Skip to main content
. 2017 Dec 1;1(4):381–414. doi: 10.1162/NETN_a_00018

Figure 10. . Deep architectures in the brain. This schematic illustrates a putative mapping of belief updating onto recurrent interactions within the cortico (basal ganglia) thalamic loops. This neural architecture is based upon the functional neuroanatomy described in Jahanshahi, Obeso, Rothwell, & Obeso (2015), which assigns motor updates to motor and premotor cortex projecting to the putamen, associative loops to prefrontal cortical projections to the caudate, and limbic loops to projections to the ventral striatum. The striatum (caudate and putamen) receive inputs from several cortical and subcortical areas. The internal segment of the globus pallidus constitutes the main output nucleus from the basal ganglia. The basal ganglia are connected to motor areas (motor cortex, supplementary motor cortex, premotor cortex, cingulate motor area, and frontal eye fields) and associative cortical areas. The basal ganglia nuclei have similar (topologically organized) motor, associative, and limbic territories; the posterior putamen is engaged in sensorimotor function, while the anterior putamen (or caudate) and the ventral striatum are involved in associative (cognitive) and limbic (motivation and emotion) functions (Jahanshahi et al., 2015). Here, ascending and descending messages among discrete levels are passed between (Bayesian model) averages of expected hidden states (that have been duplicated in this figure to account for the known laminar specificity of extrinsic cortico-cortical connections). We have placed the outcome prediction errors in deep layers (Layer 5 pyramidal cells) that project to the medium spiny cells of the striatum (Arikuni & Kubota, 1986). These outcome prediction errors are used to compute expected free energy and consequent expectations about policies. Policy expectations are then used to form (Bayesian model) averages of hidden states that are necessary for message passing between discrete hierarchical levels. Similarly, expected outcomes under each policy are passed via corticothalamic connections to the thalamus to evaluate the free energy of each dynamic model, in conjunction with posterior expectations from the continuous level. The resulting posterior expectations are conveyed by thalamocortical projections to inform discrete (hierarchical) message passing. The little arrows referred to the corresponding messages in Figure 9.

Figure 10.