (NPC). For the last decade 
it has been mainly treated by surgical resection, radical radio(chemo)thera-
py or systemic treatment alone (e.g. cetuximab, cisplatin, 5-fluorouracyl or 
taxanes). The 5-year survival rate has persisted at approximately 43%. The 
most cases are not early diagnosed until cancer metastases to the regional 
lymph nodes of the neck what influences on the patients’ survival rate [1–4]. 
Recently pembrolizumab (anty-PD1) has been approved by the U.S. Food and 
Drug Administration in the second line treatment in patients with advanced 
HNSCC [5]. However, treatment results remain unsatisfactory despite these 
efforts. A high proportion of patients who do not respond to standard treat-
ment could get a benefit from personalized therapy based on the molec-
ular diagnostic or targeted therapies. Many studies have shown abnormal 
changes of many types of RNA (coding and non-coding) in HNSCC patients, 
which have pivotal role in the cancer biology. This suggests that coding and 
non-coding RNAs can serve as biomarkers for treatment response prediction 
or as diagnostic tools [1, 6–8]. However, the role of long non-coding RNA (ln-
cRNA) are still not deeply understood.

lncRNA – biogenesis, function and role in cancer

Long non-coding RNAs are a class of functional RNA molecules that are 
not translated into proteins and consist of at least 200 nucleotides [9, 10]. 
However, this remains debatable, and some scientists postulate that ln-
cRNAs have limited protein-coding ability – some transcripts can function 
in dual roles both as coding and non-coding RNA [11, 12]. It is thought that 
93% of the human genome can be transcribed into RNAs [13]. Approximate-
ly 2% of these transcripts will be translated into proteins, and the remain-
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ing 98% – called non-coding RNAs (ncRNAs)-will rarely be 
transcribed [14].

The ncRNAs are classified into two groups. The first 
group is called constitutive RNA and it includes transfer 
RNAs (tRNAs), ribosome RNAs (rRNAs), small nuclear RNAs 
(snRNAs) and small nucleolar RNAs (snoRNAs). The second 
group, called regulatory RNAs, consists of small interfering 
RNAs (siRNAs), piRNAs, microRNAs (miRNAs), natural anti-
sense transcripts (NATs), circular RNAs (circRNAs) and long 
non-coding RNAs (lncRNAs) [15–17]. All ncRNAs, except for 
tRNAs and rRNAs, are considered “transcriptional noise” 
[18]. However, lncRNAs are highly transcribed and believed 
to play roles in more complex biological functions, i.e. 
regulation of gene expression at the transcriptional level 
in nucleus (chromatin regulation, alternative splicing of 
pre-mRNA, DNA demethylation and nuclear organization) 
or posttranscriptional level in the cytoplasm [18]. It should 
be noted that large proportions of lncRNAs are closely 
connected with genes encoded near specific mRNAs and 
these ‘lncRNA-mRNA pairs’ influence of each other [19, 
20]. Guigo’s group reported that lncRNAs exhibit unusual 
exonic structure and can be alternatively spliced [21]. An-
other classification of ncRNAs is based on their position 
relative to protein coding genes: intergenic, intragenic/
intronic and anti-sense [9].

The location in the genome (overlapping with possibly 
important genes) and difficulties in finding an appropriate 
model make functional study of lncRNAs challenging. The 
choice of a suitable model is a problematic issue because 
of the lack of conservation at the nucleotide sequence lev-
el [16], tissue specific expression level [22], transcription 
initiation from regions rich in repeats [23] and mostly high 
isoform heterogeneity. The lncRNA isoforms can have dif-
ferent functions [24]. Moreover, recent studies have shown 
that lncRNAs may have cell-type specificity [25], and their 
function should be verified in different cell models.

Despite the fact that the vast majority of long non-cod-
ing RNAs remain functionally uncharacterized, some of 
them have been linked with a range biological processes 
including chromatin modification, regulation of transcrip-
tion factors, mRNA processing and degradation as well as 
cell signaling [26]. They also have a vital role in cellular pro-
cessing, and their deregulated expression has been asso-
ciated with different types of cancers [27, 28]. Even though 
many cancer gene-profiling studies have revealed some 
cancer-associated lncRNAs, there are very few lncRNAs re-
ported for HNSCC.

Features of lncRNA molecules and methods of 
analysis

Early diagnosis of cancer results in more effective ther-
apy, and biomarkers to predict and monitor treatment re-
sponse are urgently needed [29, 30]. The use of DNA or 
RNA as a potential biomarker is not innovative, but there 
are not many DNA or RNA-based markers translated to 
clinics. Detection of abnormal expression of lncRNAs from 
tissue, blood or urine samples seems to be easily per-
formed using molecular biology methods nowadays [27, 
31, 32]. 

An ideal biomarker should be simple obtained from 
the diverse of sources and require simple measurement 
methodology [33]. However in the case of lncRNAs some 
problematic questions have arisen and they need to be 
clarified before implementation of these molecules in the 
clinical diagnosis. 

First of all, it is thought that good biomarker should be 
easily available. lncRNAs are present in tissue, peripheral 
blood, serum, saliva, urine or some cell-derived exosomes 
[31, 32, 34, 35–37], but not all lncRNAs are present in ev-
ery type of biological material. For example, Tang et al. 
observed the presence of HOTAIR, HULC, MALAT1, MEG-3, 
NEAT-1 and UCA1 in malignant and adjacent nonmalignant 
samples from OSCC patients, but in saliva only HOTAIR 
and MALAT1 were detectable [36]. 

High quantity and quality of biomarker molecules are 
also important. lncRNAs are supposed to be less stable 
and easier to degrade than miRNAs due to their length. 
However, Kraus et al. showed in their studies of postmor-
tem brain tissues that some lncRNAs are more stable than 
miRNAs [38, 39]. Others also indicated that most lncRNAs 
are stable (half-life more than 16 h) – especially intragenic 
and cis-antisense lncRNAs compared with those derived 
from introns [10, 36]. The specific lncRNA half-life depends 
not only on its coding place in the genome and posttran-
scriptional modifications but also on subcellular localiza-
tion and function [10]. Moreover, the presence of some  
lncRNAs in body fluids such as saliva [36], and resistance of 
plasma lncRNAs to RNase A digestion and overnight incu-
bation at room temperature [37] confirm high stability of 
these transcripts. On the other hand, analysis of both long 
coding and non-coding RNA transcripts obtained from ar-
chived formalin-fixed paraffin-embedded (FFPE) blocks is 
difficult because of their low stability [40]. However, this 
problem can be solved by measuring the expression level 
of lncRNA by real-time PCR reaction with three different 
pairs of non-overlapping primers [41].

The next issue refers to the standardization of mate-
rial sample and the RNA isolation method. There is a lack 
of specific methods to sample and store material and 
methodological differences occur. One can compare can-
cer tissue with adjacent non-cancer samples from the 
same patient or with samples from healthy donors with-
out a history of cancer. In our opinion, adjacent non-can-
cer samples are not good reference because of the risk of 
tumor influence or inflammation. There is also a lack of 
RNA isolation methods dedicated to lncRNA analysis. ln-
cRNA from tissue and cell lines is usually extracted using 
standard methods for total RNA isolation based on clas-
sical TRIzol or column-based methods [42]. The isolation 
method seems not affect lncRNA quantification results, 
but there is no available data supporting this statement. 
However, column-based approach seems to be better than 
TRIzol extraction especially in the case of RNA extraction 
from body fluid [43]. For circulating lncRNA, the sample 
choice, handling and processing as well as contamination 
of blood cells influence the sample preparation. Due to 
coagulation and hemolysis, blood cells release lncRNAs 
into the serum affecting the results [37, 43, 44]. However, 
the use of special blood collection tubes can minimize the 
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level of background RNA and eliminate false results under 
quantification [45].

The detection of lncRNA, its quantification and deter-
mination of the transcriptional activity of the lncRNA gene 
(methylation) should be also considered. There are many 
methods to determine these: i) lncRNA immunoprecipita-
tion; ii) lncRNA in-situ hybridization; iii) Au-NP assay (gold 
nanoparticle-based); iv) lncRNA northern blot analysis; v) 
methylation status using HRM (High Resolution Melting); 
vi) microarray or RNA sequencing; vii) and the most wide-
ly used qRT-PCR or new developed ddPCR [31, 32, 46–48]. 
The choice of proper analysis method depends on kind of 
study (screening or specific detection), type of material 
source and costs.

The most common methods in lncRNA studies are hy-
bridization assays especially qRT-PCR. The available qRT-
PCR lncRNA platforms allows simple and quick quantifica-
tion of 90 lncRNAs based on CT analysis in one run, while 
one commercial lncRNA microarray platform can check 
the expression of more than 30,000 lncRNAs without 
sophisticated bioinformatics methods required for NGS 
(Next Generation Sequencing) data extraction [49, 50]. 
Moreover, microarray experiments seem to be more pre-
cise because of the well-validated technology, in contrast 
to lab-designed qRT-PCR primers, which can differ among 
laboratories [51]. In addition, the presence of lncRNA iso-
forms and their polymorphisms influences the function of 
specific lncRNA [52–54], but there is a lack of information 
about specific studies. This can make it difficult to com-
pare results. 

Microarray or NGS methods are expensive and data an-
alyzing is demanding and probably they will be used only 
in biomarker research area. The simplicity of performing 
and low cost as well as availability of lncRNA quantifica-
tion kits with well-defined workflow seem to make qRT-
PCR as a gold-standard of lncRNA quantification.

The most popular qRT-PCR method used in lncRNA re-
search is based on SYBR-Green dye and TaqMan probes 
[42]. qRT-PCR assay requires the right choice of cDNA syn-
thesis method and the proper reference genes. There are 
no standardized methods for reverse transcription of ln-
cRNA. Some lncRNAs have endogenous polyA tails but oth-
ers do not possess these elements. Moreover, most lncRNA 
is present in low copy numbers, and this makes it difficult 
to quantitate with conventional methods. These lncRNA 
require the addition of polyA tails and annealing anchor dT 
adapters before cDNA synthesis. This approach allows en-
hance specificity and sensitivity of lncRNA quantification 
[55]. However, in most studies, the cDNA is prepared using 
kits containing mixtures of oligo(dT) and random hexamer 
primers.

Another very important issue is the preparation of 
RNA to cDNA synthesis, particularly circulating RNA. Qi et 
al. noted that quantification of circulating RNAs via the 
NanoDrop spectrophotometer is problematic. They recom-
mended using the same volume of input rather than the 
same amounts of RNA. However, they showed no evidence 
supporting this statement [43].

The use of proper reference gene is still problematic in 
lncRNA expression measurement using qRT-PCR. There is a 

lack of standardized references, and most lncRNA studies 
are based on GAPDH, U6 (RNU6B) or ACTB [42]. The mis-
matched reference influences the results and makes it dif-
ficult to compare various studies. The problems with the 
normalization were observed in the case of miRNA expres-
sion studies. The snoRNAs used as normalization for miR-
NAs are not stably expressed and actually could serve as 
prognostic factors [51]. This situation suggests that proper 
normalization is an important step in data presentation 
and comparison. It should be verified if different types of 
tissue need specific normalization genes for examination 
of lncRNA. For example, different lncRNA references are 
suitable only for brain tissue studies. Some can be applied 
as universal references in profiling various gliomas and 
normal tissues [38, 39]. Thus, it should be verified if dif-
ferent cancers need specific lncRNA-related normalizing 
genes [43]. Fang et al. checked 16 different reference genes 
regarding cancer, normal and metastasis tissues (such 
as ACTB, TUBA3, KALPHA1, GAPDH or B2M); for example 
ACTB was selected as the best normalizer for MALAT1 [55]. 
One of the open questions is normalization of circulating 
lncRNA data. Dong et al. verified the utility of ACTB, GAP-
DH, HPRT, 18S RNA, CYC, and GUSB as the reference genes 
in the serum of healthy and cancer patients, and ACTB was 
selected as the best normalizing gene. Moreover, ACTB is 
stable after temperature changes in serum samples [56].

Despite the numerous problems, lncRNA under proper 
laboratory conditions seems to be a good candidate as 
biomarker and this statement is proven by many diag-
nostic studies [43]. The features of lncRNA molecules as 
biomarker were summarized in Fig. 1. However, standard-
ization of procedures and definition of specific expression 
profiles bearing specific clinical information before using 
lncRNA as biomarkers are urgently needed and are the 
challenge for the future studies.

lncRNA biomarkers in HNSCC

Many studies have shown that deregulated expression 
of lncRNAs can be associated with diabetes [57], leukemia 
[58], solid cancers [59] or other diseases such as endome-
triosis [60]. The potential role of lncRNA as biomarkers in 
cancer such as gastric, colorectal, prostate, lung cancer or 
HNSCC has already been described [27, 42]. While HOTAIR 
is deregulated in many cancer types, a few lncRNAs are 
deregulated in a particular cancer type, i.e. prostate cancer 
antigen 3 (PCA3) is found only in prostate tissue [61]. The 
results are promising because PCA3 may be potentially 
used as a cancer-type specific biomarker.

To date, only nine independent studies show global 
analysis of lncRNA expression profile in HNSCC: three bio-
informatic analysis of available data, four experimental 
microarray studies and two experimental next generation 
sequencing studies (Table 1). 

Profiling studies revealed that specific lncRNAs expres-
sion in cancer tissue is associated with HPV status, known 
mutations, cancer-related pathways and gene copy num-
ber changes [62–66]. We need to remember, that specific 
global expression analysis is based on the use of some 
bioinformatics tools [49, 50] and the results should be ver-
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ified by different methodologies. Thus, most of these stud-
ies are not validated using different types of samples or in 
vitro models. Moreover, the inaccuracies of the results may 
be caused by differences in examined groups or samples 
(such as anatomical sites) reflecting genetic diversity. Bio-
logical role of only a few lncRNAs dysregulated in HNSCC 
is well known. The most studied lncRNAs both in vivo and 
in vitro in HNSCC are HOTAIR, HOTTIP, UCA1, LET, MEG3, 
MALAT1, H19 and NAG7. They are involved in many import-
ant cellular processes such as proliferation, migration and 
invasion, apoptosis or phenotype regulation. Their exact 
function in biology of HNSCC has been carefully described 
by us elsewhere [67].

However, some lncRNAs have a strong prognostic 
ability for overall survival, disease-free survival, or recur-
rence-free survival in HNSCC. These lncRNAs described 
as potential biomarkers are presented in Table 2. Some of 
lncRNAs are proposed to be independent of gender, organ 
site, tumor stage or TP53 status [64, 66, 68]. lncRNAs can 
also be used as virus infection indicators [63], while others 
may serve as metastasis or disease progression markers 
[69].

Unfortunately, there is only one study indicating ln-
cRNAs as biomarkers related to response to chemoradio-
therapy. Fayda et al. showed that only plasma circulating 
GAS5 might be a useful predictive biomarker [35]. Howev-
er, this study is based only on a small group of patients, 
and these results should be verified in a randomized tri-
al before clinical use [43]. However, expression of lncRNA 
changes after exposure to chemotherapeutic drugs, and 
this could maintain drug resistance or sensitivity in cancer 
cell lines [70–72].

Only one study has indicated a role of lncRNA in radio-
resistant NPC cell lines. Li et al. used NGS technology and 
showed some previously known and some novel lncRNAs 
are dysregulated in radioresistant cell (Rs) line compared 
to the parental line. Three pairs of lncRNA-mRNA in CNE-2-

Rs and 6-10B-Rs cell lines have been described. The discov-
ered lncRNAs: n373932, n409627 and n386034, regulate  
SLITRK5, PRSS12 and RIMKLB mRNAs, respectively. Only 
CNE-2-Rs cells show a slight change in lncRNAs-mRNAs. 
In the case of 6-10B-RSs, there is strong down-regulation 
of n373932 lncRNA and up-regulation of STITRK5 mRNA. 
Moreover, the expression of n373932 and SLITRK5 is neg-
atively correlated in NPC patients [73]. More in vivo and 
in vitro studies are needed to define exact role of specific 
lncRNA in chemo- and radioresponse and next validation 
of predictive lncRNA panel in clinical practice.

Conclusions and future perspectives

lncRNAs, including the ones described here, are aber-
rantly expressed in a number of different cancers and were 
characterized as molecules with a great impact. These re-
cently discovered RNA molecules affect the hallmarks of 
carcinogenesis including proliferation, metastasis and 
apoptosis. Moreover, existing reports indicate the poten-
tial role of lncRNA as a new class of biomarkers. However, 
there are some challenges and problems to take and solve 
before use. First of all, there is only a few data regarding 
specific lncRNA in HNSCC. Despite the fact that several 
studies have shown global changes in lncRNA expression 
profile in HNSCC, the validated panel was not proposed. 
Moreover, most studies are based on a small study group, 
and it is difficult to compare them to TCGA-based analyzes. 
Some of lncRNAs described in this review play pivotal roles 
in HNSCC and might be biomarkers of treatment response. 
However, only a few studies have focused on lncRNA after 
irradiation or chemoexposure. The exact role of specific 
lncRNAs in regulation and response to radiation and che-
motherapy used in HNSCC is unknown and requires future 
studies. The next issue is lack of well-validated methodol-
ogy to use lncRNA in diagnostics such as different detec-
tion methods as well as use of non-specific or unsuitable 
normalization genes, which influence on the results.

Fig. 1. Characteristic of lncRNA molecules as potential biomarker

Specificity and sensitivity of detection

•	Only some have endogenous polyA tail

•	High isoform heterogeneity

•	Tissue specific expression

•	Present in low copy numbers

•	Detectable in body fluids

•	Lack of proper reference genes

Diversity of sources

•	Tissue and cell lines

•	Peripheral blood

•	Serum

•	Saliva

•	Urine

•	Exosomes

•	FFPET

Stability of molecule

•	Some more stable than miRNAs

•	Half-life more than 16 hours

•	Resistance to RNase A digestion and incubation 
at room temperature

•	Present in body fluids

Detection methods

•	 Immunoprecipitation

•	 In situ hybridization

•	Au-NP assay (gold nanoparticle-based)

•	Northern blot

•	Methylation status using HRM (high resolution melting)

•	Microarray or RNA sequencing (next generation  
sequencing – NGS)

•	PCR methods (real time PCR, droplet digital PCR)

lncRNA 
as 

biomarker
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Table 1. Characteristic of global lncRNA profiling studies in HNSCC

Study Analysis Results description 

Zou  
et al.  
[62, 63]

Bioinformatic analysis of 
RNA-seq data sets (TCGA data 
from UCSC Cancer Genomics 
Hub) of 40-tumour-adjacent 
normal pairs and 363 additional 
unpaired tumors

– �9681 lncRNA transcripts significantly changed; 596 lincRNAs of them strong 
dysregulated in HNSCC (up or downregulated)

– �Confirmation of GAS5 and MEG3 down-regulation and identification of H19 and PCAT-1 
dysregulation (all tumor sites)

– �Different tumor sites analysis of 39 matched samples revealed:
i) OSCC – 777 lncRNAs changed
ii) TSCC – 1020 lncRNAs changed 
iii) LSCC – 657 lncRNAs changed

– �276 lincRNAs significantly predict patients’ OS (over and underexpression depends  
on lincRNA); 

– �256 associated with TP53 mutation and 269 with TP53-3p co-occurrence

Nohata 
et al.
[64]

Bioinformatic analysis of RNA-
seq data sets (TCGA data from 
The Atlas of Noncoding RNAs in 
Cancer – TANRIC) of 468 tumor 
samples
Analysis of sequencing data of 
OPC-22 panel (cell lines)

– �728 lncRNA transcripts changed between normal and tumor samples (212 up- and 516 
down-regulated)

– �Significant connection of 55 lncRNAs with patient’s prognosis in OS or DFS (reduced or 
increased OS or DFS – depending on type of lncRNA)

– �27 upregulated lncRNAs in HPV+ cell lines and 140 up-regulated in HPV+ tumors from 
TCGA

– �30 lncRNAs downregulated in TP53 mutated tumors 

Yang 
and 
Deng 
[65]

Microarray analysis (mRNA and 
lncRNA) of 6 pairs of NPC and 
chronic nasopharyngitis (CNP) 
samples and qRT-PCR validation

– �856 lncRNA transcripts changed between NPC and CNP (425 up- and 431 down-
regulated)

– �Changed lncRNA connected with apoptosis, cell growth and proliferation revealed by 
lncRNA-mRNA interaction analysis, migration and movement or cell differentiation and 
interaction with JAK-STAT signaling pathway 

Zhang 
et al. 
[69]

Microarray analysis of randomly 
paired 3 metastatic and  
4 primary NPC tumor samples 
and qRT-PCR validation

– �8088 lncRNA transcripts changed between metastatic and primary samples (3778 up- 
and 4310 down-regulated)

– �Expression level of ENST00000438550 as an independent indicator of disease 
progression in NPC patients

Zhou 
et al. 
[74]

Microarray analysis of  
3 paired tumor and adjacent 
noncancerouse samples from 
hypopharyngeal squamose cell 
carcinoma (HSCC) patients and
qRT-PCR validation

– �AB209630 and AB019562 indicated as changed in HNSCC (AB209630 low expressed, 
AB019562 high expressed), which influence on cell growth, colony formation, invasion 
and apoptosis/cell death in FaDu

– �High expression of AB209630 correlated with better OS

Ren
et al. 
[70]

Next generation sequencing and 
qRT-PCR validation

– �2670 known and 4820 novel lncRNAs changed in paclitaxel-resistant CNE-2 compared to 
parental CNE-2 cell line 

– �n375709 – the most overexpressed lncRNA; influence on sensitivity to paciltaxel in vivo 

Zhang 
et al. 
[66]

Bioinformatic analysis of 
microarray data sets (GSE25099 
from Gene Expression Omnibus 
database) of 57 OSCC samples 
and 22 normal sample

– �160 lncRNA transcripts changed between OSCC and normal samples (41 up- and 119 
down-regulated) 

– �Up-regulated targets of lncRNA connected with immune response, response to 
wounding, inflammatory response and regulation of proliferation; down-regulated 
targets of lncRNA connected with epidermis development

Li et al. 
[73]

Next generation sequencing and 
qRT-PCR of radio-resistant CNE-
2-Rs and parental CNE-2 cell 
lines (nasopharengynal) and
qRT-PCR validation

– �310 up-regulated and 471 down-regulated of known lncRNAs in radioresistant CNE-2-Rs 
compared to parental CNE-2 cell line

– �3 novel lncRNA Unigene8485, Unigene8588 and down-regulated Unigene3434
– �13 pairs of lncRNA-mRNA associated with radioresistance in CNE-2-Rs cell line

Zhang 
et al. 
[75]

Microarray analysis (lncRNA and 
mRNA) of 7 NPC tumor samples 
and adjacent non-tumor 
samples and qRT-PCR validation

– �481 lncRNA transcripts changed between NPC and normal samples (231 up- and 250 
down-regulated) as well as 766 mRNA transcripts (323 up- and 443 down-regulated)

– �Up-regulated lncRNAs mainly localized on chromosomes: 12, 2, 1 (8.7% of lncRNA 
transcripts)

– �LncRNA-mRNA pairs implicated in processes such as: regulation of transcription, 
macromolecule metabolic and biosynthesis, nerve development, immunological synapse 
or signaling pathways: B and T cell receptor transmembrane and TGF-β receptor  

We supposed, that future cancer diagnostic panels will 
likely consist of a wide variety of genes-both protein cod-
ing and non-coding. Such a platform will offer a detailed 
description of the nature of the tumor, and this will allow 
personalized treatment of HNSCC. 

The examples presented here are just the tip of the ice-
berg. Knowledge about lncRNA is evolving. A lot of work 
was done to explain the role of this molecules in the can-
cer biology, but much more should be do to use this knowl-
edge in clinical practice.
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Table 2. lncRNAs described as potential biomarkers in HNSCC

lncRNA Description Ref.

NEAT-1 – Significant up-regulated only in metastatic OSCC samples; not found in patients’ saliva
– Over-expressed in LSCC

[62, 36, 
75, 76]

HOTAIR – �Over-expressed in LSCC samples; correlated with poor differentiation cancers, lymph node metastasis, 
resistance to apoptosis and more advanced clinical stage

– �Over-expressed in OSCC of metastatic and non-metastatic tumors; correlated with lymph node metastasis, 
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stages, T classification and lymph node metastasis; miR-21 and HOTAIR can discriminate the patients who 
are at the risk of developing LSCC 

– �Independent prognostic marker for patients’ progression and survival in the NPC patients

[36, 
77–81]

HOTTIP – �Over-expressed in TSCC samples; associated with clinical stage, tumor size, distant metastasis and 
patients’ OS; an independent poor prognostic factor

[32]

UCA1 – �Over-expressed in TSCC samples; correlated with lymph node metastasis – potentially prognostic indicator 
of lymph node metastasis 

– �In OSCC samples lack of differences in expression levels between samples and match adjacent non-tumor 
samples

[36, 82]

AC026166.2-
001 & RP11-
169D4.1-001

– �Down-regulated in LSCC samples and metastatic cervical lymph nodes; low expression associated with 
poor prognosis

[83]

GAS5 – �Down-regulated in HNSCC and correlated with poor prognosis
– �Circulating GAS5 as a prediction factor of patients’ response to radical chemoradiotherapy

[62, 35, 
51]

lnc-JPHl-7 – �Significant associated with survival of both HPV+ and HPV– patients and advanced tumor stage [63]

LET – �Down-regulated in NPC samples; correlated with clinical stage, tumor size and lymph node involvement; 
low expression correlated with poor RFS and OS

[68]
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