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Abstract

Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue 

interface research has been well recognized as an instrumental component of neurotechnology 

development. While satisfactory long-term performance was demonstrated in some applications, 

such as cochlear implants and deep brain stimulators, more advanced neural electrode devices 

requiring higher resolution for single unit recording or microstimulation still face significant 

challenges in reliability and longevity. In this article, we review the most recent findings that 

contribute to our current understanding of the sources of poor reliability and longevity in neural 

recording or stimulation, including the material failure, biological tissue response and the interplay 

between the two. The newly developed characterization tools are introduced from 

electrophysiology models, molecular and biochemical analysis, material characterization to live 

imaging. The effective strategies that have been applied to improve the interface are also 

highlighted. Finally, we discuss the challenges and opportunities in improving the interface and 

achieving seamless integration between the implanted electrodes and neural tissue both 

anatomically and functionally.
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1. Introduction

Neurotechnology is facing an exponential growth in the recent decades thanks to the 

advances demonstrated by brain machine interface human trials and clinical successes in 

neuromodulation therapies. A core component of neurotechnology involves invasive 

electrode devices interfacing directly with neural tissue for recording and/or stimulation. 

While satisfactory long-term performance was demonstrated in some applications, such as 

cochlear implants and deep brain stimulators, more advanced neural interfacing devices 

requiring higher resolution for single unit recording or microstimulation still face significant 

challenges in reliability and longevity. The most significant challenge lies in the neural 

electrode-tissue interface, where a man-made device is brought in contact with biological 

neural tissue and electrical voltages or currents are being transmitted across the electrode-

tissue interface. Like any implantable devices, the highly corrosive and dynamic 

environment of the host tissue is hostile to implants, among which micro-electronic devices 

are especially vulnerable. Although an old topic, the material and mechanical reliability of 

neural electrode arrays continue to be a critical area of research, and in our opinion, deserves 

more attention especially in the development of newer and more advanced devices. 

Conversely, the implantation and presence of an artificial device elicits acute injury and 

chronic inflammatory reactions that lead to tissue remodeling, degeneration and regeneration 

that alter the microenvironment with which the device is interfacing. Dynamic changes in 

the neural tissue around the implants affect the quality and stability of the neural electrode 

recording and/or stimulation performance, and this has been a hot area of research in recent 

years. Advanced electrodes are being designed to mitigate the issues faced when chronically 

interfacing with traditional electrodes by changing the geometry, increasing flexibility, and 

incorporating bioactive coatings and drugs. This article intends to 1) review the most recent 

findings that contribute to our current understanding of the unsatisfactory quality, stability 

and longevity of neural recording or stimulation, 2) highlight the development of 

characterization tools for the study of neural electrode-tissue interface, 3) summarize the 

strategies that have been applied to improve the interface, and 4) finally discuss the 

challenges and opportunities in improving the interface and achieving seamless integration 

between the implanted electrodes and neural tissue both anatomically and functionally. This 

article provides an overview of nervous system electrodes, but puts emphasis on central 

nervous system recording electrodes. For more detailed discussion on peripheral nervous 

system devices and stimulating electrodes, we would like to kindly direct the reader towards 

the complementary articles found in this issue of “Current Opinion in Biomedical 

Engineering” (titled “Peripheral Nerve Interfaces for Limb Prosthetics” and “Central 
Nervous System Microstimulation”. respectively).

2. Current Understanding of Failure Mechanisms

Recording the highest quality single neuron activity in the brain requires penetrating 

electrodes [1]. While many designs have been utilized for electrode devices implanted in the 

brain parenchyma, almost all electrodes have certain basic features: electrode sites of a 

conductive material, conducting leads connecting the electrode sites and external electrical 

components, and an insulating layer defining the electrode site areas and protecting the 

connection from electrical shunting. While microwire arrays (bundles of insulated metal 
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wires), Michigan electrodes (planar arrays), and Utah Arrays (bed of needles) are some of 

the more well-known and studied designs, many new designs and materials have been 

proposed for neural interfacing (Fig 1). The multitude of device designs and materials is 

well covered by Patil and Thakor in their review [2]. While neural electrodes have advanced 

greatly over the past few decades, recording and stimulation performance is highly variable 

and most devices show failure after chronic implantation ranging from weeks to months and 

a few years. A summary of device performance from selected studies is shown in Table 1. 

The causes of variability and long-term failure have been attributed to mechanical/material 

and biological factors.

2.1 Mechanical and Material Failure

Despite decades of research and development, mechanical and material failures are still a 

major contributor of performance failure for neural electrode devices. In a non-human 

primate study examining chronic recording performance of the Utah array (Blackrock 

Microsystems), mechanical and material failure have been reported to be the greatest cause 

of failure, accounting for upwards of 48% of all failure in the first year [3]. While many 

failures occurred at the percutaneous connectors and wire bundles, further difficulties arise 

with de-insulation, corrosion, and cracking of the electrodes directly interfacing with the 

neural tissue.

Several recent studies characterized different types of material failures and their recording/

stimulation consequences [4, 5]. One potential cause of material failure is de-insulation 

along the electrode or at the electrode tip. De-insulation at the electrode site increases the 

surface area exposed, decreasing the impedance of the electrode but also decreasing the 

recording quality [6]. Another notable observation is that failure is variable from animal to 

animal, with some electrode arrays recording on 80% of channels while others produced no 

recording [4]. One interesting study focused on the mechanical and material failure mode 

analysis on chronically implanted planar microelectrode arrays (Michigan probes, 

NeuroNexus) with multiple electrode sites along the shanks [5]. By correlating neural 

recordings, electrochemical impedance spectroscopy, and scanning electron microscopy of 

the explanted probes with Finite Element Modeling (FEM), several modes of material failure 

were identified that resulted in degradation and/or loss of recording, including loss of the 

metal site, delamination and cracking. Interestingly, cracking and delamination of 

conducting traces in vivo after long term implantation were most frequently observed near 

the electrode sites where the strain is most concentrated as determined by FEM, due to the 

mechanical mismatch between the iridium and silicon layers. This study points out the 

regions of the planar devices most vulnerable to mechanical stress induced failure, and can 

be used as a guide to design more robust planar arrays in the future. While this study focused 

on planar brain electrodes, the results are likely applicable to any electrode in the central or 

peripheral nervous system whose components have clashing mechanical properties.

Material corrosion/degradation can occur naturally, or be accelerated through electrical 

stimulation. Corrosion products have concerns of toxicity [7], but the greatest difficulty lies 

in loss of the structural stability and electrical functionality of the device. Implanted tungsten 

recording electrode exhibited a high degree of corrosion and subsequent delamination of 
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their insulation [4]. The common electrode material silicon dioxide may dissolve away in 

aqueous environments at the rate of 3.7–43.5 pm h−1 [8, 9]. Smaller devices are more 

susceptible to degradation, as such nanowires fabricated from silicon or assorted semi-

conductors will degrade away in a few weeks unless protected [10].

Stimulations pose additional harsh conditions to the electrodes. Improper stimulation can 

lead to electrode damage (metal corrosion, metal site detachment and insulation failure) and 

tissue inflammation due to electrolysis of water [11], local pH shifts [11], generation of free 

radicals, and release of metal ions [12]. Even some of the more electrochemically stable 

carbon electrodes can be oxidatively etched by stimulation [13]. As such, materials capable 

of withstanding high degrees of repetitive electrical stimulation and have a large charge 

injection capacity continue to be investigated [14, 15]. Using a combination of experimental 

data and theoretical analysis, Cogan et al. demonstrated that for microstimulation utilizing 

microelectrodes, the previously defined tissue damage limit using charge density and charge 

per phase by Shannon’s equation, no longer applies [12, 16–18]. This study calls for new 

considerations and tests in order to establish and validate safe stimulation limit for 

microelectrodes.

2.2 Biological Tissue Response

Regardless of implant location, biological tissue response against the implants is a major 

cause of electrode failure. On the macro scale, meningeal fibroblasts may migrate down the 

electrode shanks from the brain surface, contribute to the scar formation [19]. In more severe 

cases, the dural overgrowth may even encapsulate the whole device, resulting in ejection of 

the probes and signal loss. On the micro scale, several types of cells are involved in the 

inflammatory response to the implants, known as the foreign body response (FBR). For 

comprehensive review of the cellular responses, see review [20–22]. Briefly, microglial cells 

were immediately activated upon implantation [23] and release various inflammatory factors 

to recruit monocytes and astrocytes [24]. These activated microglia/macrophages remain at 

the vicinity of the implants over long-term implantations, and are surrounded by a dense 

layer of astrocytes, often referred to as glial scar. Glial encapsulation insulates electrodes 

from nearby neurons, increasing the impedance and the distance between electrodes and 

viable neurons [25]. Meanwhile, neurons (cell body and processes) may be damaged during 

insertion, pushed away by the glia scar, or degenerated by reactive oxygen species and 

proinflammatory or cytotoxic factors released from the chronic inflammation and/or become 

less active due to mechanical strain or disconnect from the rest of the network. It is assumed 

that these biological effects will result in recording or stimulation failure, but the 

contribution of each mechanism to device function has not been clearly understood.

One trigger of cellular responses and high degree of variability is vascular damage or breach 

of blood brain barrier (BBB). Electrode implantations inevitably break vasculature to various 

degrees. BBB leakage leads to release of blood cells, clotting factors and neurotoxic plasma 

proteins, and monocytes recruitment. A two-photon imaging study demonstrated that 

inflammatory tissue response may be minimized by reducing the vascular damage during 

insertion [26]. BBB damage does not stop at the insertion injury, more data have shown 
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persistent BBB leakage during chronic implantation time, which is inversely related to 

electrode performance [27].

Mechanical mismatch between the biological tissue and electrode devices may be of concern 

for chronic implantation. Conventional neural electrode devices are made of metal and 

silicon having mechanical modulus several orders of magnitude higher than the brain or 

peripheral nervous tissue. During breathing or movement of the animal, micromotion 

between the brain tissue and the inserted electrodes pose strain to the surrounding tissue, 

which lead to neural apoptosis [28]. Based on this, various mechanically soft and flexible 

electrode devices have been developed and when compared to the stiff devices, reduced 

inflammatory tissue responses have indeed been observed [29–31]. The mechanical strain 

may be aggravated by tethering the electrodes on the skull as opposed to free floating ones. 

Tethering increases the relative movement between implanted electrodes and the brain tissue 

and prevents the healing of the BBB, both of which may worsen the inflammation and cause 

neuronal degeneration or demyelination [32, 33].

Another mechanism for the implant to cause persistent inflammation is thought to be the 

accumulation of inflammatory cells and their inflammatory products. This is supported by 

two studies. In the first study, lattice probes were compared to solid probes of the same 

dimension and materials [34]. The lattice probes were designed with a low surface area and 

an open architecture to allow inflammatory products to freely diffuse away from the 

electrode. The study found that the lattice devices resulted in reduced inflammatory response 

when compared to solid probes. In the second study, diffusion sinks were created on the 

electrode using a thick hydrogel coating, and significantly reduced foreign body response 

was also observed [35].

Surface chemistry of the implant has been hypothesized to play a role on host tissue 

response, because plasma protein adsorption and inflammatory cell attachment occur on the 

surface are the earliest events after implantation. No differences in glial and neuronal 

responses have been found between Parylene C and silicon dioxide surfaces, two commonly 

used insulation materials [33], and polyethylene glycol based hydrogel coatings did not 

shown benefit [36]. These results suggest that physical chemistry alone may not be sufficient 

to alter the host tissue response. Bioactive coatings [37, 38] that interact with the host tissue 

via biologics or therapeutics may be necessary to actively modulate the tissue response.

In order to find the right bioactive intervention, it is important to identify the molecular 

pathways critical to the host tissue responses. Several nice studies utilizing knockout animals 

or RNA array analysis have shed new light on the relevant molecular pathways. For 

example, Caspase-1 knock out (KO) mice implanted with the Michigan probes have shown 

improved electrophysiological recording performance, indicating that caspase-1 mediated 

inflammation and/or apoptosis pathways are playing an important role [39]. In another study, 

foreign body response to intracortical silicon implants in MCP-1(also CCL-2) KO mice was 

reduced [40], possibly through inhibiting the TNF induction and NFκB pathway [41].

In sum, the biological tissue response to the implants involves a cascade of reactions in 

multiple types of cells. While it is clear that the biological response to implants contributes 
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to the devices performance, the contributions of different mechanisms (glial scar, neuronal 

degeneration and loss, inflammation etc.) to the failure of implanted devices remains to be 

determined. Furthermore, multiple triggers of these biological responses have been proposed 

but the challenge is to separate the impact of many biological factors and physicochemical 

triggers. To date, no single mechanism or factor has been found to predominate the 

performance of electrodes.

2.3 Interplay Between Material Response and Biological Response

As mentioned before, implantations of artificial devices cause tissue injury and 

inflammation, which may lead to release of free radicals, reactive oxygen and nitrogen 

species. These species may not only damage the tissue, but also accelerate the degradation of 

the electrode materials. In an in vitro study, tungsten electrodes exhibit a heightened degree 

of corrosion when exposed to common reactive oxygen species and H2O2 [42, 43]. This 

correlates with in vivo findings, where tungsten wires exhibit the greatest degree of 

degeneration immediately after implantation, likely due to the increased free radical 

concentration and comparatively harsh environment around the implant post-surgery [4]. In 

addition to tungsten, reactive oxygen species showed corrosive effects on Pt/Ir, Pt, Ir, Au, 

Silicon Nitride, Polyimide, and Parylene-C [43]. Depending on the type of degrading 

material, degradation products may worsen the inflammation. This leads to more reactive 

species, which in turn accelerates the material failure. Therefore, in vitro testing protocols 

and in vivo evaluations need to take into account these important interplays.

3. Methodology Development for Characterizing the Interface

Evaluation and characterization of the interface are of crucial importance for understanding 

the interaction between host tissue and neural implants and for guiding the device designs.

First, to evaluate the functionality of electrodes, electrophysiological recording is often 

necessary. Additionally, electrophysiological recording can be used as a characterization tool 

to probe neuronal health and activity at the interface. Careful consideration needs to be taken 

when selecting a recording model. For generic studies focusing on understanding the 

electrode-tissue interface, a model that is most reliable and reproducible would be preferred. 

For studies intended to evaluate functionality of devices in a specific application, the model 

should mimic the end use situation. Rodent models are the most common for generic studies 

due to low cost, well-established recording paradigms and broad availability of antibodies 

and genetic tools. While anesthetized recording are often criticized for being heavily 

influenced by the types and levels of anesthetics, awake recordings are often contaminated 

by electromagnetic motion artifact as the animal moves, making it difficult to distinguish 

electromechanical noise and neural activity [44]. A visually evoked rodent neural recording 

model was reported with detailed description of comprehensive evaluations [45]. It was 

demonstrated that compared to spontaneous recording, evoked response is more 

reproducible, elicits more single unit firing, and allows the quantification of multiunit and 

local field potential recordings. In this work, it was clearly demonstrated that single unit and 

multi-unit recording performance varies significantly in different anatomical layers, 

highlighting the need for layer dependent analysis taking into account the heterogeneous 
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architecture of the brain. Some published studies compared the recording yield (% of 

channels detecting single units) of MEAs with all electrode sites located at layer 4 (where 

the activity is the highest by default) to MEAs that have electrode sites spanning multiple 

layers of the brain [46, 47]. Such comparison puts linear arrays at significant disadvantage.

Postmortem histology and immunohistochemical staining has been the most common way to 

measure cellular tissue response. Commonly used makers are GFAP for astrocytes, Iba-1 or 

ED-1 for microglial/macrophages, NF for neurofilament, NeuN for neuron nuclei, and IgG, 

MSA or ferritin for BBB leakage. More recently, new markers such as PDGFRβ+ for 

pericytes, APC for oligodendrocytes, caspase 3 for apoptosis [39], CD80 for M1 type 

microglia, CD 163, CD 206, and Arg-1 for M2 type microglia [40], have been applied to 

indicate previously unexplored cell types, different phenotypes or health state of the cells. To 

take a further look into the molecular mechanism underlying the cellular reactions, RNA 

could be extracted specifically from the region of implantation by laser capture 

microdissection, followed by RT-PCR arrays to quantify the expression of various molecules 

in the inflammation or apoptosis pathways. Using this method, upregulation of IL-36Ra (≈ 
20-fold) and IL-1Ra (≈ 1500-fold) was found at the vicinity of implanted microwire arrays 3 

days post implantation. Using stretched microglia and astrocyte cultures, upregulation of 

interleukin receptor antagonist IL-36R1 was found to be strain induced and may negatively 

impact neuronal health upon electrode implantation [28].

Postmortem histology is naturally low in temporal resolution. To catch cellular and vascular 

dynamics, and correlates changes of tissue characteristics to recording performance in real 

time, various in vivo live imaging approaches have been developed. Two-photon microscopy 

(TPM) has been used to visualize vascular damage and remodeling, microglial polarization 

and migration [48, 49], or shape and activity of the neurons around electrode devices [20, 

50] before and after electrode array insertion and over extended periods of time. Compared 

to technologies like MRI and microCT, multi-photon microscopy offers high spatial 

resolution for resolving cellular processes, sufficient temporal resolution for tracking 

calcium activity, and ample cell type specific labeling (Capabilities of various imaging 

modality is summarized in Table 2). Another optical live imaging method, optical coherence 

tomography (OCT), has been used to characterize tissue displacement and changes in 

capillary perfusion and flow velocity during probe implantation [51], as well as vascular 

remodeling over extended implantation [52]. Although having lower spatial resolution, 

OCT’s higher depth penetration and angiography capability may complement TPM [53]. As 

a number of technical challenges (such as maintaining stable chronic imaging window and 

simultaneous imaging and recording) are overcome, in vivo microscopy is poised to shed 

many new insights on neural electrode-tissue interface dynamics.

Another non-invasive way of probing neural electrode-tissue interface is via electrochemical 

impedance spectroscopy (EIS). EIS can be used to evaluate the electrochemical property of 

the electrode sites, electrical connectivity of the conducting leads, as well as the quality of 

the insulation. Additionally, tissue response such as protein adsorption, edema, array 

ejection and glial encapsulation can also affect the characteristics of the EIS. Equivalent 

circuit models may be used to relate different aspects of the electrode-tissue interface to 

circuit model components, which would provide more information than single frequency 
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impedance modulus [54, 55]. However, care needs to be taken to draw conclusions using 

these models, as many biotic and abiotic changes are not easily distinguishable solely based 

on EIS.

Explant analysis is indispensable in uncovering the mechanical and material failure of the 

electrodes integrity by examining the device at high magnification using scanning electron 

microscopy (SEM) [56]. The cellular species attached to the explanted probes can also be 

immunostained to identify cell types [57] or even cultured to interrogate the secreted 

products [58].

Because of the highly variable dynamic nature of both the electrode and biological tissue 

and their interplay, understanding the neural electrode tissue interface requires more 

advanced molecular and imaging tools, more comprehensive examination that look at both 

biotic and abiotic features, and moving away from bulk averaging methodology and moving 

toward depth and region specific or even individualized diagnosis.

4. Strategies

Strategies to improve the chronic performance of the electrodes are widely varied in the field 

including altering implant dimensions and mechanical properties, improving material 

stability and functionalities, surface coatings, and drug delivery to minimize the FBR.

As discussed before, size of implants contributes to FBR via multiple mechanisms. Smaller 

sizes reduce the magnitude of BBB damage and tissue displacement, reduce surface area and 

may also decrease the device stiffness by decreasing the cross-sectional area. For these 

reasons, reducing the size of implanted electrode devices to subcellular level i.e. below 

several microns [10, 59–65] has been actively pursued by many groups. One study pioneered 

the use of carbon fiber (7 µm in diameter) for chronic neural recording and demonstrated 

negligible gliosis and neuron loss [47]. This study motivated several groups to fabricate 

arrays of carbon fiber for multisite recording/stimulation [66, 67]. However, making carbon 

fiber arrays is a labor intensive and largely manual operation, and the array configuration is 

limited to one electrode site per fiber. Lieber’s lab has been successful in developing SU-8 

based 3D macroporous mesh electrode arrays using micro/nanofabrication technology with 

features sizes less than 10 µm and exceptionally low bending forces, resulting in minimum 

foreign body responses and intimate neuron-device interaction [63]. Chronic recording with 

such mesh electrodes was demonstrated for at least 8 months [68].

In efforts to reduce mechanical mismatch between the electrode and the nervous tissue, 

electrodes constructed to be soft and flexible [63, 69–71] or stretchable [29, 57, 72, 73] 

continues to be a hot topic of research. Increasing flexibility can be achieved via reducing 

the cross sectional area [50] or increasing the length of the device, without changing the 

material properties [74]. Alternatively, novel soft and/or elastic conducting materials may be 

developed. Many of these flexible and elastic electrodes have demonstrated reduced FBR 

chronically, but rigorous and direct comparisons in chronic recording performance between 

soft electrode and traditional silicon/metal electrodes remain to be seen.
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Creating soft and flexible electrodes presented difficulties with insertion. Many of these 

difficulties are handled by coatings such as silk [75, 76] and carboxymethyl cellulose [77], 

or shuttles [69, 78, 79], syringe injection [80] and magnetic insertion [81]. Materials that are 

stiff at room temperature and soften after implantation in the brain are another interesting 

strategy [82, 83], however, these materials tend to absorb water in vivo, which challenges the 

insulation. Functional devices with these mechanically adaptive materials have yet to be 

demonstrated.

Mechanical mismatch can also be minimized by removing the tether. Note “tether” here 

means the interconnect between the device that is in the brain tissue and the connector that is 

usually mounted on the skull. This may be accomplished by implanting the entire device 

below the meninges [84], and using ultrasonic [85, 86] or induction [87] based power 

supplies for signal and/or power communication. While currently limited in ability to gather 

and transmit high quality information, the potential benefits of wireless devices are 

tremendous.

Bioactive coatings work by directly modulating the cellular activity around the electrode via 

bioactive molecules immobilized on implant surface or released from coatings [37, 88–90]. 

One strategy is to promote neuron-electrode integration by surface-immobilizing 

biomolecules that encourage neuronal attachment and growth. Extracellular matrix protein 

laminin has been applied to the surface of neural probes as “neuro-integrative” coating. 

Interestingly, no improvement on neuronal growth was found but the coating appears to 

increase the initial inflammatory response, while attenuating the activation of microglia and 

astrocytes after 4 weeks [91]. This burst in proinflammatory signaling may aid in acute 

wound healing and minimize long term tissue damage around the electrode. On the other 

hand, use of L1, a neuron specific cell adhesion molecule, has resulted in increased neuronal 

attachment along with decreased gliosis around the implants [38, 49, 92, 93]. More recently 

an in vivo TPM study revealed that microglia cells send processes to probes coated with L1 

immediately after implantation at a similar speed as they do to uncoated controls. However 

upon arriving at the probe surface, the spreading of microglia processes was significantly 

reduced by the surface immobilized L1 [49]. This study suggests that there is a window of 

opportunity to modulate the initial cellular behavior via bioactive surface cues.

Alternatively, drug delivery can be effective at reducing the implantation trauma and 

decreasing inflammation and degeneration around the site of implantation [88, 94]. While 

systemic administration bears the risk of side effects [95], local delivery from coatings faces 

the challenge of drug exhaustion after long-term implantation [88–90]. For sustained release, 

drug delivery channels may be incorporated into the electrode device [96–98]. Due to the 

electrical nature on neural implants, electrically driven drug release may be beneficial in 

delivering drug locally on demand [89, 99, 100]. While the effects of drug delivery on neural 

degeneration and glial encapsulation are quite pronounced, the long-term effects on neural 

recording quality are yet to be established.

As devices are made smaller and more flexible, more advanced and robust materials are 

required. Ultrasmall and flexible devices are more prone to mechanical and material failure 

by the nature of their geometry. In addition, these devices often require very thin insulation. 
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However, almost all thin (<1 um) insulating materials have problems with long term stability 

and reliability [101], indicating the need for greatly improved insulation materials/methods. 

Xie et al. has improved the insulation by first depositing a 52 nm adhesive layer of Al2O3 

via atomic layer deposition before the Parylene C coating [102], however, results seem to 

vary between positive results for planar electrodes [103] and potentially detrimental results 

for bed of needle style electrodes [104]. Thermally deposited silicon dioxide (100 nm) on 

silicon wafers has shown exceptionally good resistance to water penetration as well as 

highly uniform corrosion [101]. For flexible electronics, materials not only need to present 

sufficient flexibility, but also need to maintain the conductivity upon flexing/stretching. A 

notable development in elastic conductors has been produced through nanoconfinement 

effect [105]. These promising materials have yet to be introduced into neural devices.

Device size reduction also leads to necessary decrease in the size of the electrode sites, 

increasing the site impedance. While the small size of electrode sites may improve single 

neuron discrimination, very high impedances can increase the noise of recording or prevent 

effective stimulation. A potential solution may be found in conducting polymers. 

Conducting polymer coatings are known to dramatically decrease electrode impedance and 

increase charge injection limit [18, 106], and have been used to enable recording from 

ultrasmall electrode sites [47, 107]. New advances in conducting polymers may be found in 

novel dopants [61, 89], drug delivery [89], and novel monomers and crosslinkers for ease of 

functionalization or improved stability [108–111]. These novel polymer coatings may allow 

for further decreased size of both recording and stimulating electrodes for central and 

peripheral nervous system applications.

5. Conclusions and Outlook

Neural electrode-tissue interface research has been well recognized as an instrumental 

component of neurotechnology development. Multiple funding initiatives of the recent years 

have attracted many research groups to join force in understanding the interactions between 

implanted devices and neural tissue, and how these interactions affect neural electrode 

performances. The advances in molecular, biochemical and imagining tools have brought 

new insights. Combining high resolution, real time tracking of the interface in conjunction 

with electrophysiology may more definitively identify various modes of recording failure. 

Based on the current understanding, the trend of novel neural interfacing devices is to go 

smaller, softer and more flexible, and wireless. While certainly attractive, such devices 

present additional challenges on material stability and device durability. Revolutionary 

advances in material science and fabrication technologies may be needed to achieve required 

long-term stability for these devices. Meanwhile, numerous reports have shown that the 

biological tissue responses can be modulated using bioactive and genetic approaches. The 

next generation device design should take advantage of these biological approaches to 

actively modulate the host tissue. It is our opinion that the ideal neural electrode will require 

a combinatorial approach, incorporating biomimetics and advanced materials and fabrication 

to seamlessly interface with the nervous system.
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Highlight

• Material failure is still a significant factor in neural recording/stimulation and 

stimulation electrodes

• More comprehensive understanding of the vascular and cellular responses to 

the insertion injury and foreign body may be gained via molecular approach 

and novel markers

• Characterization of the neural electrode-tissue interface needs to take a 

comprehensive approach to examine both abiotic and biotic factors and the 

interplay between them.

• Advanced live imaging technologies have begun to reveal new dynamic 

insight at the neural electrode-tissue interface with real potential to correlate 

cellular and vascular characteristics to recording performance

• Smaller, softer, more flexible and wireless devices have showed great promise 

in seamless neural tissue integration, yet these devices face challenges with 

material stability and device reliability

• Bioactive approaches via biomimetic coatings and drug delivery to actively 

modulate the host tissue response is another promising strategy to improve the 

interface
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Figure 1. 
Comparison of selected traditional and advanced electrodes. (A) Microwire array, 

reproduced with permission from Microprobes for Life Sciences Inc. (B) Planar (Michigan) 

electrode. (C) Bed of needles (Utah) array [112], copyright 1998 Elsevier. (D) Syringe 

injectable mesh electrode [80], copyright 2017 National Academy of Sciences. (E) Carbon 

fiber electrode [47], copyright 2012 Nature Publishing. (F) Conducting elastomer microwire 

electrode [29].

Woeppel et al. Page 19

Curr Opin Biomed Eng. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woeppel et al. Page 20

Ta
b

le
 1

Su
m

m
ar

y 
of

 s
el

ec
te

d 
st

ud
ie

s 
of

 d
ev

ic
e 

fa
ilu

re
 f

or
 tr

ad
iti

on
al

 e
le

ct
ro

de
 d

es
ig

ns
. F

or
 e

ac
h 

st
ud

y,
 s

am
pl

es
 w

hi
ch

 d
id

 n
ot

 u
nd

er
go

 th
e 

en
tir

e 
ch

ro
ni

c 

im
pl

an
ta

tio
n 

w
er

e 
re

m
ov

ed
.

E
le

ct
ro

de
T

yp
e

A
ni

m
al

N
um

be
r 

of
ar

ra
ys

(E
le

ct
ro

de
s)

T
im

e 
co

ur
se

 o
f

ex
pe

ri
m

en
t

(D
ay

s)

Y
ie

ld
 a

t 
en

d 
of

ex
pe

ri
m

en
t 

(%
)

To
ta

l
F

ai
lu

re
(%

)

R
ef

.

U
ta

h 
10

×
10

M
on

ke
y

69
21

04
N

/A
79

[3
]

M
ic

hi
ga

n 
Si

ng
le

 S
ha

nk
M

ou
se

3 
(3

6)
13

3–
18

9
N

/A
N

/A
[5

]

T
un

gs
te

n 
M

ic
ro

w
ir

e
R

at
12

 (
19

2)
26

0
24

.6
*

75
.4

[4
]

Pt
/I

r 
M

ic
ro

w
ir

e
R

at
6 

(9
6)

71
–1

80
33

**
N

/A
[6

]

* A
ve

ra
ge

 y
ie

ld
 o

n 
th

e 
la

st
 d

ay
 o

f 
th

e 
im

pl
an

ta
tio

n

**
A

ve
ra

ge
 y

ie
ld

 f
or

 th
e 

en
tir

et
y 

of
 th

e 
ch

ro
ni

c 
ph

as
e 

of
 im

pl
an

ta
tio

n.

Curr Opin Biomed Eng. Author manuscript; available in PMC 2018 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Woeppel et al. Page 21

Ta
b

le
 2

C
om

m
on

 im
ag

in
g 

m
od

al
iti

es
 a

nd
 th

ei
r 

re
so

lu
tio

ns
, d

ep
th

 o
f 

pe
ne

tr
at

io
n,

 ty
pi

ca
l u

sa
ge

s,
 a

nd
 in

 v
iv

o 
co

m
pa

tib
ili

ty
.

Sp
at

ia
l

R
es

ol
ut

io
n

Te
m

po
ra

l
R

es
ol

ut
io

n
P

en
et

ra
ti

on
D

ep
th

L
ev

el
 o

f
V

is
ua

liz
at

io
n

In
 V

iv
o

C
om

pa
ti

bl
e

Sa
m

pl
e

pa
pe

rs

Fl
uo

re
sc

en
ce

 m
ic

ro
sc

op
y

~0
.2

 µ
m

N
/A

~1
00

 µ
m

M
ol

ec
ul

e,
 C

el
l

N
o

[5
8]

Tw
o-

ph
ot

on
 m

ic
ro

sc
op

y 
(T

PM
)

~0
.2

 µ
m

~1
0 

m
s

~1
 m

m
M

ol
ec

ul
e,

 C
el

l
Y

es
[4

8,
 4

9]

M
R

I
~0

.1
 m

m
~1

0 
m

s
N

o 
lim

it
B

lo
od

 o
xy

ge
na

tio
n

Y
es

[1
13

]

M
ic

ro
C

T
~1

0 
µm

~1
0 

m
s

~5
0 

m
m

B
on

e,
 s

of
t t

is
su

e
Y

es
[1

14
]

O
pt

ic
al

 c
oh

er
en

ce
 to

m
og

ra
ph

y 
(O

C
T

)
~5

 µ
m

~5
 m

s
~2

 m
m

V
as

cu
la

tu
re

, T
is

su
e 

A
rc

hi
te

ct
ur

e
Y

es
[5

1–
53

]

Sc
an

ni
ng

 E
le

ct
ro

n 
M

ic
ro

sc
op

y 
(S

E
M

)
~n

m
N

/A
N

/A
M

at
er

ia
l S

ur
fa

ce
, L

ar
ge

 M
ol

ec
ul

e,
 C

el
l

N
o

[5
6]

Curr Opin Biomed Eng. Author manuscript; available in PMC 2018 December 01.


	Abstract
	Graphical abstract
	1. Introduction
	2. Current Understanding of Failure Mechanisms
	2.1 Mechanical and Material Failure
	2.2 Biological Tissue Response
	2.3 Interplay Between Material Response and Biological Response

	3. Methodology Development for Characterizing the Interface
	4. Strategies
	5. Conclusions and Outlook
	References
	Figure 1
	Table 1
	Table 2

