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Abstract

Human norovirus infection causes significant medical and financial costs in the USA and abroad. 

Some populations, including young children, the elderly, and the immunocompromised, are at 

heightened risk of infection with this virus and subsequent complications, while others, such as 

healthcare workers and food handlers are at increased risk of transmitting it, and some are at risk 

of both. Human noroviruses are heterogeneous with new strains emerging periodically. In addition 

to viral diversity, incompletely understood characteristics, such as virus–host cell binding and 

duration of immunity after infection add to the challenges of creating a norovirus vaccine. 

Although much progress has been made in recent years, many questions remain to be answered. In 

this review, we discuss the important areas and relevant literature in considering human norovirus 

vaccine development and potential targets for implementation.
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Human norovirus is a major health and financial burden in the USA and abroad. Globally, it 

causes 12–24% of community or clinic-based cases of acute gastroenteritis (AGE), 11–17% 

of emergency room or hospital cases and anywhere from 70,000 to 200,000 deaths annually, 

[1–3]. In the USA alone, it causes 19–21 million cases of AGE [4,5], up to 70,000 

hospitalizations across all age groups [6], and nearly 800 deaths annually [7]. Human 

norovirus infection is costly, with annual estimates of US$493 million for hospitalizations 

[6] and US$284 million for outpatient and ER visits [8], both in the USA. Costs associated 

with foodborne norovirus infections are even greater, with just over US$2 billion in 

combined medical, productivity, and mortality-related costs, as well as 5000 lost quality-

adjusted life years (QALYs) [9].
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Human norovirus is implicated as a cause of AGE in both sporadic and outbreak settings. It 

is the number one cause of community or outpatient cases of AGE among all ages [4,10]. 

Among US adults, a prospective multi-center study found that norovirus is the number one 

cause of severe AGE requiring emergency room visits, having been detected in 26% of 

patients tested [11]. A recent review that included 175 studies from 48 countries that 

examined the prevalence of human norovirus using RT-PCR among cases of AGE found an 

overall prevalence of 18%, with higher prevalence in community or outpatient settings 

versus hospital settings (20–24% vs 17%, respectively) [1]. Prevalence among those 

complaining of foodborne illnesses is even higher. Studies from the USA and Australia have 

reported human norovirus prevalence of 42–53% among incidents of foodborne 

gastroenteritis [12,13]. Human noroviruses are also the most common cause of AGE 

outbreaks in the USA and abroad [14,15]. In the USA, surveillance data from the National 

Outbreak Reporting System implicates human norovirus as the leading cause of single-

etiology AGE outbreaks, responsible for 68% of identified outbreaks [16].

Given this public health importance, vaccines targeting human norovirus are currently under 

development and testing [17,18]. In this article, we describe populations at highest risk for 

human norovirus disease and transmission and key issues and gaps that remain to be 

addressed for further development and ultimate implementation of a human norovirus 

vaccine among these potential target populations.

Clinical infection with human norovirus

Earlier studies suggested that as few as 18 virions could cause clinical infection [19], with 

more recent studies reporting the 50% human infectious dose at 1320 genomic equivalents 

[20]. Once infected by human norovirus, predominant symptoms include sudden-onset 

vomiting, abdominal cramping and watery diarrhea. Gastroenteritis due to human norovirus 

infection has been described as a brief, self-limited infection in many with symptoms 

resolving normally within 2–3 days, but both symptoms and clinical severity can differ by 

patient population [21], with elderly and the immunocompromised patients at risk for more 

severe symptomatology and complications [22,23]. Treatment of symptomatic infection is 

generally supportive with fluid and electrolyte repletion, although research to identify 

antiviral treatment strategies is currently underway [24]. The mainstay of current outbreak 

control efforts is identification and containment of the source, maintenance of strict personal 

hygiene, and decontamination of environmental surfaces [25]. Vaccines present a new 

approach to prevention of human norovirus disease.

Transmission of human norovirus

Transmission of human norovirus is predominantly fecal–oral, although infectious vomitus 

can also spread the disease [21]. Shedding of virus in stool can be copious and has been 

detected by real time RT-PCR in healthy adults up to 56 days after oral inoculation with 

norovirus [26]. Specific routes of transmission implicated in outbreaks include direct person-

to-person contact, ingestion of contaminated food or water, and contact with contaminated 

environmental surfaces or fomites [27]. Data from National Outbreak Reporting System 

indicates that human norovirus outbreaks in the USA occur most commonly via person-to-
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person (69%) or food-borne transmission (23%), with foodborne outbreaks occurring mostly 

in food preparation settings (90%) and non-foodborne outbreaks occurring mostly in long-

term care facilities (80%) [15].

Populations with high burden of human norovirus disease

In considering vaccine development and implementation, risk for infection and transmission 

of human norovirus must be taken into account. Reasons for vaccination need to take into 

account that some groups have higher risk of infection and clinical complications, while 

others have higher risk for transmitting infection to other groups, and some can have both 

(Table 1). A key objective of vaccinating the latter group would be to arrest transmission of 

virus from high-risk sources to persons in the former group and the general population. The 

goal of vaccinating the former group would be to directly decrease the morbidity, mortality 

and associated costs attributed to human norovirus infection.

Young children

Human norovirus infection is common among young children. A literature review examining 

international data found that the prevalence of human norovirus was 18% among children 

less than 5 years old with AGE [1]. Emergency department visits and hospitalizations are 

also seen frequently among this age group. One study found that 12% of such visits were 

attributed to human norovirus [2], while another found that hospitalization rates were 9.4 

hospitalizations/10,000 population, representing the highest rate of any age group [10]. In 

addition, an estimated 27 norovirus-associated deaths occur per year among US children <5 

years old [7]. In settings with national rotavirus vaccine programs, human norovirus has 

become the leading cause of AGE in children less than 5 years old requiring medical 

attention [28,29]. In the community setting, an English study found human norovirus to be 

the most common cause of infectious intestinal disease, and children had the highest 

incidence. Children less than 5 years old had a higher incidence of human norovirus 

infection compared with all other age groups, with 21.4 episodes/100 person-years among 

those less than 5 years old compared with 3.3 episodes/100 person-years among those above 

5 years old. Incidence among children 0–1 years old was the highest, at 27/100 person-years 

[30]. In terms of infectiousness, a prospective cohort study of the natural history of human 

calicivirus infections (including noroviruses and the closely related sapoviruses) in the 

community reported that children have longer duration of diarrhea compared with those over 

12 years old [31]. This study found that gastroenteritis due to human norovirus was common 

among all age groups, and diarrhea was a predominant symptom among children. The 

duration of diarrhea decreased with increasing age, with symptoms lasting 6 days in those 

less than 1-year-old, 4 days in 1–4 year olds, 4 days in 5–11 year olds, and 3 days in those 

greater than 12 years. The duration of diarrhea is epidemiologically important, particularly 

given the low infectious dose of human norovirus and implications for transmission. Also 

important for transmission is viral shedding in stool. Among children in this same study, RT-

PCR detected human norovirus shedding 22 days after infection, with those less than 1-year-

old most frequently shedding human norovirus in their stool at this time point. Of note, 

human norovirus may have been present longer than 22 days after infection, but this was the 

last time point that the investigators checked fecal specimens. A more recent study among a 

Aliabadi et al. Page 3

Expert Rev Vaccines. Author manuscript; available in PMC 2018 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Peruvian birth cohort over 2 years measured the median duration of viral excretion and 

found the length of viral shedding was even longer: 31.5 days among children with diarrheal 

symptoms and 30 days among asymptomatic children [32]. In addition, data from modeling 

studies predict the basic reproductive number, or R0, for human norovirus to be 4 for 

children less than 4 years old, providing support for young children’s role in propagating 

infection [33]. Children suffering from malnutrition may also serve as reservoirs of human 

norovirus, as suggested by a murine model of malnutrition showing impaired norovirus 

control, decreased antibody response and enhanced viral evolution [34]. These data highlight 

the importance of this age group in spread of infection as well as their substantial burden 

from human norovirus disease, and this epidemiology points to inclusion of a developed 

vaccine in young children, which could decrease disease burden both directly and indirectly.

The elderly

Severe human norovirus disease occurs at the extremes of ages and, as with the very young, 

emergency department visits and hospitalizations are also seen frequently among adults aged 

≥65 years. In terms of clinical symptomatology, one study showed that hospitalized patients 

older than 65 years were more likely to have longer duration of diarrhea and were at higher 

risk for severe clinical outcomes compared with younger patients [22]. The burden of fatal 

human norovirus disease is also largely confined to the elderly [7,10,35], with the elderly 

having a higher case fatality rate than any other age group [36]. Indeed, in the USA, among 

persons 65 years or older, human norovirus is second only to Clostridium difficile as a cause 

of death from gastroenteritis, with approximately 800 deaths reported annually [7]. A 

modeling study from England and Wales suggests a similarly prominent role of human 

norovirus among gastrointestinal infections resulting in death among the elderly [37]. In this 

analysis, human norovirus was the only significant gastrointestinal pathogen in regression 

models estimating deaths from infectious intestinal disease other than Clostridium difficile 
in this age group. These authors found that 20% of such deaths, or roughly 80 deaths per 

year, were associated with human norovirus. Healthcare settings have been shown to bear a 

large burden of disease related to human norovirus [38], and most outbreak-associated 

deaths occur in these settings [39,15]. In addition, nursing homes have reported higher rates 

of all-cause hospitalization and deaths during periods with ongoing human norovirus 

outbreaks compared with other time periods [40]. Given that the elderly largely populate 

long-term healthcare facilities, these enclosed settings are ripe for person-to-person 

transmission and subsequently for adverse outcomes related to human norovirus outbreaks. 

These are also costlier, as mean hospital charges among the elderly with human norovirus 

gastroenteritis cost more than twice that of children [6].

Travelers

Human norovirus infections are an important cause of traveler’s diarrhea. It is second only to 

Escherichia coli, with diverse human norovirus genotypes having been found in 9–16% of 

diarrheal stools of travelers to Mexico, Guatemala and India [41–43]. Human norovirus has 

been implicated as the etiology for outbreaks in other leisure settings, including recreational 

parks, hotels, camps, cruise ships, tour buses and ski lodges [44–46]. Many of these settings 

include numerous persons in close proximity or confined spaces, who can transmit infection 

to each other. Outbreaks in these leisure settings may be caused by a point source, or can be 
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a marker for increased activity in the general populations. In one large European 

investigation of 13 ships reporting 43 outbreaks in 2006, the authors were unable to identify 

a point source for the outbreaks and postulated that the outbreaks may have been related to 

general increased activity of human norovirus in the population during that period [47]. In 

addition to these leisure settings, outbreaks have been reported on airplanes while travelers 

are en route to their destinations [48].

The military

Other populations at risk for infection include those dwelling in group settings, such as the 

military. Given the close living situations, shared bathrooms in barracks, and close quarters 

during deployment, human norovirus has been responsible for a variety of AGE outbreaks 

among those in the military. A systematic review of long-term travelers, including military 

recruits, found the prevalence of human norovirus infection between 4 and 13% among 

those with AGE [49], while one cross-sectional study of AGE on a military base during 

Operation Iraqi Freedom, detected human norovirus in stool of 23% of recruits experiencing 

AGE [50]. This higher figure compared with that reported by systematic review may be a 

result of improved diagnostic testing for human norovirus. In these deployed populations, 

gastroenteritis frequently leads to lost duty time, decreased reserve readiness and 

hospitalizations, with substantial economic implications [51].

The immunocompromised

Human norovirus is often associated with chronic or recurrent gastroenteritis among the 

immunocompromised who include those born with congenital immunodeficiency 

syndromes, those with HIV/AIDS, transplant recipients on immunosuppressive treatment 

and recipients of cancer chemotherapy. While it is unclear whether these patients pose an 

increased risk for transmission to immunocompetent persons, they are at high risk for 

suffering severe complications [23]. In one study, immunocompromised transplant patients 

with AGE were more commonly infected with human norovirus than any other tested 

pathogen. Additionally these patients, when compared to those with non-norovirus AGE, 

had more severe complications, including ICU admission, renal dysfunction, and weight loss 

[52]. In terms of potential for transmission, infection can be persistent and viral shedding in 

stool can be prolonged in immunodeficient patients, with some shedding human norovirus in 

stool for up to 22 months, and even up to 8 years, when biopsy specimens among patients 

with duodenal villous atrophy were examined [22,53]. Furthermore, evidence from studies 

in chronically infected immunocompromised patients suggests that they may serve as 

potential reservoirs for human norovirus, and give rise to novel strains [54,55]. Among 

immunocompromised children, greater burden of human norovirus may also play a part in 

their serving as a potential reservoir, as in one study they were found to have higher viral 

load in stool specimens compared with immunocompetent counterparts with AGE, although 

this was not statistically significant [56].

Occupational groups at risk for transmitting human norovirus infection

Another important perspective to consider as a potential target for reducing the overall 

disease burden is those who are at risk for transmitting the infection. The low infectious dose 
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and hardiness of human norovirus on environmental surfaces allows for rapid spread of 

infection from just one infected person to potentially many others, and puts healthcare 

workers and food handlers at risk for transmission of infection [15,57]. Of the estimated 9.4 

million episodes of foodborne illness attributable to known agents each year in the USA, the 

majority, 58%, are caused by human norovirus [5]. Infected food handlers have been 

implicated as the source of infections in 70% of food-borne norovirus outbreaks in the USA, 

the majority of whom did not use proper hand hygiene when preparing foods [15]. This 

analysis also noted that foodborne norovirus infections affect all ages and cause significant 

burden to the healthcare system, including clinic visits, emergency room visits, 

hospitalizations, and rarely, deaths. Thus, food handlers may be important targets for 

breaking the transmission cycle of human norovirus.

Healthcare environments are the most common settings for human norovirus outbreaks, in 

which direct person-to-person contact is the most common route of transmission [15,58,59]. 

Data collected over an 8-year period in Australia from more than 1600 human norovirus 

outbreaks reported to the Victoria Health Department demonstrated that the majority (62% 

of genogroup (G) I outbreaks and 91% of GII outbreaks) occurred in healthcare settings 

[60]. Similarly, 5 years of data from 13 European countries reporting human norovirus 

outbreaks found that 72% of the 6579 outbreaks with a reported setting occurred in a 

healthcare setting, be it a residential institution or hospital [61]. Findings from a Dutch study 

indicate that infected healthcare workers play a larger role in transmission during outbreaks, 

compared with asymptomatic patients, who also shed large amounts of virus in stool [62]. In 

this study, however, symptomatic patients were found to be more infectious than 

symptomatic healthcare workers. The authors report that this finding is likely related to 

enhanced awareness of personal protective hygiene measures among healthcare workers 

compared with patients. This highlights that healthcare workers can contribute to human 

norovirus transmission in healthcare settings, and while rigorous hand hygiene and surface 

decontamination can play a role in controlling outbreaks, preventing healthcare workers 

from becoming ill may also be an effective approach for interruption of nosocomial 

transmission.

Human norovirus biology & its implications for vaccine development

Noroviruses are small positive single-stranded 7.5–7.7 kb RNA viruses of the genus 

Norovirus, one of five genera within the Caliciviridae family. The first norovirus was 

discovered in 1972 by Kapikian et al. [63] after investigation of an outbreak in Norwalk, 

Ohio. Based on differences in the major capsid protein (VP1), seven norovirus genogroups 

have now been classified, of which viruses from GI, GII, and GIV infect humans [64]. GI 

contains nine genotypes while GII contains 22 [64]. The norovirus genome contains three 

open reading frames (ORF), with ORF1 encoding six nonstructural proteins, ORF2 encoding 

VP1, whose P2 subdomain accounts for most of the antigenicity of each virus, and ORF3 

encoding the minor capsid VP2 [64,65]. When the VP1 capsid protein is expressed 

independently of other viral components in vitro, it assembles into an empty virus-like 

particle (VLP) that are structurally and antigenically identical to a native virus particle. 

These VLPs, which encode no genetic material, induce antibody responses when inoculated 

into humans and have subsequently become a major vehicle for norovirus vaccine 
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development [66]. Recently, norovirus was reported to be able to grow in vitro in a specific 

human B-cell line for which the presence of certain enteric bacteria seems important [67]. If 

replicated in other laboratories, this discovery will facilitate a range of advancements that 

could accelerate vaccine development efforts.

Noroviruses are genetically diverse; however, the overwhelming majority of human disease 

is a result of infection with strains of the GII.4 genotype [68,69]. Worldwide, GII.4 is 

responsible for both outbreaks [69–72] as well as sporadic cases in the community [2,12,73]. 

An analysis of 3616 human norovirus outbreaks reported to CaliciNet, a USA laboratory-

based surveillance system for norovirus outbreaks, demonstrated that the majority of both 

foodborne and person-to-person outbreaks were caused by GII.4 strains [69]. Furthermore, 

this study showed long-term care facilities and the elderly were more frequently affected by 

GII.4 outbreaks. The GII viruses are more persistently shed in the stool, with GII viruses on 

average lasting 34.5 days compared with 8.5 days for GI virus excretion among a Peruvian 

birth cohort followed over 2 years [32]. GII viruses are also more often implicated in serious 

health outcomes. A systematic review of 843 outbreaks from around the world demonstrated 

that GII.4 strains were more likely associated with higher hospitalization and mortality rates, 

after controlling for other factors [39].

GII.4 viruses are not static, and undergo frequent genetic shifts. Over the past 20 years, new 

GII.4 variants have emerged every 2–4 years, generally replacing the predecessor as the 

predominant cause of outbreaks and endemic disease. These changes arise from mutation 

and recombination, with shifts in the capsid protein epitopes being a mechanism for immune 

evasion [74]. Furthermore, it has been postulated that protective herd immunity drives these 

changes [70,73,75,76] possibly through molecular evolution of the virus, causing antigenic 

variation resulting subsequently in the emergence of novel epidemic strains [77,78]. By 

definition, this dynamic suggests that natural immunity to norovirus infection does occur, 

which is a prerequisite for any vaccine development efforts. However, the level of cross-

protection against different genotypes for inclusion of new emergent strains is unclear, 

suggesting that periodic vaccine reformulation may be required.

Non-GII.4 genotypes are also important in outbreak settings, although to a lesser degree. 

Various GI and other GII genotypes (including GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12) 

were more often implicated in foodborne outbreaks in a 5-year study in the USA [69]. These 

GI.6 outbreaks showed unusual peak activity during summer months, and with less 

frequently reported clinical severity compared with GII.4 [79]. A study among US military 

recruits in Turkey in 2009 identified four rare genotypes within GII, two of which had been 

reported among troops deployed in Iraq, and none from the local Turkish population [80]. 

Most recently, a novel GII.17 variant has been identified in Jiangsu and Guangdong 

provinces in China, where it appears to have replaced GII.4_Sydney as the predominant 

human norovirus [81,82]. Taken together, these findings highlight the importance of vaccine 

coverage beyond GII.4 strains and suggest candidate vaccines include representative VLPs 

from at least both genogroups.
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Immunity to human norovirus

Intrinsic susceptibility to human norovirus infection

Various host factors are also important for human norovirus infection. Histo-blood group 

antigens (HBGA), including ABO, secretor, and Lewis types have been shown to play an 

important role in susceptibility to infection [83–85]. The expression of HBGA in saliva, 

mucous membranes, and secretions is regulated by the a(1,2)-fucosyltransferase (FUT2) 

gene. Mutations in this gene may be associated with susceptibility for infection with human 

norovirus with strong evidence that individuals possessing a certain mutation in FUT2 are 

resistant to infection with human norovirus [86]. Those who possess a functional FUT2 

gene, the so-called secretor-positive individuals, were found to have higher risk of human 

norovirus AGE in one study [87]. Another study found that both secretor-positive and 

secretor-negative individuals had infections with human norovirus, although genotypes 

differed among those with and without the functional gene, with GII.4 infections found 

among secretor-positive children and non-GII.4 infections more common in secretor-

negative children [88]. While HBGA expression may play an important role in the binding 

of human norovirus and subsequent infection, factors unrelated to these antigens may also be 

at play as some evidence for human norovirus binding of intestinal epithelial cells without 

involvement of HBGA has been demonstrated [89]. Additional studies are needed to 

continue to clarify the role of HBGA, FUT2 gene expression, and other factors contributing 

to human norovirus interaction and subsequent infection of epithelial cells.

Antibody response to human norovirus infection

Serologic data from natural infection have shown that antibodies may be protective against 

infection with human norovirus, but these results are mixed in terms of strain-specificity and 

cross protection. Studies have shown elevated antibody responses after clinical infection 

among adults and children [90]. Antibody presence increases with age, as seen in one study 

among hospitalized patients with AGE, where levels of GII.4 IgG and IgA both rose with 

advancing age, with those aged less than 2 years having the lowest levels of these antibodies 

and adults having the highest [91]. Children with higher preexisting antibodies who 

experience subsequent norovirus infections have lower clinical severity; in one study of 

children from Finland, conducted over the course of 2 years, those with low human 

norovirus-specific IgG antibody titers had higher likelihood to acquire norovirus infection 

later on, compared with children with high titers [92]. One study assessed the presence of 

five genotype-specific antibodies (GII.4 US95/96, GII.4 New Orleans, GII.12, GI.1, GI.3) 

from acute human norovirus infection in children, as well as the blocking potential of these 

antibodies [93]. These researchers found that high titers of preexisting GII.4 New Orleans 

IgG protect against infection from that particular strain, but this antibody was not able to 

protect children from infection with other GII genotypes in circulation. Results from 

serological surveys of adults have likewise shown conflicting results with regards to the 

protective role of pre-existing antibodies to human norovirus. Although data from diverse 

geographic locations demonstrate high prevalence of human norovirus-specific antibodies 

[94] among adults and older studies among adults experimentally inoculated with human 

norovirus did not show consistent protection of preexisting antibodies [95], more recent 

studies do show protective effect of blocking antibodies [96]. In terms of the strain 
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specificity of the antibody response, a clear-cut picture has not emerged. Early studies 

demonstrated mixed cross-reactivity among GI and GII viruses in infected populations [97–

99]. Subsequent data from both human and animal models continue to show this mixed 

response. These results suggest that persistence of high human norovirus antibody titers may 

be protective among children, although difference in exposure histories may complicate the 

situation for adults and cross-strain protection remains unclear. Given these issues, when 

considering vaccinating the elderly, prior exposure histories and age-related immune system 

decline may pose problems in mounting a robust response against human norovirus.

Mucosal responses, as measured by salivary and fecal antibodies, may also play a role in 

protection from norovirus infection. A recent placebo controlled study examined 57 patients, 

inoculated with GI.1 virus, who had salivary and fecal human norovirus-specific IgA 

measured pre- and post-inoculation [100]. This study found that pre-existing human 

norovirus-specific IgA salivary levels protected subjects from gastroenteritis, as these IgA 

levels were greater in infected subjects who did not develop gastroenteritis, compared with 

those who developed gastroenteritis. While fecal norovirus-specific IgA levels were not 

observed to confer this same protection in infected subjects, pre-existing fecal human 

norovirus-specific IgA levels were inversely correlated with peak viral load after infection, 

which may play a role in duration of viral shedding. Additional studies are needed on the 

mucosal response in the setting of vaccine development.

Duration of immunity

Duration of protection after human norovirus infection or vaccine administration remains to 

be determined. Data from an early oral challenge study with a GI.1 norovirus among 12 

healthy adult males showed that initial infection caused clinical illness in half of the group; 

when re-challenged 27–42 months later, the same six subjects became clinically ill with the 

same agent [101]. A third challenge among four of those who were ill twice 4–8 weeks after 

the second challenge, however, yielded only one clinically ill subject. The authors concluded 

that short-(up to 8 weeks) and long-term (up to 34 weeks) immunity exists for this GI.1 

virus. A later oral challenge study found up to 6 months protection without evidence for 

protective effect from initial infection of pre-inoculation serum antibodies [95].

Results from a modeling study designed to estimate the length of immunity conferred from 

human norovirus infection used a model that tracked six subject types: infection and disease, 

exposed but not symptomatic, infected with symptoms, infected without symptoms, immune 

to disease but not infection, and genetically resistant [33]. Models were fitted to 

gastroenteritis data available from the UK, and included a variety of scenarios of 

infectiousness and susceptibility of the population. These models predicted protection 

between 4.1 and 8.7 years, higher than has been shown in the observed oral challenge data. 

Although the models had good fit with observational data from the UK, the analysis was 

limited for two reasons. First, it assumed that individuals were immune to disease, rather 

than to infection and second, it assumed a single strain for human norovirus, with infection 

from one strain conferring protection against all others. Despite these limitations, if these 

models prove accurate, this would have a great impact on determination of vaccination 

schedule, as doses given less frequently may confer adequate protection. Further 

Aliabadi et al. Page 9

Expert Rev Vaccines. Author manuscript; available in PMC 2018 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observational studies are warranted to determine the duration of immunity, to inform 

duration of vaccine protection and need for re-formulation and re-administration.

Serologic response to vaccine administration

Similar to reports from natural infection, vaccine studies without oral challenge in animal 

and healthy adult volunteers have also demonstrated varying levels of antibody responses 

and cross-strain activity. Several studies have tested different doses of oral and intranasal 

preparations of GI.1 VLP vaccine and found both elevated IgG and IgA responses. While 

dose escalation demonstrates increase in serum IgG response [102], this response was found 

to level off at 250 mg of inoculum. In addition, responses to VLP vaccine were not as high 

as after norovirus infection [103]. In mice inoculated with two strains of murine norovirus 

(MNV-1/MNV-3), disparate levels of antibody response were seen, with MNV-3 inducing 

homotypic and cross-reactive protection, while MNV-1 showed only modest homotypic 

protection and no heterotypic protection [104]. An early multivalent (GI.1, GII.1, GII.3, GII.

4) VLP study showed that, in humans administered GI and GII VLPs, homotypic sera from 

humans produced the largest serological response against VLPs, whereas heterotypic titers 

were lower. In addition, GI VLPs elicited a more robust heterotypic response compared with 

GII infections. This same study also examined mice and found the serological response was 

higher for homotypic VLPs, but heterotypic responses did occur, with higher within-

genogroup cross-reactivity compared with across genogroups [105]. A trivalent (GI.1/GII.

4/RV VP6) parenteral norovirus-rotavirus vaccine tested in mice also showed inter-

genogroup cross-reactivity and protection to both norovirus and rotavirus, with a sustained 

serologic response up to 6 months after vaccine administration [106]. A recent Phase I trial 

of a bivalent adjuvant GI.1/GII.4 intramuscular vaccine given to adults up to 49 years old 

also showed a robust antibody-secreting cell response [107].

Recently, a Phase I clinical trial tested the serum antibody response to a multivalent (GI.1/

GII.4c) norovirus VLP vaccine to determine titers of blockade antibody, indicating cross-

strain induced immunity to both the vaccine components, as well to a variety of additional 

GI and GII VLPs not part of the vaccine formulation [108]. Among 10 adults receiving two 

doses of the VLP vaccine, researchers found elevated IgG antibody responses to both the GI.

1/GII.4 vaccine (10.3 and 6.2 geometric mean fold rise [GMFR], respectively) as well as the 

non-vaccine VLPs (1.6–7.6 GMFR), peaking at 7 days post-vaccination. Although this 

showed a promising cross-protective response, as the vaccine elicited a response against 

various strains, the rise in the non-GII.4 GII VLPs did not increase greater than fourfold, 

which defined the seroresponse rate in the study. In another recent report, adults inoculated 

orally with GI.1 VLPs demonstrated an elevated blocking antibody serologic response to 

both the challenge antigen as well as to one or more heterologous GI antigens. In addition, a 

smaller number of volunteers developed blocking antibodies to one or more GII antigens, 

although these responses were less robust than the homotypic response [109]. Of note, while 

serologic studies indicate protective effect of serum antibodies in children, the vaccine 

studies cited here focused on healthy adults, highlighting a recurrent lack of available data 

on children, the elderly and the chronically ill, all of whom might be potential targets of a 

human norovirus vaccine.
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Vaccine trials

Vaccine trials using homologous and heterologous challenge have assessed safety, 

immunogenicity and efficacy among healthy adult populations. A monovalent intranasal GI.

1 VLP vaccine administered at two doses to healthy adults aged 18–50 years old was 

evaluated [110], and after receiving both doses, 70% of subjects demonstrated a serologic 

response, which was defined as a fourfold increase in serum antibodies; these were lower 

after vaccination than after challenge. The vaccine was efficacious against homologous 

challenge, with 69% of placebo recipients getting virus-associated gastroenteritis compared 

with 37% of vaccine recipients, yielding a vaccine efficacy of 47%. Vaccine recipients also 

had reduced relative frequency of GI.1 infection as measured by positive RT-PCR after viral 

challenge, with 82% of placebo recipients having infection compared with 61% of vaccine 

recipients. In addition, vaccine recipients had lower mean Vesikari scores, a widely used 20-

point scale created to describe clinical severity of gastroenteritis [111], and a delayed onset 

of illness. The intranasal route of administration caused stuffy nose but otherwise was safe.

It will be crucial to develop a vaccine that offers heterologous protection against not only the 

GII.4 viruses but also the circulating GI viruses. Therefore, a multivalent vaccine should be 

considered to offer protection against noroviruses from both genogroups [105,112]. 

Multivalent vaccine challenge studies, which incorporate a GII.4 component, have also 

recently been conducted. A Phase I/II challenge study used a bivalent parenteral 

(intramuscular) GI.1/GII.4 VLP vaccine [113]. The GII.4 component included a consensus 

sequence based on the sequences of different GII.4 variant strains. Patients were selected 

with criteria including low pre-vaccine antibody levels to the GII.4 oral challenge strain and 

also the presence of salivary HBGAs that conferred susceptibility to norovirus infection. 

One hundred and nine patients were ultimately enrolled, randomized and took the oral 

challenge of norovirus, which although also a GII.4 virus, differed from the vaccine strains 

in the amino-acid sequence of the norovirus capsid protein. Serologic responses increased 

greatly in vaccinated patients compared with placebo, against both GI.1 and GII.4 strains, 

although the response was greater for GI.1, which had a 100% serologic response compared 

with 84% for GII.4. Although the authors did find protection against severe clinical 

symptoms, with reduction on a self-reported severity scale of vomiting and diarrhea as well 

as a reduction in the modified Vesikari score among vaccine recipients compared with 

placebo, the vaccine did not significantly protect against infection with human norovirus. 

Vaccine efficacy in this study was noted to be 13.6% for human norovirus infection, as 

defined by identification of human norovirus on PCR or antibody rise, and 22% for infection 

plus clinical illness. They did note that viral load was lower in vaccinated ill subjects 

compared with placebo, and that viral shedding was shorter, although not statistically 

significant, among vaccinated subjects. These results indicate protection against severe 

clinical disease rather than protection from human norovirus infection, as well as general 

safety of this parenteral formulation as the authors did not report any severe adverse events.

Further development & deployment of norovirus vaccines

Key areas remain to be clarified before informed decisions can be made regarding human 

norovirus vaccine use (Table 2). One such area is further understanding the epidemiology, 
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burden and viral genotypic diversity of human norovirus among potential target groups. A 

limitation of both the GI.1 VLP and GI.1/GII.4 VLP vaccine efficacy studies was the 

exclusion of the populations that are at highest risk for norovirus complications, as those 

studies were restricted to healthy adults. How will the elderly or children, or the 

immunocompromised respond to vaccine? Will prior exposure histories among the elderly 

necessitate a different vaccine for them, than for pediatric populations? Furthermore, what, if 

any, is the role of herd immunity in protecting older populations? Can vaccinating children 

against human norovirus also protect older populations, as noted for rotavirus vaccine? 

[114]. In terms of targeting strains and how often to vaccinate, although GII.4 strains are the 

most important for person–person and foodborne outbreaks, will the GII.4 variants targeted 

by a vaccine protect against future variants? The phenomenon of herd immunity and 

subsequent emergence of new strains has been discussed, and given the emergence of new 

GII.4 variant strains roughly every 2 to 4 years, would a new vaccine formulation need to 

occur as frequently? Should this be targeted by risk group as well? For example, in the 

military, would a consensus vaccine based on past outbreaks suffice, or would that leave out 

potential predominant strains in the community to which they will be deployed?

Another limitation, not only of the vaccine trials completed to date but in the literature 

overall, is the unknown duration of protection conferred by these vaccines; therefore, the 

question of how often to administer vaccine also remains to be clarified. Although data from 

modeling exercises show longer conferred protection, data from human studies with oral 

challenge have not yet demonstrated long-term protection. A short-term effective vaccine 

may be appropriate for some populations, such as travelers, or pre-deployment for the 

military, but for the populations at highest risk for complications, notably children, the 

elderly, and the immunocompromised, this may not be practical.

Another outstanding issue to address is that of cost–effectiveness. The current costs 

associated with human norovirus infection are burdensome and a vaccine, once developed 

and incorporated into the vaccine schedule, is likely to be cost-saving for children less than 5 

years old. A recent study estimated that, in the USA, a vaccine with efficacy of 50% that 

provided 12 months of protection, and was administered to those less than 5 years old, 

would avert 1–2.2 million cases of human norovirus AGE annually, but would incur costs. 

Savings would start to occur only if the vaccine conferred at least 48 months of protection 

and cost US$25 [115]. A study from Peru similarly showed that introducing a vaccine that 

would decrease the incidence of human norovirus diarrhea by 47% among children would 

avert over 900,000 cases of AGE in high-incidence settings, such as the rural jungle, but 

overall cost-savings were less certain [116]. Vaccination could decrease clinical and hospital 

burden, particularly among the children and elderly, and these populations could potentially 

regain QALYs that were otherwise lost, but additional studies in diverse settings are needed 

to determine cost–effectiveness of a potential vaccine.

Finally, there are practical issues to consider when incorporating a new vaccine. The 

challenges of incorporating a new vaccine into the current schedule differ by risk profile. For 

children, a new human norovirus vaccine could be folded into the schedule that already 

exists and thus not introduce an extra visit, particularly if testing of a norovirus-rotavirus 

multivalent vaccine study shows favorable co-administration and lack of interference with 
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all other current vaccines in use. On the other hand, as there are already 10 vaccines 

recommended in the childhood schedule, including up to 26 doses administered (but not 

including the repeat vaccinations recommended for yearly influenza) [117], there may be 

resistance to inclusion of another vaccine in an already full immunization schedule. In 

addition, given the recent resurgence of measles in the USA related to willingly 

unvaccinated children, a special educational campaign may need to be incorporated before 

suggesting yet another childhood vaccine to parents. For the elderly, uptake of other 

vaccines (such as zoster) has already proven challenging and introducing a new vaccine may 

also prove difficult to incorporate [118], although for those who are nursing home-bound, 

logistics may be more favorable. The military has generally had early adoption of vaccines 

and if human norovirus vaccine became written into policy, this may be easier to 

incorporate. Food handlers also remain a challenging group, as high turnover may not lend 

itself to adequate coverage or cost–effectiveness. Healthcare workers also represent a 

challenging occupational group, despite being at higher risk of exposure and also higher risk 

of transmitting infection to others. Looking at examples from influenza vaccine uptake in 

elderly care units in the UK, most of the healthcare workers declined annual influenza 

vaccine, citing that they were healthy and did not require vaccine [119]. This indicates that 

an intensive educational campaign would likely have to precede any vaccination campaign.

Conclusions

Human norovirus is ubiquitous and infection affects most of the population, although some 

are at higher risk of disease and its complications and others for transmission. Given the 

differences in these populations, once a human norovirus vaccine is developed, to be 

maximally effective and cost-effective, the risk profile will need to guide vaccine 

administration, with special consideration given to populations that are at highest risk of 

infection and subsequent complications, as well as to those capable of transmitting infection 

to others. Current vaccines under development have been tested in healthy adult populations 

with only modest protection from clinical infection and disease demonstrated. Data from 

other studies have shown potential for cross-protective activity of multivalent vaccines. 

While results from healthy adult populations may be applicable to military recruits, 

travelers, food handlers, and healthcare workers, these results cannot readily be extrapolated 

to children, the elderly, and anyone with a complicated medical history. Further studies will 

need to clarify vaccine safety and efficacy in these latter populations. Any vaccine developed 

will have to elicit a high enough titer of antibodies to confer protection, will need to 

incorporate several strains, and will require followup studies to determine duration of 

protection and the potential need and timing for re-vaccination.

Expert commentary & five-year view

Human norovirus continues to be a significant clinical and economic burden in the USA and 

abroad. VLP vaccines are promising interventions and during the next 5 years, further 

studies will continue to address the duration of immunity, cross-protection and safety among 

target populations. These target populations can be divided into those that are at risk of 

disease and those at risk of propagating disease, although some populations are at risk for 
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both. Further studies will help determine optimal characteristics to protect and prevent 

disease transmission among both of these groups.
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Key issues

• Human norovirus remains a significant clinical and economic burden globally.

• Several groups should be considered as potential targets for vaccination: 

children, the elderly, the immunocompromised, travelers, the military, food 

handlers and healthcare workers.

• Some groups at high risk for infection and clinical complications, some 

groups are at risk for transmission to others, and some are at risk for both.

• Data from current clinical trials of VLP-based vaccines show some promise 

with prevention of severe gastroenteritis among healthy subjects but similar 

data from some target populations, including children, the elderly, and the 

immunocompromised, are not available.

• Although GII.4 is most often implicated in endemic and outbreak settings, the 

role of non-GII.4 genotypes, and cross-protection between genotypes, need to 

be clarified among target populations.

• Observation and modeling studies have given estimates of duration of 

immunity to human norovirus ranging from 6 months to 8.7 years but further 

research is warranted to determine this among target groups.

• Refined estimates of cost–effectiveness based on actual vaccine performance 

are needed.

• Optimal timing and incorporation of a human norovirus vaccine into the 

current immunization schedule remains to be clarified.
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Table 1

High-risk populations susceptible to and at risk for transmitting norovirus and characteristics that justify their 

prioritization as potential vaccine targets.

Target population High disease burden High 
transmission 
risk to other 
groups

Characteristics

Young children Yes Yes • Highest overall norovirus incidence rate and norovirus-
associated hospitalization rate
• Norovirus is leading cause of pediatric acute gastroenteritis 
requiring medical attention in countries using rotavirus 
vaccines
• Highest R0 of any age group, suggesting high transmission 
potential

Elderly and nursing home 
residents

Yes No • Greatest burden of fatal disease
• Nursing homes have higher rates of deaths during norovirus 
outbreak periods
• Higher hospital charges per case compared with children

Travelers Yes No • 9–16% of traveler’s diarrhea attributable to norovirus
• Numerous leisure settings implicated

Military Yes No • Norovirus common cause of acute gastroenteritis in 
deployed troops
• Lost duty time, decreased reserve readiness as a result of 
disease

Immunocompromised patients Yes Yes • Suffer severe clinical complications
• Persistent viral shedding, up to months or years
• Potential reservoir for new strain emergence

Healthcare workers No Yes • Most common setting for norovirus outbreaks
• Infected healthcare workers can propagate infection to 
vulnerable patient populations

Food handlers No Yes • Most foodborne illnesses in US with identified agent are 
caused by norovirus
• Implicated as infectious source in majority of foodborne 
norovirus outbreaks in USA
• Poor compliance with hand hygiene and exclusion while ill
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Table 2

Current knowledge and remaining gaps for development of a norovirus vaccine program.

Study (year) Current knowledge Remaining gaps Ref.

Vega et al. (2014); 
Debbink et al. (2013); 
Leshem et al. (2013); Fu 
et al. (2015); Lu et al. 
(2015)

Strains to target GII.4 most often implicated in both 
outbreaks and endemic disease

Role of non-GII.4 
genotypes, particularly in 
specific target populations

[69,71,79,81,82]

Atmar et al. (2011); 
Bernstein et al. (2014)

Vaccine efficacy Some demonstrated protection 
against disease and decreased 
clinical severity in healthy adults

Other age and risk groups; 
Cross-reactivity and 
heterologous protection

[110,113]

Parrino et al. (1977); 
Johnson et al. (1990); 
Simmons et al. (2013)

Duration of immunity Observational studies: up to 6 
months; mathematical modeling: 
up to 8.7 years

Further data from 
observational studies; 
Improved models to account 
for strain heterogeneity

[101,95,33]

Lopman et al. (2011); 
Batz et al. (2012); Bartsch 
et al. (2012); Mirelman et 
al. (2015)

Cost-effectiveness Hospitalizations cost US$493 
million per year; foodborne 
infections cost US$ 2 billion; 
vaccine estimated to be cost saving 
in certain scenarios

Refined estimates based on 
actual vaccine performance

[6,9,115,116]

Lu et al. (2009); O’Reilly 
et al. (2005)

Incorporation into 
immunization schedule

Crowded schedule for children; 
poor coverage with other vaccines 
in the elderly

Need and timing for booster 
doses; interference with 
other vaccines; potential 
acceptance among target 
groups

[118,119]
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