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Abstract

Purpose—The aim of this study was to describe imaging markers of decision-making under 

uncertain conditions in normal individuals, in order to provide baseline activity to compare to 

impaired decision-making in pathological states.

Methods—In this cross-sectional study, 19 healthy subjects ages 18–35 completed a novel 

decision-making card-matching task using a Phillips T3 Scanner and a 32-channel head coil. 

Functional data were collected in six functional runs. In one condition of the task, the participant 

was certain of the rule to apply to match the cards; in the other condition, the participant was 

uncertain. We performed cluster-based comparison of the two conditions using FSL fMRI Expert 

Analysis Tool and network-based analysis using MATLAB.

Results—The uncertain > certain comparison yielded three clusters—a midline cluster that 

extended through the midbrain, the thalamus, bilateral prefrontal cortex, the striatum, and bilateral 

parietal/occipital clusters. The certain > uncertain comparison yielded bilateral clusters in the 

insula, parietal and temporal lobe, as well as a medial frontal cluster. A larger, more connected 

functional network was found in the uncertain condition.

Conclusion—The involvement of the insula, parietal cortex, temporal cortex, ventromedial 

prefrontal cortex, and orbitofrontal cortex of the certain condition reinforces the notion that 

certainty is inherently rewarding. For the uncertain condition, the involvement of the prefrontal 

cortex, parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement was expected, 

as these are areas involved in resolving uncertainty and rule updating. The involvement of occipital 
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cortical involvement and midbrain involvement may be attributed to increased visual attention and 

increased motor control.
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Introduction

On a daily basis, individuals are faced with a multitude of decisions such as selecting the 

best route to reach a destination or choosing an investment strategy to optimize profit. In 

order to make these decisions, they ultimately must apply rules. Uncertainty regarding the 

optimal rule to apply to reach the desired outcome is often inherent in the decision-making 

process. Resolving this uncertainty is one of the most challenging components of the 

decision-making process. Being able to make decisions under conditions of rule uncertainty 

is vital to independent living and the impairment of decision-making in diseases such as 

mild cognitive impairment, schizophrenia, anorexia, and obsessive-compulsive disorder is 

particularly harmful [1–4].

Prior fMRI studies looking at decision-making have suggested involvement of the 

orbitofrontal cortex (OFC), the dorsolateral prefrontal cortex (dlPFC), and the anterior 

cingulate cortex (ACC) [5, 6] in making decisions in uncertain conditions. Other implicated 

regions include the insula, the posterior parietal, the inferior parietal, and inferior temporal 

areas [6, 7]. Studies have suggested that information about the correct decision is stored in 

the ventral temporal cortex and posterior parietal cortex [8, 9], whereas the ventromedial 

pre-frontal cortex (vMPFC) has been implicated in computing expected value and reward 

outcome in processing decisions [10]. The vMPFC works with the hippocampus during 

mismatch detection [11]. In addition, the role of the basal ganglia in decision-making, 

particularly as rules are learned, is becoming increasingly evident. The striatum is involved 

with reward learning and habitual actions, and activation may correlate with prediction of 

punishment [10, 12, 13]. A computational model of decision-making as performed by the 

basal ganglia, developed by Bogacz and Larsen [14], involves a circuit that includes the 

cortex, striatum, subthalamic nucleus, and globus pallidus. This corresponds to the 

dorsolateral prefrontal (executive) loop of the basal ganglia [15]. The ACC engages the 

prefrontal cortex and is implicated in conflict monitoring and outcome evaluation [16]. 

Clearly, the literature implicates many regions of the brain involved in decision-making 

under uncertain conditions, and in this study, we will provide a clearer description of the 

regions of the brain involved, as determined by a simplified paradigm.

The aim of this study was to not only identify brain regions involved in decision-making 

under conditions of rule uncertainty but also to describe the interactions these brain regions 

have using network analysis. Our focus was on healthy young individuals in order to gain 

insights into the complex interactions that are required for successful decision-making in 

times of rule uncertainty before looking at the impact that age and/or disease can have on 

this process. We used functional MRI (fMRI) as a non-invasive means for measuring the 

neuroanatomical activity through the blood oxygenation level-dependent (BOLD) signal 
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which increases coincident with brain region activation [17]. The BOLD signal is generally 

accepted as a marker of neural activity, as it changes with blood flow to a given region of the 

brain and the level of oxygenation of the blood. Other studies that measure responses to 

uncertainty have used the Iowa Gambling Tasks or tasks that manipulated the levels of 

uncertainty. The decision-making task that we used allowed for a binary difference to be 

measured as the rule was either certain (known from first trial) or completely uncertain 

(changes at every trial). The task conditions were matched such that a comparison of BOLD 

signal response in the certain and uncertain condition allowed for the comparison of the 

effect of certainty and uncertainty on various brain regions. We applied a network analysis in 

order to assess the functional connection between the regions of the brain involved in 

decision-making.

Methods

Participants

This is a cross-sectional study. Twenty-three healthy participants ages 18–37 were selected 

(9 males) from the greater Boston community, and the study occurred from August 2015 to 

March 2016. Participants were recruited for one visit. Eligibility included being under the 

age of 40 with no neurologic disease or uncorrected vision impairment. Participants signed a 

consent form approved by the institutional review board. The data from four participants 

were excluded because of excessive movement artifact, leaving data from 19 participants (7 

males) available for analysis.

Paradigm

The task was projected from a personal computer onto a high-resolution screen, which was 

reflected in a mirror above the participant’s face as he or she lay in the MRI. The screen 

showed a row of five cards on the top and a row at the bottom with a single card (Fig. 1). 

The participants were instructed to match the bottom card to a card in the top row to the best 

of their ability, with no further instruction about matching criteria. Responses were recorded 

using a button box. Each card had five different properties: shape, shape color, background 

color, number of shapes, and border. Card foreground colors were matched for equal 

luminance, as were the background colors. Shape sizes and border sizes were equivalent. 

Each of the top cards matched the bottom card in exactly one attribute. The card-matching 

screen was presented for 4 s, and participants were instructed to match within those 4 s. 

Card presentation feedback was shown for 2 s. Feedback was “Correct,” “Incorrect,” or 

“Skipped.” There were 30 card presentations per run; fixation periods of 30 s were 

alternated with task periods of 30 s that contained five cycles of card presentation and 

feedback. The top row remained the same throughout each run, and the bottom card 

changed. The fixation was a “#” symbol in the middle of the screen, and participants were 

asked to watch the fixation mark while relaxed, attentive, and awake.

There were two conditions, one in which the rule was certain and one in which the rule was 

uncertain. In the certain condition, the matching criteria were locked to the first matching 

rule the participant applied. In the uncertain condition, the matching criteria changed at 

every single interval. A run of 30 card matches would be entirely either the certain or 
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uncertain condition, and the six runs alternated between certain and uncertain conditions. 

The sequence of cards shown was identical for pairs of uncertain and certain conditions. 

However, the matching rules would be set as described previously. The start condition was 

varied between participants. Some had the certain condition in runs 1, 3, and 5; some had the 

certain condition in runs 2, 4, and 6. Subjects were instructed to hold a five-fingered button 

box in their right hand and to select the button corresponding to their choice. Choices 

aligned with the finger position (1 left to 5 right).

MRI acquisition and preprocessing

Data were collected using a Phillips 3 T Achieva Scanner and a 32-channel head coil. The 

scan began with localization and a reference scan, followed by six functional runs of a 

single-shot echo-planar imaging sequence (TR = 2 s, TE = 35 ms, 30 slices, 3-mm slice 

thickness, inplane resolution 3 × 3 mm), and finally, T1-weighted (T1W) MP-RAGE sagittal 

images were acquired (TR/TE = 6.7/3.1 ms; acquisition matrix = 256 × 254, 150 slices; FOV 

= 250 × 250 × 180 mm; voxel size = 0.98 × 0.98 × 1.2 mm; flip angle = 9°).

Freesurfer software (surfer.nmr.mgh.harvard.edu version 5. 1) was used to parcel and label 

the structural scans of each of the participants [18]. The software identified gray and white 

matter regions in the cortex and sub-cortex. Eighty-two gray matter regions were selected 

from this set for network analysis. The fMRI data were preprocessed with motion correction 

using MCFLIRT [19], spatial smoothing, and temporal filtering using fMRI Expert Analysis 

Tool (FEAT; Oxford, UK; v6. 0 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). Filtering using 

FEAT applies a linear high-pass filter to remove low-frequency artifacts [20]. Using FEAT, 

the fMRI data were registered to both the T1-weighted structural image of the brain, 

extracted from Freesurfer, and the MNI152 average. The preprocessed fMRI data were 

labeled using the generated Freesurfer ROIs. A mean time series for each ROI was 

calculated by averaging all fMRI voxel values within each ROI over time, resulting in 90 

time points calculated for each of the 6-min runs. The portions of the time course associated 

with fixation were removed in order to only correlate task performance.

Networks were constructed with the ROI time series as the nodes and the Pearson 

correlation coefficients between each pair of nodes as the edges. Network measures were 

calculated on these constructed networks. Binary measures were calculated on networks 

constructed by using threshold values ranging from 0.4 to 0.9 of the correlation coefficient. 

Weighted measures were calculated using the Fisher transformation of the correlation 

coefficient of the matrix. The measures calculated included network size (the number of 

suprathreshold edges present in the network), node strength (the sum of the edge weights for 

each node), and assortativity (the tendency of nodes with similar degree to connect to each 

other). All of these measures except for size were calculated using the Brain Connectivity 

Toolbox [21]. In order to assess significance, permutation testing was used. Ten thousand 

random datasets were constructed by shuffling the edges between participants. Then, the 

network measures were calculated on each of these generated datasets, and the placement on 

the distribution of these network measures was assessed in order to calculate the p value.

Data were also analyzed by FEAT (Oxford, UK; v6.0 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FSL) which performed statistical analysis using the general linear model (GLM) to calculate 
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task contribution to the BOLD signal. For each participant and in each run, a GLM was 

constructed of the blood flow in each voxel in comparing the task condition to the fixation 

condition. Higher-order FEAT stats were calculated by averaging within each participant for 

each condition. A paired comparison of a participant’s averaged uncertain versus certain 

condition was calculated using the GLM. Z-statistic images were thresholded with clusters 

in which Z > 2.3 and the corrected cluster significance was p < 0.05.

Results

FEAT analysis

The GLM analysis determining the contributions of the task to each signal yielded 

significant differences between the two conditions. In comparing certain > uncertain BOLD 

signal, the analysis yielded bilateral clusters in the insula that extend into the boundary of 

the parietal and temporal lobe, as well as a medial frontal cluster (Figs. 2 and 3). The 

uncertain > certain comparison yielded three large clusters—a midline cluster that extended 

through the midbrain, the thalamus, bilateral pre-frontal cortex, the striatum, and bilateral 

clusters that extended through the parietal cortex and occipital cortex (Figs. 4 and 5).

Network analysis

Using a threshold of 0.4–0.9 for binary network measures, we found a number of differences 

that were consistent across thresholds. Network size was significant at all values with 

correction for multiple comparisons using the FDR method, except that at threshold 0.8, the 

network was larger, with a greater number of edges, for the certain condition (Table 1). 

Network density was significant for all p values except 0.7 (Table 1), and assortativity was 

only significant at threshold 0.7 (Table 1). Node strength had six nodes significantly greater 

in the certain condition and 20 nodes significantly greater in the uncertain condition (Table 

2). The brain networks were visualized with the BrainNet Viewer [22].

Discussion

In this study, we set out to explore how brain activity differs in the process of decision-

making when the underlying rule is known (certain) or unknown (uncertain) as a binary 

outcome. We have found differential brain activity under these two conditions and 

differences in the network of functional connectivity required to support them. In the 

uncertain condition, we found a larger, more densely connected network than in the certain 

condition. Conversely, in the certain condition compared to the uncertain condition, a 

number of the network nodes showed greater clustering coefficients and node strengths.

Certainty is inherently desirable and uncertainty inherently aversive [23–25]. In our task 

with only the limited feedback, we saw activation in the reward circuits. During the certain 

condition, we saw greater activation in the vmPFC and the OFC. The vmPFC has been 

found to be active in valuating reward [10, 26]. OFC activity has also been found to correlate 

with reward expectation [27, 28]. We also found increased insula activation, which has been 

shown to be more active in a decision-making task with a certainty component [29]. We 

found ROI-based network measures that showed increased connectivity (node strength, as 

reflected by greater numbers of edges) in the OFC, frontal ROIs, and temporal ROIs.
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A meta-analysis conducted by White et al. [6] described that greater activation was observed 

in the ACC, insula, and dlPFC and posterior parietal cortices in decision-making under 

uncertain conditions. We found some confirmation of the expected activation of brain 

regions under uncertain conditions, including activation of the ACC, the dlPFC, and the 

striatum. Interestingly, the ACC has been implicated in conflict monitoring and anticipation 

[15, 16]. The ACC is known to engage the dlPFC and contains many reciprocal connections. 

Likewise, the executive loop of the basal ganglia involves the dlPFC [15]. The striatum is 

involved with reward-based learning and prediction error, although activation may correlate 

with punishment [10, 12, 13, 30]. The computational model of decision-making developed 

by Bogacz and Larsen [14] incorporates the cortex, the striatum, the sub-thalamic nucleus, 

and the thalamus.

A large parietal and occipital cluster of activation was found in the uncertain condition. 

Activation of the posterior parietal cortex has been shown to vary as a function of 

uncertainty [9]. In addition, the lateral intraparietal area has been shown to encode value for 

saccadic choices in primates [31–33]. This area corresponds to the ventral intraparietal area 

in humans [15]. Therefore, the activation may correlate with encoding the value of the 

choice involved.

Unexpectedly, strong midbrain activation was found in the uncertain condition. The 

midbrain has generally been found to be active in reward [24, 34]; however, there are 

substantial connections in the direct circuit of the basal ganglia, which involves the 

substantia nigra and the striatum [15]. The direct circuit is a motor circuit, and it could be 

that greater motor control is required in this task because of the increased uncertainty. In 

addition, the increased activation of the occipital cortex in the uncertain condition was 

unexpected, given the equally visual nature of the certain and uncertain conditions.

ROIs reflecting greater network connectivity in the uncertain condition include the amygdala 

and hippocampus, as well as the frontal and parietal regions that were discussed previously. 

The amygdala is thought to encode emotional valence [35, 36], and because uncertainty 

correlates to increased anxiety and worry [37, 38], this may correspond to the negative 

emotions that occur during uncertainty. The hippocampus is generally active during memory 

tasks and is also thought to help in valuating outcomes [39]. While this suggests a reward 

encoding, there are also substantial connections between the hippocampus and the amygdala 

[15], so it logically follows that if one is highly functionally connected to other brain 

regions, the other will also be highly connected. In addition, because of the memory 

capabilities required to discard and update the rule choices in the uncertain condition, the 

coincident activation of the hippocampus is expected. Using network analysis allows us to 

reduce the amount of inter-subject variability, because each ROI is determined based on each 

participant’s neuroanatomy—hereby limiting the influence in population analysis of larger 

or smaller brain regions contributing to activity. As such, the network measures determined 

in this study provide baseline markers on which uncertain decision-making in pathologic 

populations might be compared.

Taken together, these results reinforce many studies of decision-making under conditions of 

rule uncertainty versus rule certainty as well as include new information about differences in 
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the brain’s behavior between these two conditions. The involvement of the insula, parietal 

cortex, temporal cortex, ventromedial prefrontal cortex, and orbitofrontal cortex of the 

certain condition is generally associated with rule certainty, reward, and behavioral 

flexibility [6, 9, 40]. The activation of areas related to reward reinforces the notion that 

certainty is inherently rewarding. The widespread activation in the uncertain condition 

included the prefrontal cortex, the striatum, the thalamus, the midbrain, the amygdala, the 

hippocampus, and the parietal cortex and occipital cortex. While the prefrontal cortex, 

parietal cortex, striatum, thalamus, amygdala, and hippocampal involvement were expected, 

the occipital cortical involvement and the midbrain involvement were less expected. The 

increased involvement of these regions may be attributed to increased visual attention and 

increased motor control perhaps through a “top-down” process attempted to remove 

uncertainty through increased vigilance.

Effective decision-making is a vital process for independent living. It requires the integration 

of information provided by the senses to that found in the knowledge stores in the brain in 

order to extract a rule that will bring about the desired outcome. In this study, we have 

furthered our understanding of this process by affirming regional brain activity during a 

decision-making task and then expanding our understanding of this process by looking at the 

network of activity that supports this function. We are comforted to see systems such as the 

reward system being more actively involved during the certain conditions and a bit perplexed 

by some of the regions and network findings under uncertain conditions. We validated a 

novel decision-making task as an appropriate means to measure uncertainty, and in the 

future, we can expand on this by including disease populations. Limitations include the fact 

that we did not pre or post interview the population and thus did not collect educational data 

or discuss task strategy for participants this task. Although more work remains for us to 

clearly understand how the brain accomplishes this vital task, this initial study provides 

clarity to the current body of literature.
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Fig. 1. 
Decision-making paradigm. The screen showed five cards to choose from at the top, with a 

card to match at the bottom. Participants were not given any information about which rule to 

apply. In the rule-uncertain condition, the rule changed at every interval. In the rule-certain 

condition, the rule was locked to the participant’s first choice and stayed the same for the 

entire duration
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Fig. 2. 
Large clusters of activation that were significantly greater in the certain than the uncertain 

condition as determined by the GLM using FEAT. Clusters are shown on serial axial slices, 

with z score reflected by color bar. There were three significantly different clusters 

extending bilaterally from the insula into the parietal/temporal boundary, as well as a single 

midline frontal cluster
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Fig. 3. 
Regions demonstrating greater activation in the certain condition than in the uncertain 

condition, projected onto a surface model of the brain [22]
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Fig. 4. 
Large clusters of activation that were significantly greater in the uncertain than the certain 

condition as determined by the GLM using FEAT. Clusters are shown on serial axial slices, 

with z score reflected by color bar. There were three significant clusters, extending through 

the midbrain, thalamus, bilateral prefrontal cortex, striatum, as well as bilateral clusters 

extending through the parietal and occipital cortex
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Fig. 5. 
Regions demonstrating greater activation in the uncertain condition than in the certain 

condition, projected onto a surface model of the brain [22]
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Table 1

Comparisons of network measures for the uncertain and certain conditions, using different threshold values of 

the Pearson correlation coefficient in order to calculate the network value

Threshold Certain mean Uncertain mean p value

Network size

0.4 3335 3915 < 0.0001

0.5 2279 2363 < 0.0001

0.6 1367 1429 < 0.0001

0.7 692 704 0.0052

0.8 281 269 0.0001

Network density

0.4 0.56 0.57 0.0002

0.5 0.38 0.4 < 0.0001

0.6 0.23 0.24 < 0.0001

0.7 0.12 0.12 0.24

0.8 0.056 0.054 < 0.0001

Network assortativity

0.4 0.0817 0.0728 0.14

0.5 0.15 0.15 0.27

0.6 0.23 0.22 0.18

0.7 0.28 0.32 0.0031

0.8 0.08 0.07 0.14

Italicized numbers reflect those that are significantly greater
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Table 2

Node strength (sum of weighted edges) showing significant difference between certain and uncertain 

conditions. p values were determined to be significant after adjusting for multiple comparisons (number of 

nodes)

ROI Certain mean Uncertain mean p value

a. ROIs for which the strength is greater for the certain than the uncertain condition

 Right pallidum 33.90 32.27 0.001

 Left frontal ole 21.89 18.78 < 0.0001

 Left lateral occipital 40.74 39.06 0.0016

 Left medial orbital frontal 32.06 30.37 0.0015

 Left rostral anterior cingulate 37.54 35.49 0.0003

 Left transverse temporal 38.23 36.63 0.0013

 Right frontal pole 25.37 22.40 < 0.0001

 Right lateral occipital 40.48 38.71 0.0011

 Right lateral orbitofrontal 33.61 31.87 0.0003

 Right temporal pole 23.10 19.75 < 0.0001

b. ROIs for which the strength is greater for the uncertain than the certain condition

 Left amygdala 29.13 31.63 < 0.0001

 Left pallidum 30.24 31.65 0.0044

 Right accumbens 22.76 24.23 0.0028

 Right amygdala 20.82 22.77 < 0.0001

 Right hippocampus 33.89 35.54 0.0015

 Left cuneus 43.48 45.94 0.0002

 Left inferior parietal 44.69 47.38 < 0.0001

 Left insula 42.78 44.36 0.0032

 Left parahippocampal 22.15 24.91 < 0.0001

 Left precuneus 47.76 50.39 < 0.0001

 Left superior frontal 52.10 54.23 0.0004

 Left temporal pole 23.65 25.02 0.0018

 Right caudal anterior cingulate 44.54 46.45 0.001

 Right isthmus cingulate 42.73 44.38 0.0021

 Right parahippocampal 30.92 32.48 0.0008

 Right precuneus 49.37 51.22 0.0016
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