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Abstract

Between-group comparisons often entail many correlated response variables. The multivariate 

linear model, with its assumption of multivariate normality, is the accepted standard tool for these 

tests. When this assumption is violated, the nonparametric multivariate Kruskal-Wallis (MKW) 

test is frequently used. However, this test requires complete cases with no missing values in 

response variables. Deletion of cases with missing values likely leads to inefficient statistical 

inference. Here we extend the MKW test to retain information from partially-observed cases. 

Results of simulated studies and analysis of real data show that the proposed method provides 

adequate coverage and superior power to complete-case analyses.

1. INTRODUCTION

Comparisons between several treatment groups play a central role in clinical research. As 

these comparisons often entail many potentially correlated dependent variables, the classical 

multivariate general linear model has been accepted as a key tool for this endeavor. The 

widely applied statistical procedures, univariate and multivariate analysis of variance 

(ANOVA and MANOVA) are subsumed under this model. For practitioners, the use of these 

statistical procedures does not pose any difficulties under normality assumptions due to the 

wide availability of software (SAS Institute Inc., 2014; IBM Corp., 2013; StataCorp., 2011). 

However, application of these procedures is problematic if the assumption of normality is 

violated or treatment groups may not only differ in means but also in higher order moments. 

The ranked-based multivariate Kruskal-Wallis (MKW) test (Puri and Sen, 1969; May and 

Johnson, 1997) and permutation tests on either the data or rank transformed data provide 

robust alternatives when the normality assumption may not hold or the higher order 

moments vary across treatment groups (Pesarin, 2001; Basso, Pesarin, Salmaso, and Solari, 

2009).
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Missing data often occur in clinical trials. Usually the missingness for a given subject only 

occurs in a subset of the variables being measured. However, standard tests in the 

MANOVA-like framework cannot utilize information in partially observed cases. In readily 

available software algorithms such as the SAS/STAT® software MANOVA procedure, cases 

with missing values in response variables are automatically deleted. This is a major 

shortcoming of the standard MKW test.

In Section 2, we propose an extension of the MKW test for correlated multivariate non-

normal data with missing values. This extension pertains to outcomes measured at a fixed 

time point, either continuous or ordinal, and retains information in partially observed cases. 

We call this test E-MKW. Applications illustrating the proposed method with both simulated 

and actual data from a psychiatric clinical trial are presented in Section 3. We conclude with 

discussion in Section 4.

2. METHODOLOGY

2.1. Multivariate Kruskal-Wallis (MKW) Test

The MKW test is a rank-order procedure in which the n observations on each of the p 
variables are ranked separately. Tied observations are assigned the mean of the total ranks 

for the tied observations. It should be noted that this procedure of assigning ranks poses no 

difficulty if the number of scores for the different variables are not equal and it works well 

when there are few tied observations. It becomes problematic when there are many tied 

observations. The null hypothesis is that the distribution of each variable is the same across 

different groups. Under this null hypothesis, it is implied that for each variable, the expected 

values of the mean ranks are equal for different groups. Large sample theory suggests that 

the MKW statistic is approximately χ2 distributed (Puri and Sen, 1969). However, in small 

samples, permutation methods are needed to get the appropriate critical value for rejecting 

the null hypothesis. The alternative hypothesis implies that the mean ranks differ between at 

least two different groups.

Katz and McSweeney (1980) provided an explicit description of this MKW test. They also 

provided computational formulas and post-hoc techniques which could be used to isolate 

sources of differences if the null hypothesis is rejected. However, the testing procedure 

discussed in their paper was based on large sample properties of the statistic. May and 

Johnson (1997) constructed a SAS macro that computes the probability values and tabulates 

the exact distributions for both the univariate and multivariate Kruskal-Wallis tests.

The MKW test transforms the original data to ranked data, and therefore it is distribution-

free. The ranking is performed separately for each outcome variable, and is across groups. 

Let Yijk be the original observation of the kth variate for the jth subject from the ith group, 

where k = 1, …, p; j = 1, …, ni; i = 1, …, g. Denote Rijk as the rank corresponding to Yijk 

and Rij = (Rij1, …, Rijp)′. In case of ties, the mean rank is used. Let
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then, E(R̄
i.k) = m = (n + 1)/2. The vector Ui = (R̄

i.1 − m, …, R̄
i.p − m)′ denotes the vector of 

average ranks for the ith group corrected for the overall average rank for each variate. Ui is a 

measure of directed distance from the mean vector of ranks for the ith group. An estimate of 

the pooled within-group covariance matrix is

Under the null hypothesis that there is no difference in group means for the p variables,

The MKW test is expressed as

In large samples, W2 is approximately χ2 distributed with p(g − 1) degrees of freedom when 

all the nis are fairly large. The alternative for the MKW W2 is that the mean ranks are not the 

same for at least two groups i and h, and some 1≤k≤p: E(R̄
i.k) ≠ E(R̄

h.k).

When there are too many possible permutations of the data to allow complete enumeration 

in a reasonably time-efficient manner, an asymptotically equivalent permutation-based test 

can be created by generating the exact distribution under the null of no difference across 

groups through Monte Carlo sampling as the following (Pesarin, 2001; Edgington and 

Onghena, 2007):

a. Calculate the statistic for the data, and denote it as W2*.

b. Randomly permute the group labels for all subjects, and calculate the new test 

statistic W2 for the permuted data.

c. Independently repeat (b) M times to get the permutation distribution of W2 under 

null hypothesis.

d. Calculate the .
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2.2. Extended MKW Test (E-MKW)

The MKW test assumes that the data are fully observed. All incomplete cases are deleted 

before the MKW test is performed, which means that the information in partially observed 

cases is lost. To retain this information, we propose a method that we call the Extended 

MKW test (E-MKW). We first develop a test to accommodate data that are missing 

completely at random (MCAR), where the missingness is independent from the observed 

coviariates and the outcome variables that are subject to missing values. Under MCAR, each 

subset represented by a missing data pattern is a random sample of the original data and the 

joint distributions of the observed outcome variables are preserved. We propose to construct 

a MKW test for each missing data pattern with sufficient number of observations and 

aggregate those tests at the end. Then we extend to circumstances where the missingness of 

outcome values may depend on the fully observed covariates. When data are not missing at 

random, the dependence structures among outcome variables in general vary across different 

missing data patterns and our extensions cannot be applied in such circumstances.

The observation vector Yij = (Yij1, …, Yijp) for the jth subject in the ith group has a 

corresponding missing indicator vector rij = (rij1, …, rijp), where rijk = 1 if the kth variate is 

missing, and 0 if it is observed. rijs are often used to form missing data patterns in each 

treatment group that subjects who have equivalent missing indicator vectors belong to the 

same pattern. rij is a vector of length p, with each element valued at 0 or 1. For example, if p 
= 4, and if the first and second outcomes are observed and the third and fourth outcomes are 

missing from a subject, then this subject belongs to the missing data pattern represented as 

(0, 0, 1, 1). In a dataset with p variables, there are in total 2p possible distinct missing data 

patterns, including the pattern where all variables are observed and the pattern where all 

variables are missing.

Suppose there are L distinct missing patterns in the data (L ≤ 2p). Let Sl denote the set of 

cases with the missing pattern l, l = 1, …, L, and let ml denote the number of observations in 

Sl, and then . Let pl denote the number of observed variables in the missing 

pattern l, l = 1, …, L. Let mil denote the number of observations in group i, missing pattern l, 
i = 1, …, g; l = 1, …, L.

We assume that ml > pl, l = 1, …, L. If the number of observations with the missing pattern l 
is small (ml ≤ pl), the corresponding covariance matrix estimate V for the group-average 

ranks becomes singular and an MKW test cannot be constructed for that pattern. Therefore 

we delete the cases in those Sls with ml ≤ pl from the total sample before performing the 

method. We assume that the estimated variance-covariance matrix within the missing pattern 

is nonsingular and hence, the the test statistic can be calculated. An example is provided 

below. In a two-group, two-outcome case, suppose two observations are (0.5, 2) and (1, 1.5). 

The associated rank variables are (1, 2) and (2, 1).

The statistic  in each Sl with regard to observed variables can be calculated from the 

standard MKW test. The proposed test statistic is
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where the tl ≥ 0, l = 1, …, L are weights and Σ tl = 1. It is noted that only missing data 

patterns with sufficient number of observations to construct the MKW tests for those 

patterns, specifically non-singular covariance matrices of the average ranks in those patterns, 

contribute towards W2.

The standard MKW test is a special case of the proposed test, when tl is assigned to 1 if Sl is 

the set of complete cases, and 0 otherwise. Two weighting schemes are proposed:

1. Unweighted: tl = 1/L, l = 1, …, L. Then W2 is the arithmetic mean of s.

2. Weighted: tl = ml/n, l = 1, …, L. Then each  contributes to W2 proportional to 

the number of cases in its missing pattern Under large samples, that is, ml → ∞, 

 is approximately χ2 distributed with degrees of freedom vl = pl(g − 1), l = 1, 

…, L. As W2 is a linear combination of the L independent χ2 distributed 

statistics we can generate  as random samples from χ2 distribution 

with vl degrees of freedom, where l = 1, …, L and M is a large integer and 

setting

An empirical distribution of W2 under the null hypothesis can be obtained by 

permuting the group labels among the whole data set and we can obtain a p-value 

by comparing the test statistic and its empirical distribution under the null. With 

comparing W2 with its empirical distribution under the null hypothesis, the 

validity of the proposed E-MKW test will not be limited by the requirements of 

large mls.

When all mls are large and the numbers of observed outcome variables and mls are roughly 

equal across missing data patterns, the unweighted version is preferred for its simplicity 

because W2 is approximately χ2 distributed then the generation of its empirical distribution 

is not necessary, and the performance of the test is only slightly compromised. When there 

are large difference among the mls, the weighted version should be considered and the 

patterns with larger sample size should be given more weights.

2.3. E-MKW test when data are MAR

Here we consider circumstances when the missingness of (X1, …, XM) may depend on the 

fully observed covariates and data are missing at random (Mazumdar et al., 1999). For 

example, in stratified randomized clinical trials, the missingness within each stratum is 

completely at random but may be differential across randomization strata. This occurs when 

younger participants are more responsive in completing questionnaires and older participants 

are reluctant to provide answers for certain sensitive items. Suppose the missingness 
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depends on covariates C1, …, Cq, that are categorical with s1, …, sq levels respectively. We 

stratify the dataset by combinations of the covariate levels to render  strata. Per 

our MAR assumption, we can claim now within each stratum defined by the covariates, the 

missingness does not depend on treatment and data are missing completely at random. We 

can apply E-MKW test within each stratum and get a statistic , b = 1, …, S, and then sum 

up all the statistics to get the global test statistic W2. We can also use weighted-sum with 

stratum-specific statistics as detailed in the previous section.

3. APPLICATIONS

We illustrate the proposed method with both simulated and actual data. We first investigate 

the performance of E-MKW test followed by an application of this method to a clinical 

intervention study examining yoga as an adjunctive cognition remediation strategy for 

schizophrenia (Bhatia et al., 2012). All analyses were carried out using codes we developed 

using the R software Platform (R Core Team, 2014).

3.1 Multivariate Effect Size

Effect sizes are commonly used for power analysis and to design experiments. In hypothesis 

testing, the effect size is an index reflecting the degree to which the null hypothesis is false, 

or the discrepancy between the null hypothesis and the alternative hypothesis (Cohen, 1992), 

without the influence of sample sizes. One of the widely used effect sizes index in one-way 

ANOVA setting is Cohen’s f2, the ratio of the variance of the group means to the variance of 

the values within groups (Cohen, 1988). Cohen’s f2 is defined as

where R2 is the squared multiple correlation.

Cohen (1988) suggested a generalization of f2 based on Wilks’ λ as following::

where

p is the number of response variables, g is the number of groups, and E and H refer to the 

population error and hypothesis matrices.
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We note that f2 is a ratio of signal to noise: the ratio of variance of the model to the variance 

of errors. f2 is a non-increasing function of p and g, which means that for a given sample 

size (number of participants) when we have more groups or variables the effect size becomes 

smaller. For two-group cases, r = 1 and f2 reduces to λ−1 − 1. For 3-group cases, r = 2 and f2 

reduces to λ−1/2 − 1. If these two cases have the same Wilks’ λ, the latter case will have a 

smaller effect size. Cohen (1988) also suggested “small”, “medium” and “large” f2 values to 

be 0.02, 0.15 and 0.35, respectively.

3.2 Simulation Studies

To examine the coverage and power level of the proposed E-MKW test, simulations in 

different scenarios are performed. Our simulation studies assumed that missingness is 

MCAR.

First Simulation Study—Data with g = 2 groups and p = 2 outcome variables are 

simulated. To generate correlated outcomes, we use a latent variable X. Two scenarios are 

examined. One is based on normally distributed X, and the other is based on binomial 

distributed X.

For the first scenario, we set X ~ N(0,1). For group 1, we generated X1, …, Xn1 as a random 

sample of X. Next we set Y11|X ~ N(1 + X,2), Y12|X ~ N(X,1) and then Generate 

[(Y1j1,Y1j2)|Xj] as a random sample of [(Y11,Y12)|Xj], j = 1, …, n1. For group 2, we 

similarly generated X1, …, Xn2 as another random sample of X and set Y21|X ~ N(1 + X,2), 

Y22|X ~ N(Δ + X,1) and finally generated [(Y2j1,Y2j2)|Xj] as a random sample of [(Y21,Y22)|

Xj], j = 1, …, n2. It is to be noted that these generated samples are conditionally 

independent.

For the second scenario, we first set X ~ BIN(5,0.5). For group 1, we generated X1, …, Xn1 
as a random sample of X. We then set Y11|X ~ POI(1 + X), Y12|X ~ POI(2 + X) and 

generated [(Y1j1,Y1j2)|Xj] as a random sample of [(Y11,Y12)|Xj], j = 1, …, n1. Similarly for 

group 2, we generated X1, …, Xn2 as another random sample of X, set Y21|X ~ POI(1 + X), 

Y22|X ~ POI(2 + Δ + X) and generated [(Y2j1,Y2j2)|Xj] as a random sample of [(Y21,Y22)|

Xj], j = 1, …, n2. As noted earlier, these generated samples are conditionally independent.

Letting n1 = n2 = 50, the simulated data are given as

When Δ is zero, the underlying distributions of the two outcomes are the same in the two 

groups providing estimated type I error rates.
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Δ is assigned a spectrum of non-zero numbers to get different effect sizes. The underlying 

distributions of the first outcome variable are the same in the two groups, and the underlying 

distributions of the second outcome variable are different across the two groups rendering 

examinations of power values.

There are L = 4 possible missing data patterns in a bivariate data set: Y1 and Y2 both 

observed (M1), Y1 observed and Y2 missing (M2), Y1 missing and Y2 observed (M3), and 

Y1 and Y2 both missing (M4). Since cases with missing pattern M4 do not contain any 

information on Y1 and Y2, these cases are not involved in constructing the E-MKW test and 

we only consider the first three missing data patterns in the simulation study. Two missing 

rates, medium and high, are simulated. In the medium missing rate scenario, 40% of cases 

are simulated with M1, and each of 30% of cases are simulated with M2 and M3. In the high 

missing rate scenario, 20% of cases are simulated with M1, and each of 40% of cases are 

simulated with M2 and M3. Missing patterns are randomly assigned to simulated data.

For each scenario, we perform the standard and the E-MKW test in nsim = 1000 simulated 

incomplete datasets, and get the power values as  when Δ > 0, and the type 

I errors as  when Δ = 0.

The simulation results for type I errors are shown in Table 1. Permutation-based p-values are 

close to the nominal significance level 0.05, and are slightly more accurate compared with p-

values based on large sample approximation. Higher missing rates imply less information. It 

can be seen that type I errors are closer to 0.05 in medium missing rates scenarios compared 

with high missing rates scenarios, either in normal data or in non-normal data.

The simulation results of power levels are shown in Tables 2 and 3. As expected, the power 

levels of the E-MKW test are always higher than the power levels of the standard MKW test 

as the latter is applied only on complete cases. The difference is larger with higher missing 

rates. The permutation-based tests provide higher power levels than tests based on large 

sample approximation. The weighted and the unweighted test statistics provide very similar 

power levels, and both show increase in power when the effect size increases. In three of the 

four simulation sets, the power levels of the E-MKW test reach 80% when effect size is 

“medium” (<0.3). When percentage of missingness increases, the power level decreases. The 

performance of the extended test in non-normal data is as powerful as in normal data (Tables 

2 and 3).

Second Simulation Study—Another set of simulations were done with g = 3 groups and 

p = 3 outcome variables. To generate data, we set X ~ BIN(5,0.5). For group 1, we generated 

Y11|X ~ POI(1 + X), Y12|X ~ POI(2 + X) and Y13|X ~ POI(3 + X). For group 2, we 

generated Y21|X ~ POI(1 + X), Y22|X ~ POI(2 + X + Δ1) and Y13|X ~ POI(3 + X). For 

group 3, we generated Y31|X ~ POI(1 + X), Y32|X ~ POI(2 + X) and Y33|X ~ POI(3 + X + 

Δ2). We used 30 cases in each group (n1 = n2 = n3 = 30).

There are eight possible missing patterns in three-outcome data set: all outcomes observed 

(M1), two outcomes observed and one outcome missing (M2, M3 and M4), one outcome 

observed and two outcomes missing (M5, M6 and M7), and all outcomes missing (M8). 

He et al. Page 8

Commun Stat Theory Methods. Author manuscript; available in PMC 2018 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since the cases with last missing pattern (M8) do not carry any data, they are deleted, and 

we only consider M1–M7. Thirty percent of cases are simulated with M1. Ten percent of 

cases are simulated with each M2, M3 and M4 respectively, and 10% of cases are simulated 

with each M5, M6 and M7. Missing patterns are randomly assigned to simulated data. We 

perform the standard and the E-MKW test in nsim = 500 simulated incomplete data.

The simulation results of power levels are shown in Table 4. E-MKW tests consistently 

perform better than standard MKW tests, and weighted method consistently performs better 

than unweighted method. This better performance of the weighted method is expected as the 

weighted method provides weight proportional to the number of observed values in various 

missingness patterns.

3.3 Study on the use of yoga as adjunctive cognitive remediation for schizophrenia

Data from an open non-randomized clinical trial to evaluate the impact of adjunctive yoga 

therapy (YT), on cognitive domains in persons with schizophrenia (SZ) are used as an 

illustrative example (Bhatia et al., 2012) for the statistical method described in this paper. 

This study evaluated whether, among persons with SZ on conventional anti-psychotic 

medications, adjunctive structured yoga exercises could alter cognitive domains known to be 

impaired among persons with SZ. All patients clinically diagnosed in the study hospital with 

schizophrenia who fulfilled DSM IV diagnostic and inclusion criteria for this study were 

invited to participate in a specific 21-day yoga protocol in addition to their usual treatment. 

A total of 396 patients fulfilled inclusion criteria and 207 of them agreed to participate in 

one hour yoga training protocol, attending daily one hour yoga classes in the department 

(excluding Sundays). Following baseline evaluations, some patients dropped out of the study 

(N=121). Among the remainder, one group found that they could not travel to the hospital 

daily for yoga training as required (N=23), while the remainder (N=63) completed 21 daily 

yoga training sessions in the hospital and continued treatment with their therapists (YT 

group). The former group was therefore considered as the TAU group. They received 

conventional pharmacological treatment from their psychiatrists throughout the study. 

Cognitive functioning in all patients was assessed with a Hindi version of the Penn 

computerized neuropsychological battery (CNB) (Gur et al, 2001a; Gur et al, 2001b). The 

CNB included neurocognitive domains known to be impaired among individuals with SZ. 

The verbal domains were available only in English. As many participants did not speak 

English, the verbal domains were excluded. Accuracy (reflecting the number of correct 

responses) and speed (reflecting the median reaction time) for eight cognitive domains were 

assessed. The domains were: abstraction and mental flexibility, attention, working memory, 

face memory, spatial memory, spatial ability, sensorimotor dexterity and emotion processing. 

The neuropsychological battery was assessed at baseline, 21 days post treatment and 2 

months post treatment.

The trial primarily compared YT patients who completed 21 days intervention period 

(N=63) and TAU patients (N=24) to evaluate the impact of adjunctive YT in cognitive 

domains impaired in SZ. Improvements in cognitive domains at 2-month assessment point 

were compared between the TAU and YT groups. SZ patients who participated in YT and 

those who refused YT and received only TAU were found to be similar in standard 
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demographic and clinical characteristics with regard to age, sex, marital status and 

occupation excepting education and global assessment of worst point functioning scores 

during recent SZ episode (Bhatia et al., 2012). A large amount of missing values existed in 

the data. Only 10 subjects in the YT group and 9 subjects in the TAU group completed the 

neuropsychological battery in all domains at all assessment points. Moreover, the 

distributions on the cognitive measures were skewed. The researchers used univariate 

Kruskal-Wallis tests to compare the various cognitive domains that involve varying sample 

sizes, followed by corrections for multiple comparisons. The main finding consists of YT 

group showing significantly greater improvement with regard to measures of attention.

The use of the univariate Kruskal-Wallis test followed by adjustments for multiple 

comparisons is a common approach in applied research in analyzing multiple outcomes. We 

reanalyzed this dataset with MKW and E-MKW to assess the robustness of the results, and 

the pros and cons of univariate and multivariate tests.

For illustrative purpose, we analyzed the improvements in the speed summary functions in 

four domains: abstraction and mental flexibility, attention, face memory and spatial memory 

as less missingness were observed in these domains. Results from univariate Kruskal-Wallis 

test, using complete cases for individual domains, are shown in Table 5 The speed functions 

in abstraction and mental flexibility and in attention are shown to improve more in the YT 

group than in the TAU group (p-values = 0.028 and 0.014, respectively). However, after a 

Hochberg adjustment for multiple comparisons, only attention remained borderline 

significant (p-value=0.056).

An examination of the dataset revealed that the missingness was mostly due to 

administrative reasons, and no covariates were involved. Hence we did not stratify the data 

by any covariates. Although a traditional randomization was not performed in our study, 

patients in the TAU and YT groups were similar on demographic and clinical characteristics. 

The chief point of difference was inability to travel daily for required YT participation. 

Therefore permuting the group labels helped us to generate the empirical distribution of the 

E-MKW test under the null. Table 6 presents the missing patterns in these 4 cognitive 

domains. We note that 37 cases have no data (missing pattern 8) and missing patterns 3, 4 

and 5 could not be used in the E-MKW calculation, (ml ≤ pl). Results from the MANOVA, 

the standard MKW test and the E-MKW tests (permutation-based) are given in Table 7. We 

note that while the MANOVA and the standard MKW used 32 cases, the E-MKW is based 

on 46 cases by retaining information from partially observed data.

No significant difference between the two groups was detected by the MANOVA procedure. 

However, both the standard MKW test (large sample approximated p=0.038 and 

permutation-based p=0.030) and E-MKW tests (unweighted, p=0.031) and (weighted p= 

0.034) showed significant p-values. This implies that the improvements in at least one of the 

four domains are different between the two groups. As indicated earlier in Table 5, the 

univariate Kruskal-Wallis test fails to detect the difference between the YT and the TAU 

groups after correction for multiple comparisons with some borderline significance for the 

domain attention. However, if we now consider the univariate test as a post-hoc comparison, 

we do not need adjustment for multiple comparisons and can conclude that indeed the two 
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groups are significantly different in attention domain thus confirming the previous finding 

where we used only univariate Kruskal-Wallis test corrected for multiple comparisons 

(Bhatia et al., 2012). The results of unweighted E-MKW, weighted E-MKW are seen to be 

similar. We attribute this to the fact that except for missing pattern 2, other missing patterns 

have similar proportions of missingness (Table 6).

4. DISCUSSION

In clinical trials with multivariate outcomes the classical parametric methods for group 

comparisons have two major drawbacks. First, they require distributional assumptions such 

as multivariate normality. When the sample size is small, or response variables are ordinal, 

the use of parametric multivariate methods seems to be problematic. Second, when the 

multivariate tests are performed using standard software, incomplete cases are deleted and 

all information is lost. Nonparametric multivariate methods are available in the statistical 

literature. They circumvent the distributional assumptions, but the issue with missing data 

remains. The usual approach is to resort to univariate nonparametric approaches followed by 

correction for multiple comparisons. However, with correlated multivariate data the usual 

corrections may not be appropriate. Hence, global tests should be considered.

In this paper, we revisited the Multivariate Kruskal-Wallis (MKW) test and proposed an 

extension of that test to retain information from partially observed cases. We first developed 

the method under the MCAR assumption on the missingness and extended to MAR data 

where the missingness may depend on fully observed covariates or baseline variables. Our 

simulation results, encompassing a broad spectrum of multivariate effect sizes, show that the 

proposed extended test provides higher power values than the standard MKW test. In our 

illustrative example, we detected a group difference with the E-MKW tests and also in post-

hoc comparisons. We can note here that the overall results using univariate tests and 

multivariate tests are similar. This may be due to small sample size, and not very strong 

correlations between the response variables. Other datasets may bring out the usefulness of 

the MKW and E-MKW over univariate methods. The validity of the E-MKW test and the 

corresponding permutation procedure for deriving the p-value relies on the randomness of 

group assignment even though the number of observations in each missing data pattern does 

not have to be large. Blind application of the proposed method without justifying the random 

assignment may lead to wrong conclusions. Because the proposed E-MKW test is 

nonparametric by nature and may be less powerful in detecting restricted alternatives such as 

H1: μ1k ≥μ2k; k = 1,…,K with strict inequality for at least one k. Theories on restricted 

alternatives have been well developed for normally distributed data and data of other 

parametric distributions. ( Silvapulle and Sen, 2005; Basso, Pesarin, Salmaso and Solari, 

2009).
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Table 1

Simulation results of Type I errors

Distribution Missingness Unweighted b Statistic Weightedc Statistic

Normald Mediuma 0.056 0.05

Higha 0.062 0.054

Poissone Mediuma 0.044 0.046

Higha 0.062 0.062

a
Medium: M1=40%, M2=M3=30%. High: M1=20%, M2=M3=40%. n1 = n2 = 50

b
tl = 1/3, l = 1,2,3 (See text)

c
t1 = 0.4, t2 = t3 = 0.3 (See text)

d
X ~ N(0,1). Yi1|X ~ N(1 + X,2),Yi2|X ~ N(X, 1), i = 1,2

e
X ~ BIN (5,0.5). Yi1|X ~ POI(l + X), Yi2|X ~ POI(2 + X), i = 1,2
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Table 7

Comparisons of CNB domain improvements between YT and TAU groups by MANOVA and MKW and E-

MKW tests

Test n Large Sample Approximation Permutation-Based

MANOVA, Wilks’ λ 32 0.054 0.081b

Standard MKW Tests 32 0.038a 0.030

Extended MKW Tests Unweighted 46 - 0.031

Weighted 46 - 0.034

a
Approximated by  distribution

b
Based on a permutation test proposed by Zeng et al. (2011)
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